phoenix-firestorm/indra/llcommon/lltracerecording.cpp

638 lines
16 KiB
C++

/**
* @file lltracesampler.cpp
*
* $LicenseInfo:firstyear=2001&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2012, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
#include "linden_common.h"
#include "lltrace.h"
#include "llfasttimer.h"
#include "lltracerecording.h"
#include "lltracethreadrecorder.h"
#include "llthread.h"
namespace LLTrace
{
///////////////////////////////////////////////////////////////////////
// RecordingBuffers
///////////////////////////////////////////////////////////////////////
RecordingBuffers::RecordingBuffers()
: mCountsFloat(new AccumulatorBuffer<CountAccumulator<F64> >()),
mMeasurementsFloat(new AccumulatorBuffer<MeasurementAccumulator<F64> >()),
mCounts(new AccumulatorBuffer<CountAccumulator<S64> >()),
mMeasurements(new AccumulatorBuffer<MeasurementAccumulator<S64> >()),
mStackTimers(new AccumulatorBuffer<TimeBlockAccumulator>()),
mMemStats(new AccumulatorBuffer<MemStatAccumulator>())
{}
void RecordingBuffers::handOffTo(RecordingBuffers& other)
{
other.mCountsFloat.write()->reset(mCountsFloat);
other.mMeasurementsFloat.write()->reset(mMeasurementsFloat);
other.mCounts.write()->reset(mCounts);
other.mMeasurements.write()->reset(mMeasurements);
other.mStackTimers.write()->reset(mStackTimers);
other.mMemStats.write()->reset(mMemStats);
}
void RecordingBuffers::makePrimary()
{
mCountsFloat.write()->makePrimary();
mMeasurementsFloat.write()->makePrimary();
mCounts.write()->makePrimary();
mMeasurements.write()->makePrimary();
mStackTimers.write()->makePrimary();
mMemStats.write()->makePrimary();
ThreadRecorder* thread_recorder = get_thread_recorder().get();
AccumulatorBuffer<TimeBlockAccumulator>& timer_accumulator_buffer = *mStackTimers.write();
// update stacktimer parent pointers
for (S32 i = 0, end_i = mStackTimers->size(); i < end_i; i++)
{
TimeBlockTreeNode* tree_node = thread_recorder->getTimeBlockTreeNode(i);
if (tree_node)
{
timer_accumulator_buffer[i].mParent = tree_node->mParent;
}
}
}
bool RecordingBuffers::isPrimary() const
{
return mCounts->isPrimary();
}
void RecordingBuffers::makeUnique()
{
mCountsFloat.makeUnique();
mMeasurementsFloat.makeUnique();
mCounts.makeUnique();
mMeasurements.makeUnique();
mStackTimers.makeUnique();
mMemStats.makeUnique();
}
void RecordingBuffers::appendBuffers( const RecordingBuffers& other )
{
mCountsFloat.write()->addSamples(*other.mCountsFloat);
mMeasurementsFloat.write()->addSamples(*other.mMeasurementsFloat);
mCounts.write()->addSamples(*other.mCounts);
mMeasurements.write()->addSamples(*other.mMeasurements);
mMemStats.write()->addSamples(*other.mMemStats);
mStackTimers.write()->addSamples(*other.mStackTimers);
}
void RecordingBuffers::mergeBuffers( const RecordingBuffers& other)
{
mCountsFloat.write()->addSamples(*other.mCountsFloat);
mMeasurementsFloat.write()->addSamples(*other.mMeasurementsFloat);
mCounts.write()->addSamples(*other.mCounts);
mMeasurements.write()->addSamples(*other.mMeasurements);
mMemStats.write()->addSamples(*other.mMemStats);
}
void RecordingBuffers::resetBuffers(RecordingBuffers* other)
{
mCountsFloat.write()->reset(other ? other->mCountsFloat : LLCopyOnWritePointer<AccumulatorBuffer<CountAccumulator<F64> > >());
mMeasurementsFloat.write()->reset(other ? other->mMeasurementsFloat : LLCopyOnWritePointer<AccumulatorBuffer<MeasurementAccumulator<F64> > >());
mCounts.write()->reset(other ? other->mCounts : LLCopyOnWritePointer<AccumulatorBuffer<CountAccumulator<S64> > >());
mMeasurements.write()->reset(other ? other->mMeasurements : LLCopyOnWritePointer<AccumulatorBuffer<MeasurementAccumulator<S64> > >());
mStackTimers.write()->reset(other ? other->mStackTimers : LLCopyOnWritePointer<AccumulatorBuffer<TimeBlockAccumulator> >());
