phoenix-firestorm/indra/newview/tests/llsimplestat_test.cpp

581 lines
20 KiB
C++

/**
* @file llsimplestats_test.cpp
* @date 2010-10-22
* @brief Test cases for some of llsimplestat.h
*
* $LicenseInfo:firstyear=2010&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2010, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
#include "linden_common.h"
#include <tut/tut.hpp>
#include "lltut.h"
#include "../llsimplestat.h"
#include "llsd.h"
#include "llmath.h"
// @brief Used as a pointer cast type to get access to LLSimpleStatCounter
class TutStatCounter: public LLSimpleStatCounter
{
public:
TutStatCounter(); // Not defined
~TutStatCounter(); // Not defined
void operator=(const TutStatCounter &); // Not defined
void setRawCount(U32 c) { mCount = c; }
U32 getRawCount() const { return mCount; }
};
namespace tut
{
struct stat_counter_index
{};
typedef test_group<stat_counter_index> stat_counter_index_t;
typedef stat_counter_index_t::object stat_counter_index_object_t;
tut::stat_counter_index_t tut_stat_counter_index("stat_counter_test");
// Testing LLSimpleStatCounter's external interface
template<> template<>
void stat_counter_index_object_t::test<1>()
{
LLSimpleStatCounter c1;
ensure("Initialized counter is zero", (0 == c1.getCount()));
ensure("Counter increment return is 1", (1 == ++c1));
ensure("Counter increment return is 2", (2 == ++c1));
ensure("Current counter is 2", (2 == c1.getCount()));
c1.reset();
ensure("Counter is 0 after reset", (0 == c1.getCount()));
ensure("Counter increment return is 1", (1 == ++c1));
}
// Testing LLSimpleStatCounter's internal state
template<> template<>
void stat_counter_index_object_t::test<2>()
{
LLSimpleStatCounter c1;
TutStatCounter * tc1 = (TutStatCounter *) &c1;
ensure("Initialized private counter is zero", (0 == tc1->getRawCount()));
++c1;
++c1;
ensure("Current private counter is 2", (2 == tc1->getRawCount()));
c1.reset();
ensure("Raw counter is 0 after reset", (0 == tc1->getRawCount()));
}
// Testing LLSimpleStatCounter's wrapping behavior
template<> template<>
void stat_counter_index_object_t::test<3>()
{
LLSimpleStatCounter c1;
TutStatCounter * tc1 = (TutStatCounter *) &c1;
tc1->setRawCount(U32_MAX);
ensure("Initialized private counter is zero", (U32_MAX == c1.getCount()));
ensure("Increment of max value wraps to 0", (0 == ++c1));
}
// Testing LLSimpleStatMMM's external behavior
template<> template<>
void stat_counter_index_object_t::test<4>()
{
LLSimpleStatMMM<> m1;
typedef LLSimpleStatMMM<>::Value lcl_float;
lcl_float zero(0);
// Freshly-constructed
ensure("Constructed MMM<> has 0 count", (0 == m1.getCount()));
ensure("Constructed MMM<> has 0 min", (zero == m1.getMin()));
ensure("Constructed MMM<> has 0 max", (zero == m1.getMax()));
ensure("Constructed MMM<> has 0 mean no div-by-zero", (zero == m1.getMean()));
// Single insert
m1.record(1.0);
ensure("Single insert MMM<> has 1 count", (1 == m1.getCount()));
ensure("Single insert MMM<> has 1.0 min", (1.0 == m1.getMin()));
ensure("Single insert MMM<> has 1.0 max", (1.0 == m1.getMax()));
ensure("Single insert MMM<> has 1.0 mean", (1.0 == m1.getMean()));
// Second insert
m1.record(3.0);
ensure("2nd insert MMM<> has 2 count", (2 == m1.getCount()));
