phoenix-firestorm/indra/newview/gltf/asset.cpp

1437 lines
40 KiB
C++

/**
* @file asset.cpp
* @brief LL GLTF Implementation
*
* $LicenseInfo:firstyear=2024&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2024, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
#include "../llviewerprecompiledheaders.h"
#include "asset.h"
#include "llvolumeoctree.h"
#include "../llviewershadermgr.h"
#include "../llviewercontrol.h"
#include "../llviewertexturelist.h"
#include "../pipeline.h"
#include "buffer_util.h"
#include <boost/url.hpp>
#include "llimagejpeg.h"
#include "../llskinningutil.h"
using namespace LL::GLTF;
using namespace boost::json;
namespace LL
{
namespace GLTF
{
static std::unordered_set<std::string> ExtensionsSupported = {
"KHR_materials_unlit",
"KHR_texture_transform"
};
static std::unordered_set<std::string> ExtensionsIgnored = {
"KHR_materials_pbrSpecularGlossiness"
};
Material::AlphaMode gltf_alpha_mode_to_enum(const std::string& alpha_mode)
{
if (alpha_mode == "OPAQUE")
{
return Material::AlphaMode::OPAQUE;
}
else if (alpha_mode == "MASK")
{
return Material::AlphaMode::MASK;
}
else if (alpha_mode == "BLEND")
{
return Material::AlphaMode::BLEND;
}
else
{
return Material::AlphaMode::OPAQUE;
}
}
std::string enum_to_gltf_alpha_mode(Material::AlphaMode alpha_mode)
{
switch (alpha_mode)
{
case Material::AlphaMode::OPAQUE:
return "OPAQUE";
case Material::AlphaMode::MASK:
return "MASK";
case Material::AlphaMode::BLEND:
return "BLEND";
default:
return "OPAQUE";
}
}
}
}
void Scene::updateTransforms(Asset& asset)
{
mat4 identity = glm::identity<mat4>();
for (auto& nodeIndex : mNodes)
{
Node& node = asset.mNodes[nodeIndex];
node.updateTransforms(asset, identity);
}
}
void Node::updateTransforms(Asset& asset, const mat4& parentMatrix)
{
makeMatrixValid();
mAssetMatrix = parentMatrix * mMatrix;
mAssetMatrixInv = glm::inverse(mAssetMatrix);
S32 my_index = (S32)(this - &asset.mNodes[0]);
for (auto& childIndex : mChildren)
{
Node& child = asset.mNodes[childIndex];
child.mParent = my_index;
child.updateTransforms(asset, mAssetMatrix);
}
}
void Asset::updateTransforms()
{
LL_PROFILE_ZONE_SCOPED_CATEGORY_GLTF;
for (auto& scene : mScenes)
{
scene.updateTransforms(*this);
}
uploadTransforms();
}
void Asset::uploadTransforms()
{
LL_PROFILE_ZONE_SCOPED_CATEGORY_GLTF;
// prepare matrix palette
U32 max_nodes = LLSkinningUtil::getMaxGLTFJointCount();
size_t node_count = llmin<size_t>(max_nodes, mNodes.size());
std::vector<mat4> t_mp;
t_mp.resize(node_count);
for (U32 i = 0; i < node_count; ++i)
{
Node& node = mNodes[i];
// build matrix palette in asset space
t_mp[i] = node.mAssetMatrix;
}
std::vector<F32> glmp;
glmp.resize(node_count * 12);
F32* mp = glmp.data();
for (U32 i = 0; i < node_count; ++i)
{
F32* m = glm::value_ptr(t_mp[i]);
U32 idx = i * 12;
mp[idx + 0] = m[0];
mp[idx + 1] = m[1];
mp[idx + 2] = m[2];
mp[idx + 3] = m[12];
mp[idx + 4] = m[4];
mp[idx + 5] = m[5];
mp[idx + 6] = m[6];
mp[idx + 7] = m[13];
mp[idx + 8] = m[8];
mp[idx + 9] = m[9];
mp[idx + 10] = m[10];
mp[idx + 11] = m[14];
}
if (mNodesUBO == 0)
{
glGenBuffers(1, &mNodesUBO);
}
glBindBuffer(GL_UNIFORM_BUFFER, mNodesUBO);
glBufferData(GL_UNIFORM_BUFFER, glmp.size() * sizeof(F32), glmp.data(), GL_STREAM_DRAW);
glBindBuffer(GL_UNIFORM_BUFFER, 0);
}
void Asset::uploadMaterials()
{
LL_PROFILE_ZONE_SCOPED_CATEGORY_GLTF;
// see pbrmetallicroughnessV.glsl for the layout of the material UBO
std::vector<vec4> md;
U32 material_size = sizeof(vec4) * 12;
U32 max_materials = gGLManager.mMaxUniformBlockSize / material_size;
U32 mat_count = (U32)mMaterials.size();
mat_count = llmin(mat_count, max_materials);
md.resize(mat_count * 12);
for (U32 i = 0; i < mat_count*12; i += 12)
{
Material& material = mMaterials[i/12];