mMemStats.write()->reset(other ? other->mMemStats : LLCopyOnWritePointer<AccumulatorBuffer<MemStatAccumulator> >());
}
///////////////////////////////////////////////////////////////////////
// Recording
///////////////////////////////////////////////////////////////////////
Recording::Recording()
: mElapsedSeconds(0)
{}
Recording::Recording( const Recording& other )
: RecordingBuffers(other),
mElapsedSeconds(other.mElapsedSeconds),
mSamplingTimer(other.mSamplingTimer)
{
LLStopWatchControlsMixin<Recording>::setPlayState(other.getPlayState());
}
Recording::~Recording()
{
stop();
llassert(isStopped());
}
void Recording::update()
{
if (isStarted())
{
LLTrace::get_thread_recorder()->update(this);
mSamplingTimer.reset();
}
}
void Recording::handleReset()
{
resetBuffers();
mElapsedSeconds = 0.0;
mSamplingTimer.reset();
}
void Recording::handleStart()
{
mSamplingTimer.reset();
LLTrace::get_thread_recorder()->activate(this);
}
void Recording::handleStop()
{
mElapsedSeconds += mSamplingTimer.getElapsedTimeF64();
LLTrace::TimeBlock::processTimes();
LLTrace::get_thread_recorder()->deactivate(this);
}
void Recording::handleSplitTo(Recording& other)
{
stop();
other.restart();
handOffTo(other);
}
void Recording::appendRecording( const Recording& other )
{
appendBuffers(other);
mElapsedSeconds += other.mElapsedSeconds;
}
void Recording::mergeRecording( const Recording& other)
{
mergeBuffers(other);
}
LLUnit<LLUnits::Seconds, F64> Recording::getSum(const TraceType<TimeBlockAccumulator>& stat) const
{
const TimeBlockAccumulator& accumulator = (*mStackTimers)[stat.getIndex()];
return (F64)(accumulator.mTotalTimeCounter - accumulator.mStartTotalTimeCounter)
/ (F64)LLTrace::TimeBlock::countsPerSecond();
}
LLUnit<LLUnits::Seconds, F64> Recording::getSum(const TraceType<TimeBlockAccumulator::SelfTimeAspect>& stat) const
{
const TimeBlockAccumulator& accumulator = (*mStackTimers)[stat.getIndex()];
return (F64)(accumulator.mSelfTimeCounter) / (F64)LLTrace::TimeBlock::countsPerSecond();
}
U32 Recording::getSum(const TraceType<TimeBlockAccumulator::CallCountAspect>& stat) const
{
return (*mStackTimers)[stat.getIndex()].mCalls;
}
LLUnit<LLUnits::Seconds, F64> Recording::getPerSec(const TraceType<TimeBlockAccumulator>& stat) const
{
const TimeBlockAccumulator& accumulator = (*mStackTimers)[stat.getIndex()];
return (F64)(accumulator.mTotalTimeCounter - accumulator.mStartTotalTimeCounter)
/ ((F64)LLTrace::TimeBlock::countsPerSecond() * mElapsedSeconds);
}
LLUnit<LLUnits::Seconds, F64> Recording::getPerSec(const TraceType<TimeBlockAccumulator::SelfTimeAspect>& stat) const
{
const TimeBlockAccumulator& accumulator = (*mStackTimers)[stat.getIndex()];
return (F64)(accumulator.mSelfTimeCounter)
/ ((F64)LLTrace::TimeBlock::countsPerSecond() * mElapsedSeconds);
}
F32 Recording::getPerSec(const TraceType<TimeBlockAccumulator::CallCountAspect>& stat) const
{
return (F32)(*mStackTimers)[stat.getIndex()].mCalls / mElapsedSeconds;
}
LLUnit<LLUnits::Bytes, U32> Recording::getSum(const TraceType<MemStatAccumulator>& stat) const
{
return (*mMemStats)[stat.getIndex()].mAllocatedCount;
}
LLUnit<LLUnits::Bytes, F32> Recording::getPerSec(const TraceType<MemStatAccumulator>& stat) const
{
return (F32)(*mMemStats)[stat.getIndex()].mAllocatedCount / mElapsedSeconds;
}
F64 Recording::getSum( const TraceType<CountAccumulator<F64> >& stat ) const
{
return (*mCountsFloat)[stat.getIndex()].getSum();
}
S64 Recording::getSum( const TraceType<CountAccumulator<S64> >& stat ) const
{
return (*mCounts)[stat.getIndex()].getSum();
}
F64 Recording::getSum( const TraceType<MeasurementAccumulator<F64> >& stat ) const
{
return (F64)(*mMeasurementsFloat)[stat.getIndex()].getSum();
