phoenix-firestorm/indra/llcommon/lltraceaccumulators.cpp

252 lines
7.2 KiB
C++

/**
* @file lltracesampler.cpp
*
* $LicenseInfo:firstyear=2001&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2012, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
#include "linden_common.h"
#include "lltraceaccumulators.h"
#include "lltracethreadrecorder.h"
namespace LLTrace
{
///////////////////////////////////////////////////////////////////////
// AccumulatorBufferGroup
///////////////////////////////////////////////////////////////////////
AccumulatorBufferGroup::AccumulatorBufferGroup()
{}
void AccumulatorBufferGroup::handOffTo(AccumulatorBufferGroup& other)
{
other.mCounts.reset(&mCounts);
other.mSamples.reset(&mSamples);
other.mEvents.reset(&mEvents);
other.mStackTimers.reset(&mStackTimers);
other.mMemStats.reset(&mMemStats);
}
void AccumulatorBufferGroup::makeCurrent()
{
mCounts.makeCurrent();
mSamples.makeCurrent();
mEvents.makeCurrent();
mStackTimers.makeCurrent();
mMemStats.makeCurrent();
ThreadRecorder* thread_recorder = get_thread_recorder().get();
AccumulatorBuffer<TimeBlockAccumulator>& timer_accumulator_buffer = mStackTimers;
// update stacktimer parent pointers
for (S32 i = 0, end_i = mStackTimers.size(); i < end_i; i++)
{
TimeBlockTreeNode* tree_node = thread_recorder->getTimeBlockTreeNode(i);
if (tree_node)
{
timer_accumulator_buffer[i].mParent = tree_node->mParent;
}
}
}
//static
void AccumulatorBufferGroup::clearCurrent()
{
AccumulatorBuffer<CountAccumulator>::clearCurrent();
AccumulatorBuffer<SampleAccumulator>::clearCurrent();
AccumulatorBuffer<EventAccumulator>::clearCurrent();
AccumulatorBuffer<TimeBlockAccumulator>::clearCurrent();
AccumulatorBuffer<MemStatAccumulator>::clearCurrent();
}
bool AccumulatorBufferGroup::isCurrent() const
{
return mCounts.isCurrent();
}
void AccumulatorBufferGroup::append( const AccumulatorBufferGroup& other )
{
mCounts.addSamples(other.mCounts, SEQUENTIAL);
mSamples.addSamples(other.mSamples, SEQUENTIAL);
mEvents.addSamples(other.mEvents, SEQUENTIAL);
mMemStats.addSamples(other.mMemStats, SEQUENTIAL);
mStackTimers.addSamples(other.mStackTimers, SEQUENTIAL);
}
void AccumulatorBufferGroup::merge( const AccumulatorBufferGroup& other)
{
mCounts.addSamples(other.mCounts, NON_SEQUENTIAL);
mSamples.addSamples(other.mSamples, NON_SEQUENTIAL);
mEvents.addSamples(other.mEvents, NON_SEQUENTIAL);
mMemStats.addSamples(other.mMemStats, NON_SEQUENTIAL);
// for now, hold out timers from merge, need to be displayed per thread
//mStackTimers.addSamples(other.mStackTimers, NON_SEQUENTIAL);
}
void AccumulatorBufferGroup::reset(AccumulatorBufferGroup* other)
{
mCounts.reset(other ? &other->mCounts : NULL);
mSamples.reset(other ? &other->mSamples : NULL);
mEvents.reset(other ? &other->mEvents : NULL);
mStackTimers.reset(other ? &other->mStackTimers : NULL);
mMemStats.reset(other ? &other->mMemStats : NULL);
}
void AccumulatorBufferGroup::sync()
{
if (isCurrent())
{
F64SecondsImplicit time_stamp = LLTimer::getTotalSeconds();
mSamples.sync(time_stamp);
mMemStats.sync(time_stamp);
}
}
void SampleAccumulator::addSamples( const SampleAccumulator& other, EBufferAppendType append_type )