// add texture transforms and UV indices
material.mPbrMetallicRoughness.mBaseColorTexture.mTextureTransform.getPacked(&md[i+0]);
md[i + 1].g = (F32)material.mPbrMetallicRoughness.mBaseColorTexture.getTexCoord();
material.mNormalTexture.mTextureTransform.getPacked(&md[i + 2]);
md[i + 3].g = (F32)material.mNormalTexture.getTexCoord();
material.mPbrMetallicRoughness.mMetallicRoughnessTexture.mTextureTransform.getPacked(&md[i+4]);
md[i + 5].g = (F32)material.mPbrMetallicRoughness.mMetallicRoughnessTexture.getTexCoord();
material.mEmissiveTexture.mTextureTransform.getPacked(&md[i + 6]);
md[i + 7].g = (F32)material.mEmissiveTexture.getTexCoord();
material.mOcclusionTexture.mTextureTransform.getPacked(&md[i + 8]);
md[i + 9].g = (F32)material.mOcclusionTexture.getTexCoord();
// add material properties
F32 min_alpha = material.mAlphaMode == Material::AlphaMode::MASK ? material.mAlphaCutoff : -1.0f;
md[i + 10] = vec4(material.mEmissiveFactor, 1.f);
md[i + 11] = vec4(0.f,
material.mPbrMetallicRoughness.mRoughnessFactor,
material.mPbrMetallicRoughness.mMetallicFactor,
min_alpha);
}
if (mMaterialsUBO == 0)
{
glGenBuffers(1, &mMaterialsUBO);
}
glBindBuffer(GL_UNIFORM_BUFFER, mMaterialsUBO);
glBufferData(GL_UNIFORM_BUFFER, md.size() * sizeof(vec4), md.data(), GL_STREAM_DRAW);
glBindBuffer(GL_UNIFORM_BUFFER, 0);
}
S32 Asset::lineSegmentIntersect(const LLVector4a& start, const LLVector4a& end,
LLVector4a* intersection, // return the intersection point
LLVector2* tex_coord, // return the texture coordinates of the intersection point
LLVector4a* normal, // return the surface normal at the intersection point
LLVector4a* tangent, // return the surface tangent at the intersection point
S32* primitive_hitp
)
{
S32 node_hit = -1;
S32 primitive_hit = -1;
LLVector4a local_start;
LLVector4a asset_end = end;
LLVector4a local_end;
LLVector4a p;
for (auto& node : mNodes)
{
if (node.mMesh != INVALID_INDEX)
{
bool newHit = false;
LLMatrix4a ami;
ami.loadu(glm::value_ptr(node.mAssetMatrixInv));
// transform start and end to this node's local space
ami.affineTransform(start, local_start);
ami.affineTransform(asset_end, local_end);
Mesh& mesh = mMeshes[node.mMesh];
for (auto& primitive : mesh.mPrimitives)
{
const LLVolumeTriangle* tri = primitive.lineSegmentIntersect(local_start, local_end, &p, tex_coord, normal, tangent);
if (tri)
{
newHit = true;
local_end = p;
// pointer math to get the node index
node_hit = (S32)(&node - &mNodes[0]);
llassert(&mNodes[node_hit] == &node);
//pointer math to get the primitive index
primitive_hit = (S32)(&primitive - &mesh.mPrimitives[0]);
llassert(&mesh.mPrimitives[primitive_hit] == &primitive);
}
}
if (newHit)
{
LLMatrix4a am;
am.loadu(glm::value_ptr(node.mAssetMatrix));
// shorten line segment on hit
am.affineTransform(p, asset_end);
// transform results back to asset space
if (intersection)
{
*intersection = asset_end;
}
if (normal || tangent)
{
mat4 normalMatrix = glm::transpose(node.mAssetMatrixInv);
LLMatrix4a norm_mat;
norm_mat.loadu(glm::value_ptr(normalMatrix));
if (normal)
{
LLVector4a n = *normal;
F32 w = n.getF32ptr()[3];
n.getF32ptr()[3] = 0.0f;
norm_mat.affineTransform(n, *normal);
normal->getF32ptr()[3] = w;
}
if (tangent)
{
LLVector4a t = *tangent;
F32 w = t.getF32ptr()[3];
t.getF32ptr()[3] = 0.0f;
norm_mat.affineTransform(t, *tangent);
tangent->getF32ptr()[3] = w;
}
}
}
}
}
if (node_hit != -1)
{
if (primitive_hitp)
{
*primitive_hitp = primitive_hit;
}
}
return node_hit;
}
void Node::makeMatrixValid()
{
if (!mMatrixValid && mTRSValid)
{
mMatrix = glm::recompose(mScale, mRotation, mTranslation, vec3(0,0,0), vec4(0,0,0,1));
mMatrixValid = true;
}
llassert(mMatrixValid);
}
void Node::makeTRSValid()
{
if (!mTRSValid && mMatrixValid)
{
vec3 skew;
