phoenix-firestorm/indra/newview/gltf/asset.cpp

1138 lines
30 KiB
C++

/**
* @file asset.cpp
* @brief LL GLTF Implementation
*
* $LicenseInfo:firstyear=2024&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2024, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
#include "../llviewerprecompiledheaders.h"
#include "asset.h"
#include "llvolumeoctree.h"
#include "../llviewershadermgr.h"
#include "../llviewercontrol.h"
#include "../llviewertexturelist.h"
#include "../pipeline.h"
#include "buffer_util.h"
#include <boost/url.hpp>
#include "llimagejpeg.h"
using namespace LL::GLTF;
using namespace boost::json;
namespace LL
{
namespace GLTF
{
static std::unordered_set<std::string> ExtensionsSupported = {
"KHR_materials_unlit"
};
Material::AlphaMode gltf_alpha_mode_to_enum(const std::string& alpha_mode)
{
if (alpha_mode == "OPAQUE")
{
return Material::AlphaMode::OPAQUE;
}
else if (alpha_mode == "MASK")
{
return Material::AlphaMode::MASK;
}
else if (alpha_mode == "BLEND")
{
return Material::AlphaMode::BLEND;
}
else
{
return Material::AlphaMode::OPAQUE;
}
}
std::string enum_to_gltf_alpha_mode(Material::AlphaMode alpha_mode)
{
switch (alpha_mode)
{
case Material::AlphaMode::OPAQUE:
return "OPAQUE";
case Material::AlphaMode::MASK:
return "MASK";
case Material::AlphaMode::BLEND:
return "BLEND";
default:
return "OPAQUE";
}
}
}
}
void Scene::updateTransforms(Asset& asset)
{
mat4 identity = glm::identity<mat4>();
for (auto& nodeIndex : mNodes)
{
Node& node = asset.mNodes[nodeIndex];
node.updateTransforms(asset, identity);
}
}
void Scene::updateRenderTransforms(Asset& asset, const mat4& modelview)
{
for (auto& nodeIndex : mNodes)
{
Node& node = asset.mNodes[nodeIndex];
node.updateRenderTransforms(asset, modelview);
}
}
void Node::updateRenderTransforms(Asset& asset, const mat4& modelview)
{
mRenderMatrix = modelview * mMatrix;
for (auto& childIndex : mChildren)
{
Node& child = asset.mNodes[childIndex];
child.updateRenderTransforms(asset, mRenderMatrix);
}
}
void Node::updateTransforms(Asset& asset, const mat4& parentMatrix)
{
makeMatrixValid();
mAssetMatrix = parentMatrix * mMatrix;
mAssetMatrixInv = glm::inverse(mAssetMatrix);
S32 my_index = this - &asset.mNodes[0];
for (auto& childIndex : mChildren)
{
Node& child = asset.mNodes[childIndex];
child.mParent = my_index;
child.updateTransforms(asset, mAssetMatrix);
}
}
void Asset::updateTransforms()
{
for (auto& scene : mScenes)
{
scene.updateTransforms(*this);
}
}
void Asset::updateRenderTransforms(const mat4& modelview)
{
// use mAssetMatrix to update render transforms from node list
for (auto& node : mNodes)
{
node.mRenderMatrix = modelview * node.mAssetMatrix;
}
}
S32 Asset::lineSegmentIntersect(const LLVector4a& start, const LLVector4a& end,
LLVector4a* intersection, // return the intersection point
LLVector2* tex_coord, // return the texture coordinates of the intersection point
LLVector4a* normal, // return the surface normal at the intersection point
LLVector4a* tangent, // return the surface tangent at the intersection point
S32* primitive_hitp
)
{
S32 node_hit = -1;
S32 primitive_hit = -1;
LLVector4a local_start;
LLVector4a asset_end = end;
LLVector4a local_end;