ensure("2nd insert MMM<> has 1.0 min", (1.0 == m1.getMin()));
ensure("2nd insert MMM<> has 3.0 max", (3.0 == m1.getMax()));
ensure_approximately_equals("2nd insert MMM<> has 2.0 mean", m1.getMean(), lcl_float(2.0), 1);
// Third insert
m1.record(5.0);
ensure("3rd insert MMM<> has 3 count", (3 == m1.getCount()));
ensure("3rd insert MMM<> has 1.0 min", (1.0 == m1.getMin()));
ensure("3rd insert MMM<> has 5.0 max", (5.0 == m1.getMax()));
ensure_approximately_equals("3rd insert MMM<> has 3.0 mean", m1.getMean(), lcl_float(3.0), 1);
// Fourth insert
m1.record(1000000.0);
ensure("4th insert MMM<> has 4 count", (4 == m1.getCount()));
ensure("4th insert MMM<> has 1.0 min", (1.0 == m1.getMin()));
ensure("4th insert MMM<> has 100000.0 max", (1000000.0 == m1.getMax()));
ensure_approximately_equals("4th insert MMM<> has 250002.0 mean", m1.getMean(), lcl_float(250002.0), 1);
// Reset
m1.reset();
ensure("Reset MMM<> has 0 count", (0 == m1.getCount()));
ensure("Reset MMM<> has 0 min", (zero == m1.getMin()));
ensure("Reset MMM<> has 0 max", (zero == m1.getMax()));
ensure("Reset MMM<> has 0 mean no div-by-zero", (zero == m1.getMean()));
}
// Testing LLSimpleStatMMM's response to large values
template<> template<>
void stat_counter_index_object_t::test<5>()
{
LLSimpleStatMMM<> m1;
typedef LLSimpleStatMMM<>::Value lcl_float;
lcl_float zero(0);
// Insert overflowing values
const lcl_float bignum(F32_MAX / 2);
m1.record(bignum);
m1.record(bignum);
m1.record(bignum);
m1.record(bignum);
m1.record(bignum);
m1.record(bignum);
m1.record(bignum);
m1.record(zero);
ensure("Overflowed MMM<> has 8 count", (8 == m1.getCount()));
ensure("Overflowed MMM<> has 0 min", (zero == m1.getMin()));
ensure("Overflowed MMM<> has huge max", (bignum == m1.getMax()));
ensure("Overflowed MMM<> has fetchable mean", (1.0 == m1.getMean() || true));
// We should be infinte but not interested in proving the IEEE standard here.
LLSD sd1(m1.getMean());
// std::cout << "Thingy: " << m1.getMean() << " and as LLSD: " << sd1 << std::endl;
ensure("Overflowed MMM<> produces LLSDable Real", (sd1.isReal()));
}
// Testing LLSimpleStatMMM<F32>'s external behavior
template<> template<>
void stat_counter_index_object_t::test<6>()
{
LLSimpleStatMMM<F32> m1;
typedef LLSimpleStatMMM<F32>::Value lcl_float;
lcl_float zero(0);
// Freshly-constructed
ensure("Constructed MMM<F32> has 0 count", (0 == m1.getCount()));
ensure("Constructed MMM<F32> has 0 min", (zero == m1.getMin()));
ensure("Constructed MMM<F32> has 0 max", (zero == m1.getMax()));
ensure("Constructed MMM<F32> has 0 mean no div-by-zero", (zero == m1.getMean()));
// Single insert
m1.record(1.0);
ensure("Single insert MMM<F32> has 1 count", (1 == m1.getCount()));
ensure("Single insert MMM<F32> has 1.0 min", (1.0 == m1.getMin()));
ensure("Single insert MMM<F32> has 1.0 max", (1.0 == m1.getMax()));
ensure("Single insert MMM<F32> has 1.0 mean", (1.0 == m1.getMean()));
// Second insert
m1.record(3.0);
ensure("2nd insert MMM<F32> has 2 count", (2 == m1.getCount()));
ensure("2nd insert MMM<F32> has 1.0 min", (1.0 == m1.getMin()));
ensure("2nd insert MMM<F32> has 3.0 max", (3.0 == m1.getMax()));
ensure_approximately_equals("2nd insert MMM<F32> has 2.0 mean", m1.getMean(), lcl_float(2.0), 1);
// Third insert
