686 lines
19 KiB
C++
686 lines
19 KiB
C++
/**
|
|
* @file primitive.cpp
|
|
* @brief LL GLTF Implementation
|
|
*
|
|
* $LicenseInfo:firstyear=2024&license=viewerlgpl$
|
|
* Second Life Viewer Source Code
|
|
* Copyright (C) 2024, Linden Research, Inc.
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation;
|
|
* version 2.1 of the License only.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*
|
|
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
|
|
* $/LicenseInfo$
|
|
*/
|
|
|
|
#include "../llviewerprecompiledheaders.h"
|
|
|
|
#include "asset.h"
|
|
#include "buffer_util.h"
|
|
#include "../llviewershadermgr.h"
|
|
|
|
#include "mikktspace/mikktspace.hh"
|
|
|
|
#include "meshoptimizer/meshoptimizer.h"
|
|
|
|
|
|
using namespace LL::GLTF;
|
|
using namespace boost::json;
|
|
|
|
|
|
// Mesh data useful for Mikktspace tangent generation (and flat normal generation)
|
|
struct MikktMesh
|
|
{
|
|
std::vector<LLVector3> p;
|
|
std::vector<LLVector3> n;
|
|
std::vector<LLVector2> tc;
|
|
std::vector<LLVector4> w;
|
|
std::vector<LLVector4> t;
|
|
std::vector<LLColor4U> c;
|
|
std::vector<U64> j;
|
|
|
|
// initialize from src primitive and make an unrolled triangle list
|
|
// returns false if the Primitive cannot be converted to a triangle list
|
|
bool copy(const Primitive* prim)
|
|
{
|
|
bool indexed = !prim->mIndexArray.empty();
|
|
U32 vert_count = indexed ? prim->mIndexArray.size() : prim->mPositions.size();
|
|
|
|
if (prim->mMode != Primitive::Mode::TRIANGLES)
|
|
{
|
|
LL_WARNS("GLTF") << "Unsupported primitive mode for conversion to triangles: " << (S32) prim->mMode << LL_ENDL;
|
|
return false;
|
|
}
|
|
|
|
p.resize(vert_count);
|
|
n.resize(vert_count);
|
|
tc.resize(vert_count);
|
|
c.resize(vert_count);
|
|
|
|
bool has_normals = !prim->mNormals.empty();
|
|
if (has_normals)
|
|
{
|
|
n.resize(vert_count);
|
|
}
|
|
bool has_tangents = !prim->mTangents.empty();
|
|
if (has_tangents)
|
|
{
|
|
t.resize(vert_count);
|
|
}
|
|
bool rigged = !prim->mWeights.empty();
|
|
if (rigged)
|
|
{
|
|
w.resize(vert_count);
|
|
j.resize(vert_count);
|
|
}
|
|
|
|
for (int i = 0; i < vert_count; ++i)
|
|
{
|
|
U32 idx = indexed ? prim->mIndexArray[i] : i;
|
|
|
|
p[i].set(prim->mPositions[idx].getF32ptr());
|
|
tc[i].set(prim->mTexCoords[idx]);
|
|
c[i] = prim->mColors[idx];
|
|
|
|
if (has_normals)
|
|
{
|
|
n[i].set(prim->mNormals[idx].getF32ptr());
|
|
}
|
|
|
|
if (rigged)
|
|
{
|
|
w[i].set(prim->mWeights[idx].getF32ptr());
|
|
j[i] = prim->mJoints[idx];
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void genNormals()
|
|
{
|
|
U32 tri_count = p.size() / 3;
|
|
for (U32 i = 0; i < tri_count; ++i)
|
|
{
|
|
LLVector3 v0 = p[i * 3];
|
|
LLVector3 v1 = p[i * 3 + 1];
|
|
LLVector3 v2 = p[i * 3 + 2];
|
|
|
|
LLVector3 normal = (v1 - v0) % (v2 - v0);
|
|
normal.normalize();
|
|
|
|
n[i * 3] = normal;
|
|
n[i * 3 + 1] = normal;
|
|
n[i * 3 + 2] = normal;
|
|
}
|
|
}
|
|
|
|
void genTangents()
|
|
{
|
|
t.resize(p.size());
|
|
mikk::Mikktspace ctx(*this);
|
|
ctx.genTangSpace();
|
|
}
|
|
|
|
// write to target primitive as an indexed triangle list
|
|