}
S64 Recording::getSum( const TraceType<MeasurementAccumulator<S64> >& stat ) const
{
return (S64)(*mMeasurements)[stat.getIndex()].getSum();
}
F64 Recording::getPerSec( const TraceType<CountAccumulator<F64> >& stat ) const
{
F64 sum = (*mCountsFloat)[stat.getIndex()].getSum();
return (sum != 0.0)
? (sum / mElapsedSeconds)
: 0.0;
}
F64 Recording::getPerSec( const TraceType<CountAccumulator<S64> >& stat ) const
{
S64 sum = (*mCounts)[stat.getIndex()].getSum();
return (sum != 0)
? ((F64)sum / mElapsedSeconds)
: 0.0;
}
U32 Recording::getSampleCount( const TraceType<CountAccumulator<F64> >& stat ) const
{
return (*mCountsFloat)[stat.getIndex()].getSampleCount();
}
U32 Recording::getSampleCount( const TraceType<CountAccumulator<S64> >& stat ) const
{
return (*mMeasurementsFloat)[stat.getIndex()].getSampleCount();
}
F64 Recording::getMin( const TraceType<MeasurementAccumulator<F64> >& stat ) const
{
return (*mMeasurementsFloat)[stat.getIndex()].getMin();
}
S64 Recording::getMin( const TraceType<MeasurementAccumulator<S64> >& stat ) const
{
return (*mMeasurements)[stat.getIndex()].getMin();
}
F64 Recording::getMax( const TraceType<MeasurementAccumulator<F64> >& stat ) const
{
return (*mMeasurementsFloat)[stat.getIndex()].getMax();
}
S64 Recording::getMax( const TraceType<MeasurementAccumulator<S64> >& stat ) const
{
return (*mMeasurements)[stat.getIndex()].getMax();
}
F64 Recording::getMean( const TraceType<MeasurementAccumulator<F64> >& stat ) const
{
return (*mMeasurementsFloat)[stat.getIndex()].getMean();
}
F64 Recording::getMean( const TraceType<MeasurementAccumulator<S64> >& stat ) const
{
return (*mMeasurements)[stat.getIndex()].getMean();
}
F64 Recording::getStandardDeviation( const TraceType<MeasurementAccumulator<F64> >& stat ) const
{
return (*mMeasurementsFloat)[stat.getIndex()].getStandardDeviation();
}
F64 Recording::getStandardDeviation( const TraceType<MeasurementAccumulator<S64> >& stat ) const
{
return (*mMeasurements)[stat.getIndex()].getStandardDeviation();
}
F64 Recording::getLastValue( const TraceType<MeasurementAccumulator<F64> >& stat ) const
{
return (*mMeasurementsFloat)[stat.getIndex()].getLastValue();
}
S64 Recording::getLastValue( const TraceType<MeasurementAccumulator<S64> >& stat ) const
{
return (*mMeasurements)[stat.getIndex()].getLastValue();
}
U32 Recording::getSampleCount( const TraceType<MeasurementAccumulator<F64> >& stat ) const
{
return (*mMeasurementsFloat)[stat.getIndex()].getSampleCount();
}
U32 Recording::getSampleCount( const TraceType<MeasurementAccumulator<S64> >& stat ) const
{
return (*mMeasurements)[stat.getIndex()].getSampleCount();
}
///////////////////////////////////////////////////////////////////////
// PeriodicRecording
///////////////////////////////////////////////////////////////////////
PeriodicRecording::PeriodicRecording( U32 num_periods, EPlayState state)
: mAutoResize(num_periods == 0),
mCurPeriod(0)
{
if (num_periods)
{
mRecordingPeriods.resize(num_periods);
}
setPlayState(state);
}
void PeriodicRecording::nextPeriod()
{
EPlayState play_state = getPlayState();
Recording& old_recording = getCurRecording();
if (mAutoResize)
{
mRecordingPeriods.push_back(Recording());
}
U32 num_periods = mRecordingPeriods.size();
mCurPeriod = (num_periods > 0)
? (mCurPeriod + 1) % num_periods
: mCurPeriod + 1;
old_recording.splitTo(getCurRecording());
switch(play_state)
{
case STOPPED:
getCurRecording().stop();
break;
case PAUSED:
getCurRecording().pause();
break;
case STARTED:
break;
}
}
void PeriodicRecording::start()
{
getCurRecording().start();
}
void PeriodicRecording::stop()
{
getCurRecording().stop();
}
void PeriodicRecording::pause()
{
getCurRecording().pause();
}
void PeriodicRecording::resume()
{
getCurRecording().resume();