LLVector4a p;
for (auto& node : mNodes)
{
if (node.mMesh != INVALID_INDEX)
{
bool newHit = false;
LLMatrix4a ami;
ami.loadu(glm::value_ptr(node.mAssetMatrixInv));
// transform start and end to this node's local space
ami.affineTransform(start, local_start);
ami.affineTransform(asset_end, local_end);
Mesh& mesh = mMeshes[node.mMesh];
for (auto& primitive : mesh.mPrimitives)
{
const LLVolumeTriangle* tri = primitive.lineSegmentIntersect(local_start, local_end, &p, tex_coord, normal, tangent);
if (tri)
{
newHit = true;
local_end = p;
// pointer math to get the node index
node_hit = &node - &mNodes[0];
llassert(&mNodes[node_hit] == &node);
//pointer math to get the primitive index
primitive_hit = &primitive - &mesh.mPrimitives[0];
llassert(&mesh.mPrimitives[primitive_hit] == &primitive);
}
}
if (newHit)
{
LLMatrix4a am;
am.loadu(glm::value_ptr(node.mAssetMatrix));
// shorten line segment on hit
am.affineTransform(p, asset_end);
// transform results back to asset space
if (intersection)
{
*intersection = asset_end;
}
if (normal || tangent)
{
mat4 normalMatrix = glm::transpose(node.mAssetMatrixInv);
LLMatrix4a norm_mat;
norm_mat.loadu(glm::value_ptr(normalMatrix));
if (normal)
{
LLVector4a n = *normal;
F32 w = n.getF32ptr()[3];
n.getF32ptr()[3] = 0.0f;
norm_mat.affineTransform(n, *normal);
normal->getF32ptr()[3] = w;
}
if (tangent)
{
LLVector4a t = *tangent;
F32 w = t.getF32ptr()[3];
t.getF32ptr()[3] = 0.0f;
norm_mat.affineTransform(t, *tangent);
tangent->getF32ptr()[3] = w;
}
}
}
}
}
if (node_hit != -1)
{
if (primitive_hitp)
{
*primitive_hitp = primitive_hit;
}
}
return node_hit;
}
void Node::makeMatrixValid()
{
if (!mMatrixValid && mTRSValid)
{
mMatrix = glm::recompose(mScale, mRotation, mTranslation, vec3(0,0,0), vec4(0,0,0,1));
mMatrixValid = true;
}
llassert(mMatrixValid);
}
void Node::makeTRSValid()
{
if (!mTRSValid && mMatrixValid)
{
vec3 skew;
vec4 perspective;
glm::decompose(mMatrix, mScale, mRotation, mTranslation, skew, perspective);
mTRSValid = true;
}
llassert(mTRSValid);
}
void Node::setRotation(const quat& q)
{
makeTRSValid();
mRotation = q;
mMatrixValid = false;
}
void Node::setTranslation(const vec3& t)
{
makeTRSValid();
mTranslation = t;
mMatrixValid = false;
}
void Node::setScale(const vec3& s)
{
makeTRSValid();
mScale = s;
mMatrixValid = false;
}
void Node::serialize(object& dst) const
{
write(mName, "name", dst);
write(mMatrix, "matrix", dst, glm::identity<mat4>());
write(mRotation, "rotation", dst, glm::identity<quat>());
write(mTranslation, "translation", dst, glm::vec3(0.f, 0.f, 0.f));
write(mScale, "scale", dst, vec3(1.f,1.f,1.f));
write(mChildren, "children", dst);
write(mMesh, "mesh", dst, INVALID_INDEX);
write(mSkin, "skin", dst, INVALID_INDEX);
}
const Node& Node::operator=(const Value& src)
{
copy(src, "name", mName);
mMatrixValid = copy(src, "matrix", mMatrix);
copy(src, "rotation", mRotation);
copy(src, "translation", mTranslation);
copy(src, "scale", mScale);
copy(src, "children", mChildren);
copy(src, "mesh", mMesh);
copy(src, "skin", mSkin);
if (!mMatrixValid)
{
mTRSValid = true;
}
return *this;
}
void Image::serialize(object& dst) const
{
write(mUri, "uri", dst);