// Only modifies runtime data, does not modify the original GLTF data
|
|
void write(Primitive* prim) const
|
|
{
|
|
//re-weld
|
|
meshopt_Stream mos[] =
|
|
{
|
|
{ &p[0], sizeof(LLVector3), sizeof(LLVector3) },
|
|
{ &n[0], sizeof(LLVector3), sizeof(LLVector3) },
|
|
{ &t[0], sizeof(LLVector4), sizeof(LLVector4) },
|
|
{ &tc[0], sizeof(LLVector2), sizeof(LLVector2) },
|
|
{ &c[0], sizeof(LLColor4U), sizeof(LLColor4U) },
|
|
{ w.empty() ? nullptr : &w[0], sizeof(LLVector4), sizeof(LLVector4) },
|
|
{ j.empty() ? nullptr : &j[0], sizeof(U64), sizeof(U64) }
|
|
};
|
|
|
|
std::vector<U32> remap;
|
|
remap.resize(p.size());
|
|
|
|
U32 stream_count = w.empty() ? 5 : 7;
|
|
|
|
size_t vert_count = meshopt_generateVertexRemapMulti(&remap[0], nullptr, p.size(), p.size(), mos, stream_count);
|
|
|
|
prim->mTexCoords.resize(vert_count);
|
|
prim->mNormals.resize(vert_count);
|
|
prim->mTangents.resize(vert_count);
|
|
prim->mPositions.resize(vert_count);
|
|
prim->mColors.resize(vert_count);
|
|
if (!w.empty())
|
|
{
|
|
prim->mWeights.resize(vert_count);
|
|
prim->mJoints.resize(vert_count);
|
|
}
|
|
|
|
prim->mIndexArray.resize(remap.size());
|
|
|
|
for (int i = 0; i < remap.size(); ++i)
|
|
{
|
|
U32 src_idx = i;
|
|
U32 dst_idx = remap[i];
|
|
|
|
prim->mIndexArray[i] = dst_idx;
|
|
|
|
prim->mPositions[dst_idx].load3(p[src_idx].mV);
|
|
prim->mNormals[dst_idx].load3(n[src_idx].mV);
|
|
prim->mTexCoords[dst_idx] = tc[src_idx];
|
|
prim->mTangents[dst_idx].loadua(t[src_idx].mV);
|
|
prim->mColors[dst_idx] = c[src_idx];
|
|
|
|
if (!w.empty())
|
|
{
|
|
prim->mWeights[dst_idx].loadua(w[src_idx].mV);
|
|
prim->mJoints[dst_idx] = j[src_idx];
|
|
}
|
|
}
|
|
|
|
prim->mGLMode = LLRender::TRIANGLES;
|
|
}
|
|
|
|
uint32_t GetNumFaces()
|
|
{
|
|
return uint32_t(p.size()/3);
|
|
}
|
|
|
|
uint32_t GetNumVerticesOfFace(const uint32_t face_num)
|
|
{
|
|
return 3;
|
|
}
|
|
|
|
mikk::float3 GetPosition(const uint32_t face_num, const uint32_t vert_num)
|
|
{
|
|
F32* v = p[face_num * 3 + vert_num].mV;
|
|
return mikk::float3(v);
|
|
}
|
|
|
|
mikk::float3 GetTexCoord(const uint32_t face_num, const uint32_t vert_num)
|
|
{
|
|
F32* uv = tc[face_num * 3 + vert_num].mV;
|
|
return mikk::float3(uv[0], uv[1], 1.0f);
|
|
}
|
|
|
|
mikk::float3 GetNormal(const uint32_t face_num, const uint32_t vert_num)
|
|
{
|
|
F32* normal = n[face_num * 3 + vert_num].mV;
|
|
return mikk::float3(normal);
|
|
}
|
|
|
|
void SetTangentSpace(const uint32_t face_num, const uint32_t vert_num, mikk::float3 T, bool orientation)
|
|
{
|
|
S32 i = face_num * 3 + vert_num;
|
|
t[i].set(T.x, T.y, T.z, orientation ? 1.0f : -1.0f);
|
|
}
|
|
};
|
|
|
|
|
|
bool Primitive::prep(Asset& asset)
|
|
{
|
|
// allocate vertex buffer
|
|
// We diverge from the intent of the GLTF format here to work with our existing render pipeline
|
|
// GLTF wants us to copy the buffer views into GPU storage as is and build render commands that source that data.
|
|
// For our engine, though, it's better to rearrange the buffers at load time into a layout that's more consistent.
|
|
// The GLTF native approach undoubtedly works well if you can count on VAOs, but VAOs perform much worse with our scenes.