vec4 perspective;
glm::decompose(mMatrix, mScale, mRotation, mTranslation, skew, perspective);
mTRSValid = true;
}
llassert(mTRSValid);
}
void Node::setRotation(const quat& q)
{
makeTRSValid();
mRotation = q;
mMatrixValid = false;
}
void Node::setTranslation(const vec3& t)
{
makeTRSValid();
mTranslation = t;
mMatrixValid = false;
}
void Node::setScale(const vec3& s)
{
makeTRSValid();
mScale = s;
mMatrixValid = false;
}
void Node::serialize(object& dst) const
{
write(mName, "name", dst);
write(mMatrix, "matrix", dst, glm::identity<mat4>());
write(mRotation, "rotation", dst, glm::identity<quat>());
write(mTranslation, "translation", dst, glm::vec3(0.f, 0.f, 0.f));
write(mScale, "scale", dst, vec3(1.f,1.f,1.f));
write(mChildren, "children", dst);
write(mMesh, "mesh", dst, INVALID_INDEX);
write(mSkin, "skin", dst, INVALID_INDEX);
}
const Node& Node::operator=(const Value& src)
{
copy(src, "name", mName);
mMatrixValid = copy(src, "matrix", mMatrix);
copy(src, "rotation", mRotation);
copy(src, "translation", mTranslation);
copy(src, "scale", mScale);
copy(src, "children", mChildren);
copy(src, "mesh", mMesh);
copy(src, "skin", mSkin);
if (!mMatrixValid)
{
mTRSValid = true;
}
return *this;
}
void Image::serialize(object& dst) const
{
write(mUri, "uri", dst);
write(mMimeType, "mimeType", dst);
write(mBufferView, "bufferView", dst, INVALID_INDEX);
write(mName, "name", dst);
write(mWidth, "width", dst, -1);
write(mHeight, "height", dst, -1);
write(mComponent, "component", dst, -1);
write(mBits, "bits", dst, -1);
write(mPixelType, "pixelType", dst, -1);
}
const Image& Image::operator=(const Value& src)
{
copy(src, "uri", mUri);
copy(src, "mimeType", mMimeType);
copy(src, "bufferView", mBufferView);
copy(src, "name", mName);
copy(src, "width", mWidth);
copy(src, "height", mHeight);
copy(src, "component", mComponent);
copy(src, "bits", mBits);
copy(src, "pixelType", mPixelType);
return *this;
}
void Asset::update()
{
LL_PROFILE_ZONE_SCOPED_CATEGORY_GLTF;
F32 dt = gFrameTimeSeconds - mLastUpdateTime;
if (dt > 0.f)
{
mLastUpdateTime = gFrameTimeSeconds;
if (mAnimations.size() > 0)
{
static LLCachedControl<U32> anim_idx(gSavedSettings, "GLTFAnimationIndex", 0);
static LLCachedControl<F32> anim_speed(gSavedSettings, "GLTFAnimationSpeed", 1.f);
U32 idx = llclamp(anim_idx(), 0U, mAnimations.size() - 1);
mAnimations[idx].update(*this, dt*anim_speed);
}
updateTransforms();
for (auto& skin : mSkins)
{
skin.uploadMatrixPalette(*this);
}
uploadMaterials();
{
LL_PROFILE_ZONE_NAMED_CATEGORY_GLTF("gltf - addTextureStats");
for (auto& image : mImages)
{
if (image.mLoadIntoTexturePipe)
{
if (image.mTexture.notNull())
{ // HACK - force texture to be loaded full rez
// TODO: calculate actual vsize
image.mTexture->addTextureStats(2048.f * 2048.f);
image.mTexture->setBoostLevel(LLViewerTexture::BOOST_HIGH);
}
}
}
}
}
}
bool Asset::prep()
{
LL_PROFILE_ZONE_SCOPED_CATEGORY_GLTF;
// check required extensions
for (auto& extension : mExtensionsRequired)
{
if (ExtensionsSupported.find(extension) == ExtensionsSupported.end())
{
if (ExtensionsIgnored.find(extension) == ExtensionsIgnored.end())
{
LL_WARNS() << "Unsupported extension: " << extension << LL_ENDL;
mUnsupportedExtensions.push_back(extension);
}
else
{
mIgnoredExtensions.push_back(extension);
}
}
}
if (mUnsupportedExtensions.size() > 0)
{
return false;
}
// do buffers first as other resources depend on them
for (auto& buffer : mBuffers)
{
if (!buffer.prep(*this))
{
return false;
}
}
for (auto& image : mImages)
{
if (!image.prep(*this, mLoadIntoVRAM))
{
return false;
}
}
for (auto& mesh : mMeshes)
{
if (!mesh.prep(*this))
{
return false;
}
}
for (auto& animation : mAnimations)
{
if (!animation.prep(*this))
{
return false;
}
}
for (auto& skin : mSkins)