write(mMimeType, "mimeType", dst);
write(mBufferView, "bufferView", dst, INVALID_INDEX);
write(mName, "name", dst);
write(mWidth, "width", dst, -1);
write(mHeight, "height", dst, -1);
write(mComponent, "component", dst, -1);
write(mBits, "bits", dst, -1);
write(mPixelType, "pixelType", dst, -1);
}
const Image& Image::operator=(const Value& src)
{
copy(src, "uri", mUri);
copy(src, "mimeType", mMimeType);
copy(src, "bufferView", mBufferView);
copy(src, "name", mName);
copy(src, "width", mWidth);
copy(src, "height", mHeight);
copy(src, "component", mComponent);
copy(src, "bits", mBits);
copy(src, "pixelType", mPixelType);
return *this;
}
void Asset::update()
{
F32 dt = gFrameTimeSeconds - mLastUpdateTime;
if (dt > 0.f)
{
mLastUpdateTime = gFrameTimeSeconds;
if (mAnimations.size() > 0)
{
static LLCachedControl<U32> anim_idx(gSavedSettings, "GLTFAnimationIndex", 0);
static LLCachedControl<F32> anim_speed(gSavedSettings, "GLTFAnimationSpeed", 1.f);
U32 idx = llclamp(anim_idx(), 0U, mAnimations.size() - 1);
mAnimations[idx].update(*this, dt*anim_speed);
}
updateTransforms();
for (auto& skin : mSkins)
{
skin.uploadMatrixPalette(*this);
}
}
}
bool Asset::prep()
{
// check required extensions and fail if not supported
bool unsupported = false;
for (auto& extension : mExtensionsRequired)
{
if (ExtensionsSupported.find(extension) == ExtensionsSupported.end())
{
LL_WARNS() << "Unsupported extension: " << extension << LL_ENDL;
unsupported = true;
}
}
if (unsupported)
{
return false;
}
// do buffers first as other resources depend on them
for (auto& buffer : mBuffers)
{
if (!buffer.prep(*this))
{
return false;
}
}
for (auto& image : mImages)
{
if (!image.prep(*this))
{
return false;
}
}
for (auto& mesh : mMeshes)
{
if (!mesh.prep(*this))
{
return false;
}
}
for (auto& animation : mAnimations)
{
if (!animation.prep(*this))
{
return false;
}
}
for (auto& skin : mSkins)
{
if (!skin.prep(*this))
{
return false;
}
}
return true;
}
Asset::Asset(const Value& src)
{
*this = src;
}
bool Asset::load(std::string_view filename)
{
mFilename = filename;
std::string ext = gDirUtilp->getExtension(mFilename);
std::ifstream file(filename.data(), std::ios::binary);
if (file.is_open())
{
std::string str((std::istreambuf_iterator<char>(file)), std::istreambuf_iterator<char>());
file.close();
if (ext == "gltf")
{
Value val = parse(str);
*this = val;
return prep();
}
else if (ext == "glb")
{
return loadBinary(str);
}
else
{
LL_WARNS() << "Unsupported file type: " << ext << LL_ENDL;
return false;
}
}
else
{
LL_WARNS() << "Failed to open file: " << filename << LL_ENDL;
return false;
}
return false;
}
bool Asset::loadBinary(const std::string& data)
{
// load from binary gltf
const U8* ptr = (const U8*)data.data();
const U8* end = ptr + data.size();
if (end - ptr < 12)
{
LL_WARNS("GLTF") << "GLB file too short" << LL_ENDL;
return false;
}
U32 magic = *(U32*)ptr;
ptr += 4;
if (magic != 0x46546C67)
{
LL_WARNS("GLTF") << "Invalid GLB magic" << LL_ENDL;
return false;
}
U32 version = *(U32*)ptr;
ptr += 4;
if (version != 2)
{
LL_WARNS("GLTF") << "Unsupported GLB version" << LL_ENDL;
return false;
}
U32 length = *(U32*)ptr;
ptr += 4;
if (length != data.size())
