phoenix-firestorm/indra/newview/app_settings/shaders/class3/deferred/materialF.glsl

424 lines
12 KiB
GLSL

/**
* @file materialF.glsl
*
* $LicenseInfo:firstyear=2007&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2007, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
/*[EXTRA_CODE_HERE]*/
//class1/deferred/materialF.glsl
// This shader is used for both writing opaque/masked content to the gbuffer and writing blended content to the framebuffer during the alpha pass.
#define DIFFUSE_ALPHA_MODE_NONE 0
#define DIFFUSE_ALPHA_MODE_BLEND 1
#define DIFFUSE_ALPHA_MODE_MASK 2
#define DIFFUSE_ALPHA_MODE_EMISSIVE 3
uniform float emissive_brightness; // fullbright flag, 1.0 == fullbright, 0.0 otherwise
uniform int sun_up_factor;
vec4 applySkyAndWaterFog(vec3 pos, vec3 additive, vec3 atten, vec4 color);
vec3 scaleSoftClipFragLinear(vec3 l);
void calcAtmosphericVarsLinear(vec3 inPositionEye, vec3 norm, vec3 light_dir, out vec3 sunlit, out vec3 amblit, out vec3 atten, out vec3 additive);
void calcHalfVectors(vec3 lv, vec3 n, vec3 v, out vec3 h, out vec3 l, out float nh, out float nl, out float nv, out float vh, out float lightDist);
vec3 srgb_to_linear(vec3 cs);
vec3 linear_to_srgb(vec3 cs);
uniform mat4 modelview_matrix;
uniform mat3 normal_matrix;
in vec3 vary_position;
void mirrorClip(vec3 pos);
#if (DIFFUSE_ALPHA_MODE == DIFFUSE_ALPHA_MODE_BLEND)
out vec4 frag_color;
#ifdef HAS_SUN_SHADOW
float sampleDirectionalShadow(vec3 pos, vec3 norm, vec2 pos_screen);
#endif
void sampleReflectionProbesLegacy(inout vec3 ambenv, inout vec3 glossenv, inout vec3 legacyenv,
vec2 tc, vec3 pos, vec3 norm, float glossiness, float envIntensity, bool transparent, vec3 amblit_linear);
void applyGlossEnv(inout vec3 color, vec3 glossenv, vec4 spec, vec3 pos, vec3 norm);
void applyLegacyEnv(inout vec3 color, vec3 legacyenv, vec4 spec, vec3 pos, vec3 norm, float envIntensity);
uniform samplerCube environmentMap;
uniform sampler2D lightFunc;
// Inputs
uniform vec4 morphFactor;
uniform vec3 camPosLocal;
uniform mat3 env_mat;
uniform float is_mirror;
uniform vec3 sun_dir;
uniform vec3 moon_dir;
uniform mat4 proj_mat;
uniform mat4 inv_proj;
uniform vec2 screen_res;
uniform vec4 light_position[8];
uniform vec3 light_direction[8];
uniform vec4 light_attenuation[8];
uniform vec3 light_diffuse[8];
float getAmbientClamp();
void waterClip(vec3 pos);
vec3 calcPointLightOrSpotLight(vec3 light_col, vec3 npos, vec3 diffuse, vec4 spec, vec3 v, vec3 n, vec4 lp, vec3 ln, float la, float fa, float is_pointlight, inout float glare, float ambiance)
{
// SL-14895 inverted attenuation work-around
// This routine is tweaked to match deferred lighting, but previously used an inverted la value. To reconstruct
// that previous value now that the inversion is corrected, we reverse the calculations in LLPipeline::setupHWLights()
// to recover the `adjusted_radius` value previously being sent as la.
float falloff_factor = (12.0 * fa) - 9.0;
float inverted_la = falloff_factor / la;
// Yes, it makes me want to cry as well. DJH
vec3 col = vec3(0);
//get light vector
vec3 lv = lp.xyz - v;
//get distance
float dist = length(lv);
float da = 1.0;
dist /= inverted_la;
if (dist > 0.0 && inverted_la > 0.0)
{
//normalize light vector
lv = normalize(lv);
//distance attenuation
float dist_atten = clamp(1.0 - (dist - 1.0*(1.0 - fa)) / fa, 0.0, 1.0);
dist_atten *= dist_atten;
dist_atten *= 2.0f;
if (dist_atten <= 0.0)
{
return col;
}
// spotlight coefficient.