{
if (!skin.prep(*this))
{
return false;
}
}
if (mLoadIntoVRAM)
{
// prepare vertex buffers
// material count is number of materials + 1 for default material
U32 mat_count = (U32) mMaterials.size() + 1;
if (LLGLSLShader::sCurBoundShaderPtr == nullptr)
{ // make sure a shader is bound to satisfy mVertexBuffer->setBuffer
gDebugProgram.bind();
}
for (S32 double_sided = 0; double_sided < 2; ++double_sided)
{
RenderData& rd = mRenderData[double_sided];
for (U32 i = 0; i < LLGLSLShader::NUM_GLTF_VARIANTS; ++i)
{
rd.mBatches[i].resize(mat_count);
}
// for each material
for (S32 mat_id = -1; mat_id < (S32)mMaterials.size(); ++mat_id)
{
// for each shader variant
U32 vertex_count[LLGLSLShader::NUM_GLTF_VARIANTS] = { 0 };
U32 index_count[LLGLSLShader::NUM_GLTF_VARIANTS] = { 0 };
S32 ds_mat = mat_id == -1 ? 0 : mMaterials[mat_id].mDoubleSided;
if (ds_mat != double_sided)
{
continue;
}
for (U32 variant = 0; variant < LLGLSLShader::NUM_GLTF_VARIANTS; ++variant)
{
#if SHOW_ASSERT
U32 attribute_mask = 0;
#endif
// for each mesh
for (auto& mesh : mMeshes)
{
// for each primitive
for (auto& primitive : mesh.mPrimitives)
{
if (primitive.mMaterial == mat_id && primitive.mShaderVariant == variant)
{
// accumulate vertex and index counts
primitive.mVertexOffset = vertex_count[variant];
primitive.mIndexOffset = index_count[variant];
vertex_count[variant] += primitive.getVertexCount();
index_count[variant] += primitive.getIndexCount();
// all primitives of a given variant and material should all have the same attribute mask
llassert(attribute_mask == 0 || primitive.mAttributeMask == attribute_mask);
#if SHOW_ASSERT
attribute_mask |= primitive.mAttributeMask;
#endif
}
}
}
// allocate vertex buffer and pack it
if (vertex_count[variant] > 0)
{
U32 mat_idx = mat_id + 1;
#if 0
LLVertexBuffer* vb = new LLVertexBuffer(attribute_mask);
rd.mBatches[variant][mat_idx].mVertexBuffer = vb;
vb->allocateBuffer(vertex_count[variant],
index_count[variant] * 2); // hack double index count... TODO: find a better way to indicate 32-bit indices will be used
vb->setBuffer();
for (auto& mesh : mMeshes)
{
for (auto& primitive : mesh.mPrimitives)
{
if (primitive.mMaterial == mat_id && primitive.mShaderVariant == variant)
{
primitive.upload(vb);
}
}
}
vb->unmapBuffer();
vb->unbind();
#endif
}
}
}
}
// sanity check that all primitives have a vertex buffer
for (auto& mesh : mMeshes)
{
for (auto& primitive : mesh.mPrimitives)
{
//llassert(primitive.mVertexBuffer.notNull());
}
}
}
#if 0
// build render batches
for (S32 node_id = 0; node_id < mNodes.size(); ++node_id)
{
Node& node = mNodes[node_id];
if (node.mMesh != INVALID_INDEX)
{
auto& mesh = mMeshes[node.mMesh];
S32 mat_idx = mesh.mPrimitives[0].mMaterial + 1;
S32 double_sided = mat_idx == 0 ? 0 : mMaterials[mat_idx - 1].mDoubleSided;
for (S32 j = 0; j < mesh.mPrimitives.size(); ++j)
{
auto& primitive = mesh.mPrimitives[j];
S32 variant = primitive.mShaderVariant;
RenderData& rd = mRenderData[double_sided];
RenderBatch& rb = rd.mBatches[variant][mat_idx];
rb.mPrimitives.push_back({ j, node_id });
}
}
}
#endif
return true;
}
Asset::Asset(const Value& src)
{
*this = src;
}
bool Asset::load(std::string_view filename, bool loadIntoVRAM)
{
LL_PROFILE_ZONE_SCOPED_CATEGORY_GLTF;
mLoadIntoVRAM = loadIntoVRAM;
mFilename = filename;
std::string ext = gDirUtilp->getExtension(mFilename);
llifstream file(filename.data(), std::ios::binary);
if (file.is_open())
{
std::string str((std::istreambuf_iterator<char>(file)), std::istreambuf_iterator<char>());
file.close();
if (ext == "gltf")
{
Value val = parse(str);
*this = val;
return prep();
}
else if (ext == "glb")
{
return loadBinary(str, mLoadIntoVRAM);
}
else
{
LL_WARNS() << "Unsupported file type: " << ext << LL_ENDL;