{
LL_WARNS("GLTF") << "GLB length mismatch" << LL_ENDL;
return false;
}
U32 chunkLength = *(U32*)ptr;
ptr += 4;
if (end - ptr < chunkLength + 8)
{
LL_WARNS("GLTF") << "GLB chunk too short" << LL_ENDL;
return false;
}
U32 chunkType = *(U32*)ptr;
ptr += 4;
if (chunkType != 0x4E4F534A)
{
LL_WARNS("GLTF") << "Invalid GLB chunk type" << LL_ENDL;
return false;
}
Value val = parse(std::string_view((const char*)ptr, chunkLength));
*this = val;
if (mBuffers.size() > 0 && mBuffers[0].mUri.empty())
{
// load binary chunk
ptr += chunkLength;
if (end - ptr < 8)
{
LL_WARNS("GLTF") << "GLB chunk too short" << LL_ENDL;
return false;
}
chunkLength = *(U32*)ptr;
ptr += 4;
chunkType = *(U32*)ptr;
ptr += 4;
if (chunkType != 0x004E4942)
{
LL_WARNS("GLTF") << "Invalid GLB chunk type" << LL_ENDL;
return false;
}
auto& buffer = mBuffers[0];
if (ptr + buffer.mByteLength <= end)
{
buffer.mData.resize(buffer.mByteLength);
memcpy(buffer.mData.data(), ptr, buffer.mByteLength);
ptr += buffer.mByteLength;
}
else
{
LL_WARNS("GLTF") << "Buffer too short" << LL_ENDL;
return false;
}
}
return prep();
}
const Asset& Asset::operator=(const Value& src)
{
if (src.is_object())
{
const object& obj = src.as_object();
const auto it = obj.find("asset");
if (it != obj.end())
{
const Value& asset = it->value();
copy(asset, "version", mVersion);
copy(asset, "minVersion", mMinVersion);
copy(asset, "generator", mGenerator);
copy(asset, "copyright", mCopyright);
copy(asset, "extras", mExtras);
}
copy(obj, "scene", mScene);
copy(obj, "scenes", mScenes);
copy(obj, "nodes", mNodes);
copy(obj, "meshes", mMeshes);
copy(obj, "materials", mMaterials);
copy(obj, "buffers", mBuffers);
copy(obj, "bufferViews", mBufferViews);
copy(obj, "textures", mTextures);
copy(obj, "samplers", mSamplers);
copy(obj, "images", mImages);
copy(obj, "accessors", mAccessors);
copy(obj, "animations", mAnimations);
copy(obj, "skins", mSkins);
copy(obj, "extensionsUsed", mExtensionsUsed);
copy(obj, "extensionsRequired", mExtensionsRequired);
}
return *this;
}
void Asset::serialize(object& dst) const
{
static const std::string sGenerator = "Linden Lab GLTF Prototype v0.1";
dst["asset"] = object{};
object& asset = dst["asset"].get_object();
write(mVersion, "version", asset);
write(mMinVersion, "minVersion", asset, std::string());
write(sGenerator, "generator", asset);
write(mScene, "scene", dst, INVALID_INDEX);
write(mScenes, "scenes", dst);
write(mNodes, "nodes", dst);
write(mMeshes, "meshes", dst);
write(mMaterials, "materials", dst);
write(mBuffers, "buffers", dst);
write(mBufferViews, "bufferViews", dst);
write(mTextures, "textures", dst);
write(mSamplers, "samplers", dst);
write(mImages, "images", dst);
write(mAccessors, "accessors", dst);
write(mAnimations, "animations", dst);
write(mSkins, "skins", dst);
write(mExtensionsUsed, "extensionsUsed", dst);
write(mExtensionsRequired, "extensionsRequired", dst);
}
bool Asset::save(const std::string& filename)
{
// get folder path
std::string folder = gDirUtilp->getDirName(filename);
// save images
for (auto& image : mImages)
{
if (!image.save(*this, folder))
{
return false;
}
}
// save buffers
// NOTE: save buffers after saving images as saving images