{
if (!mHasValue)
{
*this = other;
if (append_type == NON_SEQUENTIAL)
{
// restore own last value state
mLastValue = NaN;
mHasValue = false;
}
}
else if (other.mHasValue)
{
mSum += other.mSum;
if (other.mMin < mMin) { mMin = other.mMin; }
if (other.mMax > mMax) { mMax = other.mMax; }
F64 epsilon = 0.0000001;
if (other.mTotalSamplingTime > epsilon && mTotalSamplingTime > epsilon)
{
// combine variance (and hence standard deviation) of 2 different sized sample groups using
// the following formula: http://www.mrc-bsu.cam.ac.uk/cochrane/handbook/chapter_7/7_7_3_8_combining_groups.htm
F64 n_1 = mTotalSamplingTime,
n_2 = other.mTotalSamplingTime;
F64 m_1 = mMean,
m_2 = other.mMean;
F64 v_1 = mSumOfSquares / mTotalSamplingTime,
v_2 = other.mSumOfSquares / other.mTotalSamplingTime;
if (n_1 < epsilon)
{
mSumOfSquares = other.mSumOfSquares;
}
else
{
mSumOfSquares = mTotalSamplingTime
* ((((n_1 - epsilon) * v_1)
+ ((n_2 - epsilon) * v_2)
+ (((n_1 * n_2) / (n_1 + n_2))
* ((m_1 * m_1) + (m_2 * m_2) - (2.f * m_1 * m_2))))
/ (n_1 + n_2 - epsilon));
}
F64 weight = mTotalSamplingTime / (mTotalSamplingTime + other.mTotalSamplingTime);
mNumSamples += other.mNumSamples;
mTotalSamplingTime += other.mTotalSamplingTime;
mMean = (mMean * weight) + (other.mMean * (1.0 - weight));
}
if (append_type == SEQUENTIAL)
{
mLastValue = other.mLastValue;
mLastSampleTimeStamp = other.mLastSampleTimeStamp;
}
}
}
void SampleAccumulator::reset( const SampleAccumulator* other )
{
mLastValue = other ? other->mLastValue : NaN;
mHasValue = other ? other->mHasValue : false;
mNumSamples = 0;
mSum = 0;
mMin = mLastValue;
mMax = mLastValue;
mMean = mLastValue;
llassert(!mHasValue || mMean < 0 || mMean >= 0);
mSumOfSquares = 0;
mLastSampleTimeStamp = LLTimer::getTotalSeconds();
mTotalSamplingTime = 0;
}
void EventAccumulator::addSamples( const EventAccumulator& other, EBufferAppendType append_type )
{
if (other.mNumSamples)
{
if (!mNumSamples)
{
*this = other;
}
else
{
mSum += other.mSum;
// NOTE: both conditions will hold first time through
if (other.mMin < mMin) { mMin = other.mMin; }
if (other.mMax > mMax) { mMax = other.mMax; }
// combine variance (and hence standard deviation) of 2 different sized sample groups using
// the following formula: http://www.mrc-bsu.cam.ac.uk/cochrane/handbook/chapter_7/7_7_3_8_combining_groups.htm
F64 n_1 = (F64)mNumSamples,
n_2 = (F64)other.mNumSamples;
F64 m_1 = mMean,
m_2 = other.mMean;
F64 v_1 = mSumOfSquares / mNumSamples,
v_2 = other.mSumOfSquares / other.mNumSamples;
mSumOfSquares = (F64)mNumSamples
* ((((n_1 - 1.f) * v_1)
+ ((n_2 - 1.f) * v_2)
+ (((n_1 * n_2) / (n_1 + n_2))
* ((m_1 * m_1) + (m_2 * m_2) - (2.f * m_1 * m_2))))
/ (n_1 + n_2 - 1.f));
F64 weight = (F64)mNumSamples / (F64)(mNumSamples + other.mNumSamples);
mNumSamples += other.mNumSamples;
mMean = mMean * weight + other.mMean * (1.f - weight);
if (append_type == SEQUENTIAL) mLastValue = other.mLastValue;
}
}
}
void EventAccumulator::reset( const EventAccumulator* other )
{
mNumSamples = 0;
mSum = NaN;
mMin = NaN;
mMax = NaN;
mMean = NaN;
mSumOfSquares = 0;
mLastValue = other ? other->mLastValue : NaN;
}
}