return false;
}
}
else
{
LL_WARNS() << "Failed to open file: " << filename << LL_ENDL;
return false;
}
return false;
}
bool Asset::loadBinary(const std::string& data, bool loadIntoVRAM)
{
mLoadIntoVRAM = loadIntoVRAM;
// load from binary gltf
const U8* ptr = (const U8*)data.data();
const U8* end = ptr + data.size();
if (end - ptr < 12)
{
LL_WARNS("GLTF") << "GLB file too short" << LL_ENDL;
return false;
}
U32 magic = *(U32*)ptr;
ptr += 4;
if (magic != 0x46546C67)
{
LL_WARNS("GLTF") << "Invalid GLB magic" << LL_ENDL;
return false;
}
U32 version = *(U32*)ptr;
ptr += 4;
if (version != 2)
{
LL_WARNS("GLTF") << "Unsupported GLB version" << LL_ENDL;
return false;
}
U32 length = *(U32*)ptr;
ptr += 4;
if (length != data.size())
{
LL_WARNS("GLTF") << "GLB length mismatch" << LL_ENDL;
return false;
}
U32 chunkLength = *(U32*)ptr;
ptr += 4;
if (end - ptr < chunkLength + 8)
{
LL_WARNS("GLTF") << "GLB chunk too short" << LL_ENDL;
return false;
}
U32 chunkType = *(U32*)ptr;
ptr += 4;
if (chunkType != 0x4E4F534A)
{
LL_WARNS("GLTF") << "Invalid GLB chunk type" << LL_ENDL;
return false;
}
Value val = parse(std::string_view((const char*)ptr, chunkLength));
*this = val;
if (mBuffers.size() > 0 && mBuffers[0].mUri.empty())
{
// load binary chunk
ptr += chunkLength;
if (end - ptr < 8)
{
LL_WARNS("GLTF") << "GLB chunk too short" << LL_ENDL;
return false;
}
chunkLength = *(U32*)ptr;
ptr += 4;
chunkType = *(U32*)ptr;
ptr += 4;
if (chunkType != 0x004E4942)
{
LL_WARNS("GLTF") << "Invalid GLB chunk type" << LL_ENDL;
return false;
}
auto& buffer = mBuffers[0];
if (ptr + buffer.mByteLength <= end)
{
buffer.mData.resize(buffer.mByteLength);
memcpy(buffer.mData.data(), ptr, buffer.mByteLength);
ptr += buffer.mByteLength;
}
else
{
LL_WARNS("GLTF") << "Buffer too short" << LL_ENDL;
return false;
}
}
return prep();
}
const Asset& Asset::operator=(const Value& src)
{
if (src.is_object())
{
const object& obj = src.as_object();
const auto it = obj.find("asset");
if (it != obj.end())
{
const Value& asset = it->value();
copy(asset, "version", mVersion);
copy(asset, "minVersion", mMinVersion);
copy(asset, "generator", mGenerator);
copy(asset, "copyright", mCopyright);
copy(asset, "extras", mExtras);
}
copy(obj, "scene", mScene);
copy(obj, "scenes", mScenes);
copy(obj, "nodes", mNodes);
copy(obj, "meshes", mMeshes);
copy(obj, "materials", mMaterials);
copy(obj, "buffers", mBuffers);
copy(obj, "bufferViews", mBufferViews);
copy(obj, "textures", mTextures);
copy(obj, "samplers", mSamplers);
copy(obj, "images", mImages);
copy(obj, "accessors", mAccessors);
copy(obj, "animations", mAnimations);
copy(obj, "skins", mSkins);
copy(obj, "extensionsUsed", mExtensionsUsed);
copy(obj, "extensionsRequired", mExtensionsRequired);
}
return *this;
}
void Asset::serialize(object& dst) const
{
static const std::string sGenerator = "Linden Lab GLTF Prototype v0.1";
dst["asset"] = object{};
object& asset = dst["asset"].get_object();
write(mVersion, "version", asset);
write(mMinVersion, "minVersion", asset, std::string());
write(sGenerator, "generator", asset);
write(mScene, "scene", dst, INVALID_INDEX);
write(mScenes, "scenes", dst);
write(mNodes, "nodes", dst);
write(mMeshes, "meshes", dst);
write(mMaterials, "materials", dst);
write(mBuffers, "buffers", dst);
write(mBufferViews, "bufferViews", dst);
write(mTextures, "textures", dst);
write(mSamplers, "samplers", dst);
write(mImages, "images", dst);
write(mAccessors, "accessors", dst);
write(mAnimations, "animations", dst);
write(mSkins, "skins", dst);
write(mExtensionsUsed, "extensionsUsed", dst);
write(mExtensionsRequired, "extensionsRequired", dst);
}
bool Asset::save(const std::string& filename)
{
// get folder path
std::string folder = gDirUtilp->getDirName(filename);