m1.record(5.0);
ensure("3rd insert MMM<F32> has 3 count", (3 == m1.getCount()));
ensure("3rd insert MMM<F32> has 1.0 min", (1.0 == m1.getMin()));
ensure("3rd insert MMM<F32> has 5.0 max", (5.0 == m1.getMax()));
ensure_approximately_equals("3rd insert MMM<F32> has 3.0 mean", m1.getMean(), lcl_float(3.0), 1);
// Fourth insert
m1.record(1000000.0);
ensure("4th insert MMM<F32> has 4 count", (4 == m1.getCount()));
ensure("4th insert MMM<F32> has 1.0 min", (1.0 == m1.getMin()));
ensure("4th insert MMM<F32> has 1000000.0 max", (1000000.0 == m1.getMax()));
ensure_approximately_equals("4th insert MMM<F32> has 250002.0 mean", m1.getMean(), lcl_float(250002.0), 1);
// Reset
m1.reset();
ensure("Reset MMM<F32> has 0 count", (0 == m1.getCount()));
ensure("Reset MMM<F32> has 0 min", (zero == m1.getMin()));
ensure("Reset MMM<F32> has 0 max", (zero == m1.getMax()));
ensure("Reset MMM<F32> has 0 mean no div-by-zero", (zero == m1.getMean()));
}
// Testing LLSimpleStatMMM's response to large values
template<> template<>
void stat_counter_index_object_t::test<7>()
{
LLSimpleStatMMM<F32> m1;
typedef LLSimpleStatMMM<F32>::Value lcl_float;
lcl_float zero(0);
// Insert overflowing values
const lcl_float bignum(F32_MAX / 2);
m1.record(bignum);
m1.record(bignum);
m1.record(bignum);
m1.record(bignum);
m1.record(bignum);
m1.record(bignum);
m1.record(bignum);
m1.record(zero);
ensure("Overflowed MMM<F32> has 8 count", (8 == m1.getCount()));
ensure("Overflowed MMM<F32> has 0 min", (zero == m1.getMin()));
ensure("Overflowed MMM<F32> has huge max", (bignum == m1.getMax()));
ensure("Overflowed MMM<F32> has fetchable mean", (1.0 == m1.getMean() || true));
// We should be infinte but not interested in proving the IEEE standard here.
LLSD sd1(m1.getMean());
// std::cout << "Thingy: " << m1.getMean() << " and as LLSD: " << sd1 << std::endl;
ensure("Overflowed MMM<F32> produces LLSDable Real", (sd1.isReal()));
}
// Testing LLSimpleStatMMM<F64>'s external behavior
template<> template<>
void stat_counter_index_object_t::test<8>()
{
LLSimpleStatMMM<F64> m1;
typedef LLSimpleStatMMM<F64>::Value lcl_float;
lcl_float zero(0);
// Freshly-constructed
ensure("Constructed MMM<F64> has 0 count", (0 == m1.getCount()));
ensure("Constructed MMM<F64> has 0 min", (zero == m1.getMin()));
ensure("Constructed MMM<F64> has 0 max", (zero == m1.getMax()));
ensure("Constructed MMM<F64> has 0 mean no div-by-zero", (zero == m1.getMean()));
// Single insert
m1.record(1.0);
ensure("Single insert MMM<F64> has 1 count", (1 == m1.getCount()));
ensure("Single insert MMM<F64> has 1.0 min", (1.0 == m1.getMin()));
ensure("Single insert MMM<F64> has 1.0 max", (1.0 == m1.getMax()));
ensure("Single insert MMM<F64> has 1.0 mean", (1.0 == m1.getMean()));
// Second insert
m1.record(3.0);
ensure("2nd insert MMM<F64> has 2 count", (2 == m1.getCount()));
ensure("2nd insert MMM<F64> has 1.0 min", (1.0 == m1.getMin()));
ensure("2nd insert MMM<F64> has 3.0 max", (3.0 == m1.getMax()));
ensure_approximately_equals("2nd insert MMM<F64> has 2.0 mean", m1.getMean(), lcl_float(2.0), 1);
// Third insert
m1.record(5.0);
ensure("3rd insert MMM<F64> has 3 count", (3 == m1.getCount()));
ensure("3rd insert MMM<F64> has 1.0 min", (1.0 == m1.getMin()));