float spot = max(dot(-ln, lv), is_pointlight);
da *= spot*spot; // GL_SPOT_EXPONENT=2
//angular attenuation
da *= dot(n, lv);
float lit = 0.0f;
float amb_da = ambiance;
if (da >= 0)
{
lit = max(da * dist_atten, 0.0);
col = lit * light_col * diffuse;
amb_da += (da*0.5 + 0.5) * ambiance;
}
amb_da += (da*da*0.5 + 0.5) * ambiance;
amb_da *= dist_atten;
amb_da = min(amb_da, 1.0f - lit);
// SL-10969 need to see why these are blown out
//col.rgb += amb_da * light_col * diffuse;
if (spec.a > 0.0)
{
//vec3 ref = dot(pos+lv, norm);
vec3 h = normalize(lv + npos);
float nh = dot(n, h);
float nv = dot(n, npos);
float vh = dot(npos, h);
float sa = nh;
float fres = pow(1 - dot(h, npos), 5)*0.4 + 0.5;
float gtdenom = 2 * nh;
float gt = max(0, min(gtdenom * nv / vh, gtdenom * da / vh));
if (nh > 0.0)
{
float scol = fres*texture(lightFunc, vec2(nh, spec.a)).r*gt / (nh*da);
vec3 speccol = lit*scol*light_col.rgb*spec.rgb;
speccol = clamp(speccol, vec3(0), vec3(1));
col += speccol;
float cur_glare = max(speccol.r, speccol.g);
cur_glare = max(cur_glare, speccol.b);
glare = max(glare, speccol.r);
glare += max(cur_glare, 0.0);
}
}
}
return max(col, vec3(0.0, 0.0, 0.0));
}
#else
out vec4 frag_data[4];
#endif
uniform sampler2D diffuseMap; //always in sRGB space
#ifdef HAS_NORMAL_MAP
uniform sampler2D bumpMap;
#endif
#ifdef HAS_SPECULAR_MAP
uniform sampler2D specularMap;
in vec2 vary_texcoord2;
#endif
uniform float env_intensity;
uniform vec4 specular_color; // specular color RGB and specular exponent (glossiness) in alpha
#if (DIFFUSE_ALPHA_MODE == DIFFUSE_ALPHA_MODE_MASK)
uniform float minimum_alpha;
#endif
#ifdef HAS_NORMAL_MAP
in vec3 vary_normal;
in vec3 vary_tangent;
flat in float vary_sign;
in vec2 vary_texcoord1;
#else
in vec3 vary_normal;
#endif
in vec4 vertex_color;
in vec2 vary_texcoord0;
// get the transformed normal and apply glossiness component from normal map
vec3 getNormal(inout float glossiness)
{
#ifdef HAS_NORMAL_MAP
vec4 vNt = texture(bumpMap, vary_texcoord1.xy);
glossiness *= vNt.a;
vNt.xyz = vNt.xyz * 2 - 1;
float sign = vary_sign;
vec3 vN = vary_normal;
vec3 vT = vary_tangent.xyz;
vec3 vB = sign * cross(vN, vT);
vec3 tnorm = normalize( vNt.x * vT + vNt.y * vB + vNt.z * vN );
return tnorm;
#else
return normalize(vary_normal);
#endif
}
vec4 getSpecular()
{
#ifdef HAS_SPECULAR_MAP
vec4 spec = texture(specularMap, vary_texcoord2.xy);
spec.rgb *= specular_color.rgb;
#else
vec4 spec = vec4(specular_color.rgb, 1.0);
#endif
return spec;
}
void alphaMask(float alpha)
{
#if (DIFFUSE_ALPHA_MODE == DIFFUSE_ALPHA_MODE_MASK)
// Comparing floats cast from 8-bit values, produces acne right at the 8-bit transition points
float bias = 0.001953125; // 1/512, or half an 8-bit quantization
if (alpha < minimum_alpha-bias)
{
discard;
}
#endif
}
void waterClip()
{
#if (DIFFUSE_ALPHA_MODE == DIFFUSE_ALPHA_MODE_BLEND)
waterClip(vary_position.xyz);
#endif
}
float getEmissive(vec4 diffcol)
{
#if (DIFFUSE_ALPHA_MODE != DIFFUSE_ALPHA_MODE_EMISSIVE)
return emissive_brightness;
#else
return max(diffcol.a, emissive_brightness);
#endif
}
float getShadow(vec3 pos, vec3 norm)
{
#ifdef HAS_SUN_SHADOW
#if (DIFFUSE_ALPHA_MODE == DIFFUSE_ALPHA_MODE_BLEND)
return sampleDirectionalShadow(pos, norm, vary_texcoord0.xy);
#else
return 1;
#endif
#else
return 1;
#endif
}
void main()
{
mirrorClip(vary_position);
waterClip();
// diffcol == diffuse map combined with vertex color
vec4 diffcol = texture(diffuseMap, vary_texcoord0.xy);