// may remove image data from buffers
for (auto& buffer : mBuffers)
{
if (!buffer.save(*this, folder))
{
return false;
}
}
// save .gltf
object obj;
serialize(obj);
std::string buffer = boost::json::serialize(obj, {});
std::ofstream file(filename, std::ios::binary);
file.write(buffer.c_str(), buffer.size());
return true;
}
void Asset::eraseBufferView(S32 bufferView)
{
mBufferViews.erase(mBufferViews.begin() + bufferView);
for (auto& accessor : mAccessors)
{
if (accessor.mBufferView > bufferView)
{
accessor.mBufferView--;
}
}
for (auto& image : mImages)
{
if (image.mBufferView > bufferView)
{
image.mBufferView--;
}
}
}
LLViewerFetchedTexture* fetch_texture(const LLUUID& id);
bool Image::prep(Asset& asset)
{
LLUUID id;
if (mUri.size() == UUID_STR_SIZE && LLUUID::parseUUID(mUri, &id) && id.notNull())
{ // loaded from an asset, fetch the texture from the asset system
mTexture = fetch_texture(id);
}
else if (mUri.find("data:") == 0)
{ // embedded in a data URI, load the texture from the URI
LL_WARNS() << "Data URIs not yet supported" << LL_ENDL;
return false;
}
else if (mBufferView != INVALID_INDEX)
{ // embedded in a buffer, load the texture from the buffer
BufferView& bufferView = asset.mBufferViews[mBufferView];
Buffer& buffer = asset.mBuffers[bufferView.mBuffer];
U8* data = buffer.mData.data() + bufferView.mByteOffset;
mTexture = LLViewerTextureManager::getFetchedTextureFromMemory(data, bufferView.mByteLength, mMimeType);
if (mTexture.isNull())
{
LL_WARNS("GLTF") << "Failed to load image from buffer:" << LL_ENDL;
LL_WARNS("GLTF") << " image: " << mName << LL_ENDL;
LL_WARNS("GLTF") << " mimeType: " << mMimeType << LL_ENDL;
return false;
}
}
else if (!asset.mFilename.empty() && !mUri.empty())
{ // loaded locally and not embedded, load the texture as a local preview
std::string dir = gDirUtilp->getDirName(asset.mFilename);
std::string img_file = dir + gDirUtilp->getDirDelimiter() + mUri;
LLUUID tracking_id = LLLocalBitmapMgr::getInstance()->addUnit(img_file);
if (tracking_id.notNull())
{
LLUUID world_id = LLLocalBitmapMgr::getInstance()->getWorldID(tracking_id);
mTexture = LLViewerTextureManager::getFetchedTexture(world_id);
}
else
{
LL_WARNS("GLTF") << "Failed to load image from file:" << LL_ENDL;
LL_WARNS("GLTF") << " image: " << mName << LL_ENDL;
LL_WARNS("GLTF") << " file: " << img_file << LL_ENDL;
return false;
}
}
else
{
LL_WARNS("GLTF") << "Failed to load image: " << mName << LL_ENDL;
return false;
}
return true;
}
void Image::clearData(Asset& asset)
{
if (mBufferView != INVALID_INDEX)
{
// remove data from buffer
BufferView& bufferView = asset.mBufferViews[mBufferView];
Buffer& buffer = asset.mBuffers[bufferView.mBuffer];
buffer.erase(asset, bufferView.mByteOffset, bufferView.mByteLength);
asset.eraseBufferView(mBufferView);
}
mBufferView = INVALID_INDEX;
mWidth = -1;
mHeight = -1;
mComponent = -1;
mBits = -1;
mPixelType = -1;
mMimeType = "";
}
bool Image::save(Asset& asset, const std::string& folder)
{
// NOTE: this *MUST* be a lossless save
// Artists use this to save their work repeatedly, so
// adding any compression artifacts here will degrade
// images over time.