ensure("3rd insert MMM<F64> has 5.0 max", (5.0 == m1.getMax()));
ensure_approximately_equals("3rd insert MMM<F64> has 3.0 mean", m1.getMean(), lcl_float(3.0), 1);
// Fourth insert
m1.record(1000000.0);
ensure("4th insert MMM<F64> has 4 count", (4 == m1.getCount()));
ensure("4th insert MMM<F64> has 1.0 min", (1.0 == m1.getMin()));
ensure("4th insert MMM<F64> has 1000000.0 max", (1000000.0 == m1.getMax()));
ensure_approximately_equals("4th insert MMM<F64> has 250002.0 mean", m1.getMean(), lcl_float(250002.0), 1);
// Reset
m1.reset();
ensure("Reset MMM<F64> has 0 count", (0 == m1.getCount()));
ensure("Reset MMM<F64> has 0 min", (zero == m1.getMin()));
ensure("Reset MMM<F64> has 0 max", (zero == m1.getMax()));
ensure("Reset MMM<F64> has 0 mean no div-by-zero", (zero == m1.getMean()));
}
// Testing LLSimpleStatMMM's response to large values
template<> template<>
void stat_counter_index_object_t::test<9>()
{
LLSimpleStatMMM<F64> m1;
typedef LLSimpleStatMMM<F64>::Value lcl_float;
lcl_float zero(0);
// Insert overflowing values
const lcl_float bignum(F64_MAX / 2);
m1.record(bignum);
m1.record(bignum);
m1.record(bignum);
m1.record(bignum);
m1.record(bignum);
m1.record(bignum);
m1.record(bignum);
m1.record(zero);
ensure("Overflowed MMM<F64> has 8 count", (8 == m1.getCount()));
ensure("Overflowed MMM<F64> has 0 min", (zero == m1.getMin()));
ensure("Overflowed MMM<F64> has huge max", (bignum == m1.getMax()));
ensure("Overflowed MMM<F64> has fetchable mean", (1.0 == m1.getMean() || true));
// We should be infinte but not interested in proving the IEEE standard here.
LLSD sd1(m1.getMean());
// std::cout << "Thingy: " << m1.getMean() << " and as LLSD: " << sd1 << std::endl;
ensure("Overflowed MMM<F64> produces LLSDable Real", (sd1.isReal()));
}
// Testing LLSimpleStatMMM<U64>'s external behavior
template<> template<>
void stat_counter_index_object_t::test<10>()
{
LLSimpleStatMMM<U64> m1;
typedef LLSimpleStatMMM<U64>::Value lcl_int;
lcl_int zero(0);
// Freshly-constructed
ensure("Constructed MMM<U64> has 0 count", (0 == m1.getCount()));
ensure("Constructed MMM<U64> has 0 min", (zero == m1.getMin()));
ensure("Constructed MMM<U64> has 0 max", (zero == m1.getMax()));
ensure("Constructed MMM<U64> has 0 mean no div-by-zero", (zero == m1.getMean()));
// Single insert
m1.record(1);
ensure("Single insert MMM<U64> has 1 count", (1 == m1.getCount()));
ensure("Single insert MMM<U64> has 1 min", (1 == m1.getMin()));
ensure("Single insert MMM<U64> has 1 max", (1 == m1.getMax()));
ensure("Single insert MMM<U64> has 1 mean", (1 == m1.getMean()));
// Second insert
m1.record(3);
ensure("2nd insert MMM<U64> has 2 count", (2 == m1.getCount()));
ensure("2nd insert MMM<U64> has 1 min", (1 == m1.getMin()));
ensure("2nd insert MMM<U64> has 3 max", (3 == m1.getMax()));
ensure("2nd insert MMM<U64> has 2 mean", (2 == m1.getMean()));
// Third insert
m1.record(5);
ensure("3rd insert MMM<U64> has 3 count", (3 == m1.getCount()));
ensure("3rd insert MMM<U64> has 1 min", (1 == m1.getMin()));
ensure("3rd insert MMM<U64> has 5 max", (5 == m1.getMax()));
ensure("3rd insert MMM<U64> has 3 mean", (3 == m1.getMean()));
// Fourth insert
m1.record(U64L(1000000000000));
ensure("4th insert MMM<U64> has 4 count", (4 == m1.getCount()));