|
|
|
|
// load vertex data
|
|
for (auto& it : mAttributes)
|
|
{
|
|
const std::string& attribName = it.first;
|
|
Accessor& accessor = asset.mAccessors[it.second];
|
|
|
|
// load vertex data
|
|
if (attribName == "POSITION")
|
|
{
|
|
copy(asset, accessor, mPositions);
|
|
}
|
|
else if (attribName == "NORMAL")
|
|
{
|
|
copy(asset, accessor, mNormals);
|
|
}
|
|
else if (attribName == "TANGENT")
|
|
{
|
|
copy(asset, accessor, mTangents);
|
|
}
|
|
else if (attribName == "COLOR_0")
|
|
{
|
|
copy(asset, accessor, mColors);
|
|
}
|
|
else if (attribName == "TEXCOORD_0")
|
|
{
|
|
copy(asset, accessor, mTexCoords);
|
|
}
|
|
else if (attribName == "JOINTS_0")
|
|
{
|
|
copy(asset, accessor, mJoints);
|
|
}
|
|
else if (attribName == "WEIGHTS_0")
|
|
{
|
|
copy(asset, accessor, mWeights);
|
|
}
|
|
}
|
|
|
|
// copy index buffer
|
|
if (mIndices != INVALID_INDEX)
|
|
{
|
|
Accessor& accessor = asset.mAccessors[mIndices];
|
|
copy(asset, accessor, mIndexArray);
|
|
|
|
for (auto& idx : mIndexArray)
|
|
{
|
|
if (idx >= mPositions.size())
|
|
{
|
|
LL_WARNS("GLTF") << "Invalid index array" << LL_ENDL;
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
U32 mask = LLVertexBuffer::MAP_VERTEX;
|
|
|
|
if (!mWeights.empty())
|
|
{
|
|
mask |= LLVertexBuffer::MAP_WEIGHT4;
|
|
mask |= LLVertexBuffer::MAP_JOINT;
|
|
}
|
|
|
|
if (mTexCoords.empty())
|
|
{
|
|
mTexCoords.resize(mPositions.size());
|
|
}
|
|
|
|
// TODO: support more than one texcoord set (or no texcoords)
|
|
mask |= LLVertexBuffer::MAP_TEXCOORD0;
|
|
|
|
if (mColors.empty())
|
|
{
|
|
mColors.resize(mPositions.size(), LLColor4U::white);
|
|
}
|
|
|
|
// TODO: support colorless vertex buffers
|
|
mask |= LLVertexBuffer::MAP_COLOR;
|
|
|
|
mShaderVariant = 0;
|
|
|
|
bool unlit = false;
|
|
|
|
// bake material basecolor into color array
|
|
if (mMaterial != INVALID_INDEX)
|
|
{
|
|
const Material& material = asset.mMaterials[mMaterial];
|
|
LLColor4 baseColor(glm::value_ptr(material.mPbrMetallicRoughness.mBaseColorFactor));
|
|
for (auto& dst : mColors)
|
|
{
|
|
dst = LLColor4U(baseColor * LLColor4(dst));
|
|
}
|
|
|
|
if (material.mUnlit.mPresent)
|
|
{ // material uses KHR_materials_unlit
|
|
mShaderVariant |= LLGLSLShader::GLTFVariant::UNLIT;
|
|
unlit = true;
|
|
}
|
|
}
|
|
|
|
if (mNormals.empty() && !unlit)
|
|
{
|
|
mTangents.clear();
|
|
|
|
if (mMode == Mode::POINTS || mMode == Mode::LINES || mMode == Mode::LINE_LOOP || mMode == Mode::LINE_STRIP)
|
|
{ //no normals and no surfaces, this primitive is unlit
|
|
mTangents.clear();
|
|
mShaderVariant |= LLGLSLShader::GLTFVariant::UNLIT;
|
|
unlit = true;
|
|
}
|
|
else
|
|
{
|
|
// unroll into non-indexed array of flat shaded triangles
|
|
MikktMesh data;
|
|
if (!data.copy(this))
|
|
{
|
|
return false;
|
|
}
|
|
|
|
data.genNormals();
|
|
data.genTangents();
|
|
data.write(this);
|
|
}
|
|
}
|
|
|
|
if (mTangents.empty() && !unlit)
|
|
{ // NOTE: must be done last because tangent generation rewrites the other arrays
|
|
// adapted from usage of Mikktspace in llvolume.cpp
|
|
if (mMode == Mode::POINTS || mMode == Mode::LINES || mMode == Mode::LINE_LOOP || mMode == Mode::LINE_STRIP)
|
|
{
|
|
// for points and lines, just make sure tangent is perpendicular to normal
|
|
mTangents.resize(mNormals.size());
|
|