// save images
for (auto& image : mImages)
{
if (!image.save(*this, folder))
{
return false;
}
}
// save buffers
// NOTE: save buffers after saving images as saving images
// may remove image data from buffers
for (auto& buffer : mBuffers)
{
if (!buffer.save(*this, folder))
{
return false;
}
}
// save .gltf
object obj;
serialize(obj);
std::string buffer = boost::json::serialize(obj, {});
std::ofstream file(filename, std::ios::binary);
file.write(buffer.c_str(), buffer.size());
return true;
}
void Asset::eraseBufferView(S32 bufferView)
{
mBufferViews.erase(mBufferViews.begin() + bufferView);
for (auto& accessor : mAccessors)
{
if (accessor.mBufferView > bufferView)
{
accessor.mBufferView--;
}
}
for (auto& image : mImages)
{
if (image.mBufferView > bufferView)
{
image.mBufferView--;
}
}
}
LLViewerFetchedTexture* fetch_texture(const LLUUID& id);
bool Image::prep(Asset& asset, bool loadIntoVRAM)
{
mLoadIntoTexturePipe = loadIntoVRAM;
LLUUID id;
if (mUri.size() == UUID_STR_SIZE && LLUUID::parseUUID(mUri, &id) && id.notNull())
{ // loaded from an asset, fetch the texture from the asset system
mTexture = fetch_texture(id);
}
else if (mUri.find("data:") == 0)
{ // embedded in a data URI, load the texture from the URI
LL_WARNS() << "Data URIs not yet supported" << LL_ENDL;
return false;
}
else if (mBufferView != INVALID_INDEX)
{ // embedded in a buffer, load the texture from the buffer
BufferView& bufferView = asset.mBufferViews[mBufferView];
Buffer& buffer = asset.mBuffers[bufferView.mBuffer];
if (mLoadIntoTexturePipe)
{
U8* data = buffer.mData.data() + bufferView.mByteOffset;
mTexture = LLViewerTextureManager::getFetchedTextureFromMemory(data, bufferView.mByteLength, mMimeType);
}
else if (mTexture.isNull() && mLoadIntoTexturePipe)
{
LL_WARNS("GLTF") << "Failed to load image from buffer:" << LL_ENDL;
LL_WARNS("GLTF") << " image: " << mName << LL_ENDL;
LL_WARNS("GLTF") << " mimeType: " << mMimeType << LL_ENDL;
return false;
}
}
else if (!asset.mFilename.empty() && !mUri.empty())
{ // loaded locally and not embedded, load the texture as a local preview
std::string dir = gDirUtilp->getDirName(asset.mFilename);
std::string img_file = dir + gDirUtilp->getDirDelimiter() + mUri;
LLUUID tracking_id = LLLocalBitmapMgr::getInstance()->addUnit(img_file);
if (tracking_id.notNull() && mLoadIntoTexturePipe)
{
LLUUID world_id = LLLocalBitmapMgr::getInstance()->getWorldID(tracking_id);
mTexture = LLViewerTextureManager::getFetchedTexture(world_id);
}
else if (mLoadIntoTexturePipe)
{
LL_WARNS("GLTF") << "Failed to load image from file:" << LL_ENDL;
LL_WARNS("GLTF") << " image: " << mName << LL_ENDL;
LL_WARNS("GLTF") << " file: " << img_file << LL_ENDL;
return false;
}
}
else
{
LL_WARNS("GLTF") << "Failed to load image: " << mName << LL_ENDL;
return false;
}
if (!asset.mFilename.empty() && mLoadIntoTexturePipe)
{ // local preview, boost image so it doesn't discard and force to save raw image in case we save out or upload
mTexture->setBoostLevel(LLViewerTexture::BOOST_PREVIEW);
mTexture->forceToSaveRawImage(0, F32_MAX);
}
return true;
}
void Image::clearData(Asset& asset)
{
if (mBufferView != INVALID_INDEX)
{
// remove data from buffer
BufferView& bufferView = asset.mBufferViews[mBufferView];
Buffer& buffer = asset.mBuffers[bufferView.mBuffer];
buffer.erase(asset, bufferView.mByteOffset, bufferView.mByteLength);
asset.eraseBufferView(mBufferView);
}
mBufferView = INVALID_INDEX;
mWidth = -1;
mHeight = -1;
mComponent = -1;
mBits = -1;
mPixelType = -1;
mMimeType = "";
}
bool Image::save(Asset& asset, const std::string& folder)
{
// NOTE: this *MUST* be a lossless save
// Artists use this to save their work repeatedly, so
// adding any compression artifacts here will degrade
// images over time.