ensure("4th insert MMM<U64> has 1 min", (1 == m1.getMin()));
ensure("4th insert MMM<U64> has 1000000000000ULL max", (U64L(1000000000000) == m1.getMax()));
ensure("4th insert MMM<U64> has 250000000002ULL mean", (U64L( 250000000002) == m1.getMean()));
// Reset
m1.reset();
ensure("Reset MMM<U64> has 0 count", (0 == m1.getCount()));
ensure("Reset MMM<U64> has 0 min", (zero == m1.getMin()));
ensure("Reset MMM<U64> has 0 max", (zero == m1.getMax()));
ensure("Reset MMM<U64> has 0 mean no div-by-zero", (zero == m1.getMean()));
}
// Testing LLSimpleStatMMM's response to large values
template<> template<>
void stat_counter_index_object_t::test<11>()
{
LLSimpleStatMMM<U64> m1;
typedef LLSimpleStatMMM<U64>::Value lcl_int;
lcl_int zero(0);
// Insert overflowing values
const lcl_int bignum(U64L(0xffffffffffffffff) / 2);
m1.record(bignum);
m1.record(bignum);
m1.record(bignum);
m1.record(bignum);
m1.record(bignum);
m1.record(bignum);
m1.record(bignum);
m1.record(zero);
ensure("Overflowed MMM<U64> has 8 count", (8 == m1.getCount()));
ensure("Overflowed MMM<U64> has 0 min", (zero == m1.getMin()));
ensure("Overflowed MMM<U64> has huge max", (bignum == m1.getMax()));
ensure("Overflowed MMM<U64> has fetchable mean", (zero == m1.getMean() || true));
}
// Testing LLSimpleStatCounter's merge() method
template<> template<>
void stat_counter_index_object_t::test<12>()
{
LLSimpleStatCounter c1;
LLSimpleStatCounter c2;
++c1;
++c1;
++c1;
++c1;
++c2;
++c2;
c2.merge(c1);
ensure_equals("4 merged into 2 results in 6", 6, c2.getCount());
ensure_equals("Source of merge is undamaged", 4, c1.getCount());
}
// Testing LLSimpleStatMMM's merge() method
template<> template<>
void stat_counter_index_object_t::test<13>()
{
LLSimpleStatMMM<> m1;
LLSimpleStatMMM<> m2;
m1.record(3.5);
m1.record(4.5);
m1.record(5.5);
m1.record(6.5);
m2.record(5.0);
m2.record(7.0);
m2.record(9.0);
m2.merge(m1);
ensure_equals("Count after merge (p1)", 7, m2.getCount());
ensure_approximately_equals("Min after merge (p1)", F32(3.5), m2.getMin(), 22);
ensure_approximately_equals("Max after merge (p1)", F32(9.0), m2.getMax(), 22);
ensure_approximately_equals("Mean after merge (p1)", F32(41.000/7.000), m2.getMean(), 22);
ensure_equals("Source count of merge is undamaged (p1)", 4, m1.getCount());
ensure_approximately_equals("Source min of merge is undamaged (p1)", F32(3.5), m1.getMin(), 22);
ensure_approximately_equals("Source max of merge is undamaged (p1)", F32(6.5), m1.getMax(), 22);
ensure_approximately_equals("Source mean of merge is undamaged (p1)", F32(5.0), m1.getMean(), 22);
m2.reset();
m2.record(-22.0);
m2.record(-1.0);
m2.record(30.0);
m2.merge(m1);
ensure_equals("Count after merge (p2)", 7, m2.getCount());
ensure_approximately_equals("Min after merge (p2)", F32(-22.0), m2.getMin(), 22);
ensure_approximately_equals("Max after merge (p2)", F32(30.0), m2.getMax(), 22);
ensure_approximately_equals("Mean after merge (p2)", F32(27.000/7.000), m2.getMean(), 22);
}
// Testing LLSimpleStatMMM's merge() method when src contributes nothing
template<> template<>
void stat_counter_index_object_t::test<14>()
{
LLSimpleStatMMM<> m1;
LLSimpleStatMMM<> m2;
m2.record(5.0);
m2.record(7.0);
m2.record(9.0);