std::string name = mName;
std::string error;
const std::string& delim = gDirUtilp->getDirDelimiter();
if (name.empty())
{
S32 idx = this - asset.mImages.data();
name = llformat("image_%d", idx);
}
if (mBufferView != INVALID_INDEX)
{
// we have the bytes of the original image, save that out in its
// original format
BufferView& bufferView = asset.mBufferViews[mBufferView];
Buffer& buffer = asset.mBuffers[bufferView.mBuffer];
std::string extension;
if (mMimeType == "image/jpeg")
{
extension = ".jpg";
}
else if (mMimeType == "image/png")
{
extension = ".png";
}
else
{
error = "Unknown mime type, saved as .bin";
extension = ".bin";
}
std::string filename = folder + delim + name + extension;
// set URI to non-j2c file for now, but later we'll want to reference the j2c hash
mUri = name + extension;
std::ofstream file(filename, std::ios::binary);
file.write((const char*)buffer.mData.data() + bufferView.mByteOffset, bufferView.mByteLength);
}
else if (mTexture.notNull())
{
auto bitmapmgr = LLLocalBitmapMgr::getInstance();
if (bitmapmgr->isLocal(mTexture->getID()))
{
LLUUID tracking_id = bitmapmgr->getTrackingID(mTexture->getID());
if (tracking_id.notNull())
{ // copy original file to destination folder
std::string source = bitmapmgr->getFilename(tracking_id);
if (gDirUtilp->fileExists(source))
{
std::string filename = gDirUtilp->getBaseFileName(source);
std::string dest = folder + delim + filename;
LLFile::copy(source, dest);
mUri = filename;
}
else
{
error = "File not found: " + source;
}
}
else
{
error = "Local image missing.";
}
}
else if (!mUri.empty())
{
std::string from_dir = gDirUtilp->getDirName(asset.mFilename);
std::string base_filename = gDirUtilp->getBaseFileName(mUri);
std::string filename = from_dir + delim + base_filename;
if (gDirUtilp->fileExists(filename))
{
std::string dest = folder + delim + base_filename;
LLFile::copy(filename, dest);
mUri = base_filename;
}
else
{
error = "Original image file not found: " + filename;
}
}
else
{
error = "Image is not a local image and has no uri, cannot save.";
}
}
if (!error.empty())
{
LL_WARNS("GLTF") << "Failed to save " << name << ": " << error << LL_ENDL;
return false;
}
clearData(asset);
return true;
}
void Material::TextureInfo::serialize(object& dst) const
{
write(mIndex, "index", dst, INVALID_INDEX);
write(mTexCoord, "texCoord", dst, 0);
}
const Material::TextureInfo& Material::TextureInfo::operator=(const Value& src)
{
if (src.is_object())
{
copy(src, "index", mIndex);
copy(src, "texCoord", mTexCoord);
}
return *this;
}
bool Material::TextureInfo::operator==(const Material::TextureInfo& rhs) const
{
return mIndex == rhs.mIndex && mTexCoord == rhs.mTexCoord;
}
bool Material::TextureInfo::operator!=(const Material::TextureInfo& rhs) const
{
return !(*this == rhs);
}
void Material::OcclusionTextureInfo::serialize(object& dst) const
{
write(mIndex, "index", dst, INVALID_INDEX);
write(mTexCoord, "texCoord", dst, 0);
write(mStrength, "strength", dst, 1.f);
}
const Material::OcclusionTextureInfo& Material::OcclusionTextureInfo::operator=(const Value& src)
{
if (src.is_object())
{
copy(src, "index", mIndex);
copy(src, "texCoord", mTexCoord);
copy(src, "strength", mStrength);
}
return *this;
}
void Material::NormalTextureInfo::serialize(object& dst) const
{
write(mIndex, "index", dst, INVALID_INDEX);
write(mTexCoord, "texCoord", dst, 0);
write(mScale, "scale", dst, 1.f);
}
const Material::NormalTextureInfo& Material::NormalTextureInfo::operator=(const Value& src)
{
if (src.is_object())
{
copy(src, "index", mIndex);
copy(src, "texCoord", mTexCoord);
copy(src, "scale", mScale);
}
return *this;
}
const Material::PbrMetallicRoughness& Material::PbrMetallicRoughness::operator=(const Value& src)
{
if (src.is_object())
{
copy(src, "baseColorFactor", mBaseColorFactor);
copy(src, "baseColorTexture", mBaseColorTexture);