std::string name = mName;
std::string error;
const std::string& delim = gDirUtilp->getDirDelimiter();
if (name.empty())
{
S32 idx = (S32)(this - asset.mImages.data());
name = llformat("image_%d", idx);
}
if (mBufferView != INVALID_INDEX)
{
// we have the bytes of the original image, save that out in its
// original format
BufferView& bufferView = asset.mBufferViews[mBufferView];
Buffer& buffer = asset.mBuffers[bufferView.mBuffer];
std::string extension;
if (mMimeType == "image/jpeg")
{
extension = ".jpg";
}
else if (mMimeType == "image/png")
{
extension = ".png";
}
else
{
error = "Unknown mime type, saved as .bin";
extension = ".bin";
}
std::string filename = folder + delim + name + extension;
// set URI to non-j2c file for now, but later we'll want to reference the j2c hash
mUri = name + extension;
std::ofstream file(filename, std::ios::binary);
file.write((const char*)buffer.mData.data() + bufferView.mByteOffset, bufferView.mByteLength);
}
else if (mTexture.notNull())
{
auto bitmapmgr = LLLocalBitmapMgr::getInstance();
if (bitmapmgr->isLocal(mTexture->getID()))
{
LLUUID tracking_id = bitmapmgr->getTrackingID(mTexture->getID());
if (tracking_id.notNull())
{ // copy original file to destination folder
std::string source = bitmapmgr->getFilename(tracking_id);
if (gDirUtilp->fileExists(source))
{
std::string filename = gDirUtilp->getBaseFileName(source);
std::string dest = folder + delim + filename;
LLFile::copy(source, dest);
mUri = filename;
}
else
{
error = "File not found: " + source;
}
}
else
{
error = "Local image missing.";
}
}
else if (!mUri.empty())
{
std::string from_dir = gDirUtilp->getDirName(asset.mFilename);
std::string base_filename = gDirUtilp->getBaseFileName(mUri);
std::string filename = from_dir + delim + base_filename;
if (gDirUtilp->fileExists(filename))
{
std::string dest = folder + delim + base_filename;
LLFile::copy(filename, dest);
mUri = base_filename;
}
else
{
error = "Original image file not found: " + filename;
}
}
else
{
error = "Image is not a local image and has no uri, cannot save.";
}
}
if (!error.empty())
{
LL_WARNS("GLTF") << "Failed to save " << name << ": " << error << LL_ENDL;
return false;
}
clearData(asset);
return true;
}
void TextureInfo::serialize(object& dst) const
{
write(mIndex, "index", dst, INVALID_INDEX);
write(mTexCoord, "texCoord", dst, 0);
write_extensions(dst, &mTextureTransform, "KHR_texture_transform");
}
S32 TextureInfo::getTexCoord() const
{
if (mTextureTransform.mPresent && mTextureTransform.mTexCoord != INVALID_INDEX)
{
return mTextureTransform.mTexCoord;
}
return mTexCoord;
}
bool Material::isMultiUV() const
{
return mPbrMetallicRoughness.mBaseColorTexture.getTexCoord() != 0 ||
mPbrMetallicRoughness.mMetallicRoughnessTexture.getTexCoord() != 0 ||
mNormalTexture.getTexCoord() != 0 ||
mOcclusionTexture.getTexCoord() != 0 ||
mEmissiveTexture.getTexCoord() != 0;
}
const TextureInfo& TextureInfo::operator=(const Value& src)
{
if (src.is_object())
{
copy(src, "index", mIndex);
copy(src, "texCoord", mTexCoord);
copy_extensions(src, "KHR_texture_transform", &mTextureTransform);
}
return *this;
}
bool TextureInfo::operator==(const TextureInfo& rhs) const
{
return mIndex == rhs.mIndex && mTexCoord == rhs.mTexCoord;
}
bool TextureInfo::operator!=(const TextureInfo& rhs) const
{
return !(*this == rhs);
}
void OcclusionTextureInfo::serialize(object& dst) const
{
TextureInfo::serialize(dst);
write(mStrength, "strength", dst, 1.f);
}
const OcclusionTextureInfo& OcclusionTextureInfo::operator=(const Value& src)
{
TextureInfo::operator=(src);
if (src.is_object())
{
copy(src, "strength", mStrength);
}
return *this;
}
void NormalTextureInfo::serialize(object& dst) const
{
TextureInfo::serialize(dst);
write(mScale, "scale", dst, 1.f);
}
const NormalTextureInfo& NormalTextureInfo::operator=(const Value& src)
{
TextureInfo::operator=(src);
if (src.is_object())
{
copy(src, "index", mIndex);
copy(src, "texCoord", mTexCoord);
copy(src, "scale", mScale);
}
return *this;
}
const Material::PbrMetallicRoughness& Material::PbrMetallicRoughness::operator=(const Value& src)
{
if (src.is_object())
{
copy(src, "baseColorFactor", mBaseColorFactor);
copy(src, "baseColorTexture", mBaseColorTexture);
copy(src, "metallicFactor", mMetallicFactor);
copy(src, "roughnessFactor", mRoughnessFactor);
copy(src, "metallicRoughnessTexture", mMetallicRoughnessTexture);