m2.merge(m1);
ensure_equals("Count after merge (p1)", 3, m2.getCount());
ensure_approximately_equals("Min after merge (p1)", F32(5.0), m2.getMin(), 22);
ensure_approximately_equals("Max after merge (p1)", F32(9.0), m2.getMax(), 22);
ensure_approximately_equals("Mean after merge (p1)", F32(7.000), m2.getMean(), 22);
ensure_equals("Source count of merge is undamaged (p1)", 0, m1.getCount());
ensure_approximately_equals("Source min of merge is undamaged (p1)", F32(0), m1.getMin(), 22);
ensure_approximately_equals("Source max of merge is undamaged (p1)", F32(0), m1.getMax(), 22);
ensure_approximately_equals("Source mean of merge is undamaged (p1)", F32(0), m1.getMean(), 22);
m2.reset();
m2.record(-22.0);
m2.record(-1.0);
m2.merge(m1);
ensure_equals("Count after merge (p2)", 2, m2.getCount());
ensure_approximately_equals("Min after merge (p2)", F32(-22.0), m2.getMin(), 22);
ensure_approximately_equals("Max after merge (p2)", F32(-1.0), m2.getMax(), 22);
ensure_approximately_equals("Mean after merge (p2)", F32(-11.5), m2.getMean(), 22);
}
// Testing LLSimpleStatMMM's merge() method when dst contributes nothing
template<> template<>
void stat_counter_index_object_t::test<15>()
{
LLSimpleStatMMM<> m1;
LLSimpleStatMMM<> m2;
m1.record(5.0);
m1.record(7.0);
m1.record(9.0);
m2.merge(m1);
ensure_equals("Count after merge (p1)", 3, m2.getCount());
ensure_approximately_equals("Min after merge (p1)", F32(5.0), m2.getMin(), 22);
ensure_approximately_equals("Max after merge (p1)", F32(9.0), m2.getMax(), 22);
ensure_approximately_equals("Mean after merge (p1)", F32(7.000), m2.getMean(), 22);
ensure_equals("Source count of merge is undamaged (p1)", 3, m1.getCount());
ensure_approximately_equals("Source min of merge is undamaged (p1)", F32(5.0), m1.getMin(), 22);
ensure_approximately_equals("Source max of merge is undamaged (p1)", F32(9.0), m1.getMax(), 22);
ensure_approximately_equals("Source mean of merge is undamaged (p1)", F32(7.0), m1.getMean(), 22);
m1.reset();
m2.reset();
m1.record(-22.0);
m1.record(-1.0);
m2.merge(m1);
ensure_equals("Count after merge (p2)", 2, m2.getCount());
ensure_approximately_equals("Min after merge (p2)", F32(-22.0), m2.getMin(), 22);
ensure_approximately_equals("Max after merge (p2)", F32(-1.0), m2.getMax(), 22);
ensure_approximately_equals("Mean after merge (p2)", F32(-11.5), m2.getMean(), 22);
}
// Testing LLSimpleStatMMM's merge() method when neither dst nor src contributes
template<> template<>
void stat_counter_index_object_t::test<16>()
{
LLSimpleStatMMM<> m1;
LLSimpleStatMMM<> m2;
m2.merge(m1);
ensure_equals("Count after merge (p1)", 0, m2.getCount());
ensure_approximately_equals("Min after merge (p1)", F32(0), m2.getMin(), 22);
ensure_approximately_equals("Max after merge (p1)", F32(0), m2.getMax(), 22);
ensure_approximately_equals("Mean after merge (p1)", F32(0), m2.getMean(), 22);
ensure_equals("Source count of merge is undamaged (p1)", 0, m1.getCount());
ensure_approximately_equals("Source min of merge is undamaged (p1)", F32(0), m1.getMin(), 22);
ensure_approximately_equals("Source max of merge is undamaged (p1)", F32(0), m1.getMax(), 22);
ensure_approximately_equals("Source mean of merge is undamaged (p1)", F32(0), m1.getMean(), 22);
}
}