diffcol.rgb *= vertex_color.rgb;
alphaMask(diffcol.a);
// spec == specular map combined with specular color
vec4 spec = getSpecular();
float env = env_intensity * spec.a;
float glossiness = specular_color.a;
vec3 norm = getNormal(glossiness);
float emissive = getEmissive(diffcol);
#if (DIFFUSE_ALPHA_MODE == DIFFUSE_ALPHA_MODE_BLEND)
//forward rendering, output lit linear color
diffcol.rgb = srgb_to_linear(diffcol.rgb);
spec.rgb = srgb_to_linear(spec.rgb);
spec.a = glossiness; // pack glossiness into spec alpha for lighting functions
vec3 pos = vary_position;
float shadow = getShadow(pos, norm);
vec4 diffuse = diffcol;
vec3 color = vec3(0,0,0);
vec3 light_dir = (sun_up_factor == 1) ? sun_dir : moon_dir;
float bloom = 0.0;
vec3 sunlit;
vec3 amblit;
vec3 additive;
vec3 atten;
calcAtmosphericVarsLinear(pos.xyz, norm.xyz, light_dir, sunlit, amblit, additive, atten);
vec3 sunlit_linear = srgb_to_linear(sunlit);
vec3 amblit_linear = amblit;
vec3 ambenv;
vec3 glossenv;
vec3 legacyenv;
sampleReflectionProbesLegacy(ambenv, glossenv, legacyenv, pos.xy*0.5+0.5, pos.xyz, norm.xyz, glossiness, env, true, amblit_linear);
color = ambenv;
float da = clamp(dot(norm.xyz, light_dir.xyz), 0.0, 1.0);
vec3 sun_contrib = min(da, shadow) * sunlit_linear;
color.rgb += sun_contrib;
color *= diffcol.rgb;
vec3 refnormpersp = reflect(pos.xyz, norm.xyz);
float glare = 0.0;
if (glossiness > 0.0)
{
vec3 lv = light_dir.xyz;
vec3 h, l, v = -normalize(pos.xyz);
float nh, nl, nv, vh, lightDist;
vec3 n = norm.xyz;
calcHalfVectors(lv, n, v, h, l, nh, nl, nv, vh, lightDist);
if (nl > 0.0 && nh > 0.0)
{
float lit = min(nl*6.0, 1.0);
float sa = nh;
float fres = pow(1 - vh, 5) * 0.4+0.5;
float gtdenom = 2 * nh;
float gt = max(0,(min(gtdenom * nv / vh, gtdenom * nl / vh)));
float scol = shadow*fres*texture(lightFunc, vec2(nh, glossiness)).r*gt/(nh*nl);
color.rgb += lit*scol*sunlit_linear.rgb*spec.rgb;
}
// add radiance map
applyGlossEnv(color, glossenv, spec, pos.xyz, norm.xyz);
}
color = mix(color.rgb, diffcol.rgb, emissive);
if (env > 0.0)
{ // add environmentmap
applyLegacyEnv(color, legacyenv, spec, pos.xyz, norm.xyz, env);
float cur_glare = max(max(legacyenv.r, legacyenv.g), legacyenv.b);
cur_glare = clamp(cur_glare, 0, 1);
cur_glare *= env;
glare += cur_glare;
}
vec3 npos = normalize(-pos.xyz);
vec3 light = vec3(0, 0, 0);
#define LIGHT_LOOP(i) light.rgb += calcPointLightOrSpotLight(light_diffuse[i].rgb, npos, diffuse.rgb, spec, pos.xyz, norm.xyz, light_position[i], light_direction[i].xyz, light_attenuation[i].x, light_attenuation[i].y, light_attenuation[i].z, glare, light_attenuation[i].w );
LIGHT_LOOP(1)
LIGHT_LOOP(2)
LIGHT_LOOP(3)
LIGHT_LOOP(4)
LIGHT_LOOP(5)
LIGHT_LOOP(6)
LIGHT_LOOP(7)
color += light;
color.rgb = applySkyAndWaterFog(pos.xyz, additive, atten, vec4(color, 1.0)).rgb;
glare *= 1.0-emissive;
glare = min(glare, 1.0);
float al = max(diffcol.a, glare) * vertex_color.a;
frag_color = max(vec4(color, al), vec4(0));
#else // mode is not DIFFUSE_ALPHA_MODE_BLEND, encode to gbuffer
// deferred path // See: C++: addDeferredAttachment(), shader: softenLightF.glsl
float flag = GBUFFER_FLAG_HAS_ATMOS;
frag_data[0] = max(vec4(diffcol.rgb, emissive), vec4(0)); // gbuffer is sRGB for legacy materials
frag_data[1] = max(vec4(spec.rgb, glossiness), vec4(0)); // XYZ = Specular color. W = Specular exponent.
frag_data[2] = vec4(norm, flag); // XY = Normal. Z = Env. intensity. W = 1 skip atmos (mask off fog)
frag_data[3] = vec4(env, 0, 0, 0);
#endif
}