}
return *this;
}
void Material::PbrMetallicRoughness::serialize(object& dst) const
{
write(mBaseColorFactor, "baseColorFactor", dst, vec4(1.f, 1.f, 1.f, 1.f));
write(mBaseColorTexture, "baseColorTexture", dst);
write(mMetallicFactor, "metallicFactor", dst, 1.f);
write(mRoughnessFactor, "roughnessFactor", dst, 1.f);
write(mMetallicRoughnessTexture, "metallicRoughnessTexture", dst);
}
bool Material::PbrMetallicRoughness::operator==(const Material::PbrMetallicRoughness& rhs) const
{
return mBaseColorFactor == rhs.mBaseColorFactor &&
mBaseColorTexture == rhs.mBaseColorTexture &&
mMetallicFactor == rhs.mMetallicFactor &&
mRoughnessFactor == rhs.mRoughnessFactor &&
mMetallicRoughnessTexture == rhs.mMetallicRoughnessTexture;
}
bool Material::PbrMetallicRoughness::operator!=(const Material::PbrMetallicRoughness& rhs) const
{
return !(*this == rhs);
}
const Material::Unlit& Material::Unlit::operator=(const Value& src)
{
mPresent = true;
return *this;
}
void Material::Unlit::serialize(object& dst) const
{
// no members and object has already been created, nothing to do
}
void TextureTransform::getPacked(vec4* packed) const
{
packed[0] = vec4(mScale.x, mScale.y, mRotation, mOffset.x);
packed[1] = vec4(mOffset.y, 0.f, 0.f, 0.f);
}
const TextureTransform& TextureTransform::operator=(const Value& src)
{
mPresent = true;
if (src.is_object())
{
copy(src, "offset", mOffset);
copy(src, "rotation", mRotation);
copy(src, "scale", mScale);
copy(src, "texCoord", mTexCoord);
}
return *this;
}
void TextureTransform::serialize(object& dst) const
{
write(mOffset, "offset", dst, vec2(0.f, 0.f));
write(mRotation, "rotation", dst, 0.f);
write(mScale, "scale", dst, vec2(1.f, 1.f));
write(mTexCoord, "texCoord", dst, -1);
}
void Material::serialize(object& dst) const
{
write(mName, "name", dst);
write(mEmissiveFactor, "emissiveFactor", dst, vec3(0.f, 0.f, 0.f));
write(mPbrMetallicRoughness, "pbrMetallicRoughness", dst);
write(mNormalTexture, "normalTexture", dst);
write(mOcclusionTexture, "occlusionTexture", dst);
write(mEmissiveTexture, "emissiveTexture", dst);
write(mAlphaMode, "alphaMode", dst, Material::AlphaMode::OPAQUE);
write(mAlphaCutoff, "alphaCutoff", dst, 0.5f);
write(mDoubleSided, "doubleSided", dst, false);
write_extensions(dst, &mUnlit, "KHR_materials_unlit");
}
const Material& Material::operator=(const Value& src)
{
if (src.is_object())
{
copy(src, "name", mName);
copy(src, "emissiveFactor", mEmissiveFactor);
copy(src, "pbrMetallicRoughness", mPbrMetallicRoughness);
copy(src, "normalTexture", mNormalTexture);
copy(src, "occlusionTexture", mOcclusionTexture);
copy(src, "emissiveTexture", mEmissiveTexture);
copy(src, "alphaMode", mAlphaMode);
copy(src, "alphaCutoff", mAlphaCutoff);
copy(src, "doubleSided", mDoubleSided);
copy_extensions(src,
"KHR_materials_unlit", &mUnlit );
}
return *this;
}
void Mesh::serialize(object& dst) const
{
write(mPrimitives, "primitives", dst);
write(mWeights, "weights", dst);
write(mName, "name", dst);
}
const Mesh& Mesh::operator=(const Value& src)
{
if (src.is_object())
{
copy(src, "primitives", mPrimitives);
copy(src, "weights", mWeights);
copy(src, "name", mName);
}
return *this;
}
bool Mesh::prep(Asset& asset)
{
for (auto& primitive : mPrimitives)
{
if (!primitive.prep(asset))
{
return false;
}
}
return true;
}
void Scene::serialize(object& dst) const
{
write(mNodes, "nodes", dst);
write(mName, "name", dst);
}
const Scene& Scene::operator=(const Value& src)
{
copy(src, "nodes", mNodes);
copy(src, "name", mName);
return *this;
}
void Texture::serialize(object& dst) const
{
write(mSampler, "sampler", dst, INVALID_INDEX);
write(mSource, "source", dst, INVALID_INDEX);
write(mName, "name", dst);
}
const Texture& Texture::operator=(const Value& src)
{
if (src.is_object())
{
copy(src, "sampler", mSampler);
copy(src, "source", mSource);
copy(src, "name", mName);
}
return *this;
}
void Sampler::serialize(object& dst) const
{
write(mMagFilter, "magFilter", dst, LINEAR);
write(mMinFilter, "minFilter", dst, LINEAR_MIPMAP_LINEAR);
write(mWrapS, "wrapS", dst, REPEAT);
write(mWrapT, "wrapT", dst, REPEAT);
write(mName, "name", dst);
}
const Sampler& Sampler::operator=(const Value& src)
{
copy(src, "magFilter", mMagFilter);
copy(src, "minFilter", mMinFilter);
copy(src, "wrapS", mWrapS);
copy(src, "wrapT", mWrapT);
copy(src, "name", mName);
return *this;
}