copy(src, "metallicFactor", mMetallicFactor);
copy(src, "roughnessFactor", mRoughnessFactor);
copy(src, "metallicRoughnessTexture", mMetallicRoughnessTexture);
}
return *this;
}
void Material::PbrMetallicRoughness::serialize(object& dst) const
{
write(mBaseColorFactor, "baseColorFactor", dst, vec4(1.f, 1.f, 1.f, 1.f));
write(mBaseColorTexture, "baseColorTexture", dst);
write(mMetallicFactor, "metallicFactor", dst, 1.f);
write(mRoughnessFactor, "roughnessFactor", dst, 1.f);
write(mMetallicRoughnessTexture, "metallicRoughnessTexture", dst);
}
bool Material::PbrMetallicRoughness::operator==(const Material::PbrMetallicRoughness& rhs) const
{
return mBaseColorFactor == rhs.mBaseColorFactor &&
mBaseColorTexture == rhs.mBaseColorTexture &&
mMetallicFactor == rhs.mMetallicFactor &&
mRoughnessFactor == rhs.mRoughnessFactor &&
mMetallicRoughnessTexture == rhs.mMetallicRoughnessTexture;
}
bool Material::PbrMetallicRoughness::operator!=(const Material::PbrMetallicRoughness& rhs) const
{
return !(*this == rhs);
}
const Material::Unlit& Material::Unlit::operator=(const Value& src)
{
mPresent = true;
return *this;
}
void Material::Unlit::serialize(object& dst) const
{
// no members and object has already been created, nothing to do
}
void Material::serialize(object& dst) const
{
write(mName, "name", dst);
write(mEmissiveFactor, "emissiveFactor", dst, vec3(0.f, 0.f, 0.f));
write(mPbrMetallicRoughness, "pbrMetallicRoughness", dst);
write(mNormalTexture, "normalTexture", dst);
write(mOcclusionTexture, "occlusionTexture", dst);
write(mEmissiveTexture, "emissiveTexture", dst);
write(mAlphaMode, "alphaMode", dst, Material::AlphaMode::OPAQUE);
write(mAlphaCutoff, "alphaCutoff", dst, 0.5f);
write(mDoubleSided, "doubleSided", dst, false);
write_extensions(dst, &mUnlit, "KHR_materials_unlit");
}
const Material& Material::operator=(const Value& src)
{
if (src.is_object())
{
copy(src, "name", mName);
copy(src, "emissiveFactor", mEmissiveFactor);
copy(src, "pbrMetallicRoughness", mPbrMetallicRoughness);
copy(src, "normalTexture", mNormalTexture);
copy(src, "occlusionTexture", mOcclusionTexture);
copy(src, "emissiveTexture", mEmissiveTexture);
copy(src, "alphaMode", mAlphaMode);
copy(src, "alphaCutoff", mAlphaCutoff);
copy(src, "doubleSided", mDoubleSided);
copy_extensions(src,
"KHR_materials_unlit", &mUnlit );
}
return *this;
}
void Mesh::serialize(object& dst) const
{
write(mPrimitives, "primitives", dst);
write(mWeights, "weights", dst);
write(mName, "name", dst);
}
const Mesh& Mesh::operator=(const Value& src)
{
if (src.is_object())
{
copy(src, "primitives", mPrimitives);
copy(src, "weights", mWeights);
copy(src, "name", mName);
}
return *this;
}
bool Mesh::prep(Asset& asset)
{
for (auto& primitive : mPrimitives)
{
if (!primitive.prep(asset))
{
return false;
}
}
return true;
}
void Scene::serialize(object& dst) const
{
write(mNodes, "nodes", dst);
write(mName, "name", dst);
}
const Scene& Scene::operator=(const Value& src)
{
copy(src, "nodes", mNodes);
copy(src, "name", mName);
return *this;
}
void Texture::serialize(object& dst) const
{
write(mSampler, "sampler", dst, INVALID_INDEX);
write(mSource, "source", dst, INVALID_INDEX);
write(mName, "name", dst);
}
const Texture& Texture::operator=(const Value& src)
{
if (src.is_object())
{
copy(src, "sampler", mSampler);
copy(src, "source", mSource);
copy(src, "name", mName);
}
return *this;
}
void Sampler::serialize(object& dst) const
{
write(mMagFilter, "magFilter", dst, LINEAR);
write(mMinFilter, "minFilter", dst, LINEAR_MIPMAP_LINEAR);
write(mWrapS, "wrapS", dst, REPEAT);
write(mWrapT, "wrapT", dst, REPEAT);
write(mName, "name", dst);
}
const Sampler& Sampler::operator=(const Value& src)
{
copy(src, "magFilter", mMagFilter);
copy(src, "minFilter", mMinFilter);
copy(src, "wrapS", mWrapS);
copy(src, "wrapT", mWrapT);
copy(src, "name", mName);
return *this;
}