}
void PeriodicRecording::restart()
{
getCurRecording().restart();
}
void PeriodicRecording::reset()
{
getCurRecording().reset();
}
void PeriodicRecording::splitTo(PeriodicRecording& other)
{
getCurRecording().splitTo(other.getCurRecording());
}
void PeriodicRecording::splitFrom(PeriodicRecording& other)
{
getCurRecording().splitFrom(other.getCurRecording());
}
///////////////////////////////////////////////////////////////////////
// ExtendableRecording
///////////////////////////////////////////////////////////////////////
void ExtendableRecording::extend()
{
// stop recording to get latest data
mPotentialRecording.stop();
// push the data back to accepted recording
mAcceptedRecording.appendRecording(mPotentialRecording);
// flush data, so we can start from scratch
mPotentialRecording.reset();
// go back to play state we were in initially
mPotentialRecording.setPlayState(getPlayState());
}
void ExtendableRecording::start()
{
LLStopWatchControlsMixin<ExtendableRecording>::start();
mPotentialRecording.start();
}
void ExtendableRecording::stop()
{
LLStopWatchControlsMixin<ExtendableRecording>::stop();
mPotentialRecording.stop();
}
void ExtendableRecording::pause()
{
LLStopWatchControlsMixin<ExtendableRecording>::pause();
mPotentialRecording.pause();
}
void ExtendableRecording::resume()
{
LLStopWatchControlsMixin<ExtendableRecording>::resume();
mPotentialRecording.resume();
}
void ExtendableRecording::restart()
{
LLStopWatchControlsMixin<ExtendableRecording>::restart();
mAcceptedRecording.reset();
mPotentialRecording.restart();
}
void ExtendableRecording::reset()
{
LLStopWatchControlsMixin<ExtendableRecording>::reset();
mAcceptedRecording.reset();
mPotentialRecording.reset();
}
void ExtendableRecording::splitTo(ExtendableRecording& other)
{
LLStopWatchControlsMixin<ExtendableRecording>::splitTo(other);
mPotentialRecording.splitTo(other.mPotentialRecording);
}
void ExtendableRecording::splitFrom(ExtendableRecording& other)
{
LLStopWatchControlsMixin<ExtendableRecording>::splitFrom(other);
mPotentialRecording.splitFrom(other.mPotentialRecording);
}
PeriodicRecording& get_frame_recording()
{
static LLThreadLocalPointer<PeriodicRecording> sRecording(new PeriodicRecording(1000, PeriodicRecording::STARTED));
return *sRecording;
}
}
void LLStopWatchControlsMixinCommon::start()
{
switch (mPlayState)
{
case STOPPED:
handleReset();
handleStart();
break;
case PAUSED:
handleStart();
break;
case STARTED:
handleReset();
break;
default:
llassert(false);
break;
}
mPlayState = STARTED;
}
void LLStopWatchControlsMixinCommon::stop()
{
switch (mPlayState)
{
case STOPPED:
break;
case PAUSED:
handleStop();
break;
case STARTED:
handleStop();
break;
default:
llassert(false);
break;
}
mPlayState = STOPPED;
}
void LLStopWatchControlsMixinCommon::pause()
{
switch (mPlayState)
{
case STOPPED:
break;
case PAUSED:
break;
case STARTED:
handleStop();
break;
default:
llassert(false);
break;
}
mPlayState = PAUSED;
}
void LLStopWatchControlsMixinCommon::resume()
{
switch (mPlayState)
{
case STOPPED:
handleStart();
break;
case PAUSED:
handleStart();
break;
case STARTED:
break;
default:
llassert(false);
break;
}
mPlayState = STARTED;
}
void LLStopWatchControlsMixinCommon::restart()
{
switch (mPlayState)
{
case STOPPED:
handleReset();
handleStart();
break;
case PAUSED:
handleReset();
handleStart();
break;
case STARTED:
handleReset();
break;
default:
llassert(false);
break;
}
mPlayState = STARTED;
}
void LLStopWatchControlsMixinCommon::reset()
{
handleReset();
}
void LLStopWatchControlsMixinCommon::setPlayState( EPlayState state )
{
switch(state)
{
case STOPPED:
stop();
break;
case PAUSED:
pause();
break;
case STARTED:
start();
break;
default:
llassert(false);
break;
}
mPlayState = state;
}