LLVector4a up(0.f, 0.f, 1.f, 0.f);
|
|
LLVector4a left(1.f, 0.f, 0.f, 0.f);
|
|
for (U32 i = 0; i < mNormals.size(); ++i)
|
|
{
|
|
if (fabsf(mNormals[i].getF32ptr()[2]) < 0.999f)
|
|
{
|
|
mTangents[i] = up.cross3(mNormals[i]);
|
|
}
|
|
else
|
|
{
|
|
mTangents[i] = left.cross3(mNormals[i]);
|
|
}
|
|
|
|
mTangents[i].getF32ptr()[3] = 1.f;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
MikktMesh data;
|
|
if (!data.copy(this))
|
|
{
|
|
return false;
|
|
}
|
|
|
|
data.genTangents();
|
|
data.write(this);
|
|
}
|
|
}
|
|
|
|
if (!mNormals.empty())
|
|
{
|
|
mask |= LLVertexBuffer::MAP_NORMAL;
|
|
}
|
|
|
|
if (!mTangents.empty())
|
|
{
|
|
mask |= LLVertexBuffer::MAP_TANGENT;
|
|
}
|
|
|
|
if (LLGLSLShader::sCurBoundShaderPtr == nullptr)
|
|
{ // make sure a shader is bound to satisfy mVertexBuffer->setBuffer
|
|
gDebugProgram.bind();
|
|
}
|
|
|
|
mVertexBuffer = new LLVertexBuffer(mask);
|
|
mVertexBuffer->allocateBuffer(mPositions.size(), mIndexArray.size() * 2); // double the size of the index buffer for 32-bit indices
|
|
|
|
mVertexBuffer->setBuffer();
|
|
mVertexBuffer->setPositionData(mPositions.data());
|
|
mVertexBuffer->setColorData(mColors.data());
|
|
|
|
if (!mNormals.empty())
|
|
{
|
|
mVertexBuffer->setNormalData(mNormals.data());
|
|
}
|
|
if (!mTangents.empty())
|
|
{
|
|
mVertexBuffer->setTangentData(mTangents.data());
|
|
}
|
|
|
|
if (!mWeights.empty())
|
|
{
|
|
mShaderVariant |= LLGLSLShader::GLTFVariant::RIGGED;
|
|
mVertexBuffer->setWeight4Data(mWeights.data());
|
|
mVertexBuffer->setJointData(mJoints.data());
|
|
}
|
|
|
|
// flip texcoord y, upload, then flip back (keep the off-spec data in vram only)
|
|
for (auto& tc : mTexCoords)
|
|
{
|
|
tc[1] = 1.f - tc[1];
|
|
}
|
|
mVertexBuffer->setTexCoordData(mTexCoords.data());
|
|
for (auto& tc : mTexCoords)
|
|
{
|
|
tc[1] = 1.f - tc[1];
|
|
}
|
|
|
|
if (!mIndexArray.empty())
|
|
{
|
|
mVertexBuffer->setIndexData(mIndexArray.data());
|
|
}
|
|
|
|
createOctree();
|
|
|
|
mVertexBuffer->unbind();
|
|
|
|
Material& material = asset.mMaterials[mMaterial];
|
|
if (material.mAlphaMode == Material::AlphaMode::BLEND)
|
|
{
|
|
mShaderVariant |= LLGLSLShader::GLTFVariant::ALPHA_BLEND;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void initOctreeTriangle(LLVolumeTriangle* tri, F32 scaler, S32 i0, S32 i1, S32 i2, const LLVector4a& v0, const LLVector4a& v1, const LLVector4a& v2)
|
|
{
|
|
//store pointers to vertex data
|
|
tri->mV[0] = &v0;
|
|
tri->mV[1] = &v1;
|
|
tri->mV[2] = &v2;
|
|
|
|
//store indices
|
|
tri->mIndex[0] = i0;
|
|
tri->mIndex[1] = i1;
|
|
tri->mIndex[2] = i2;
|
|
|
|
//get minimum point
|
|
LLVector4a min = v0;
|
|
min.setMin(min, v1);
|
|
min.setMin(min, v2);
|
|
|
|
//get maximum point
|
|
LLVector4a max = v0;
|
|
max.setMax(max, v1);
|
|
max.setMax(max, v2);
|
|
|
|
//compute center
|
|
LLVector4a center;
|
|
center.setAdd(min, max);
|
|
center.mul(0.5f);
|
|
|
|
tri->mPositionGroup = center;
|
|
|
|
//compute "radius"
|
|
LLVector4a size;
|
|
size.setSub(max, min);
|
|
|
|
tri->mRadius = size.getLength3().getF32() * scaler;
|
|
}
|
|
|
|
void Primitive::createOctree()
|
|
{
|
|
// create octree
|
|
mOctree = new LLVolumeOctree();
|
|
|
|
F32 scaler = 0.25f;
|
|
|
|
if (mMode == Mode::TRIANGLES)
|
|
{
|
|
const U32 num_triangles = mVertexBuffer->getNumIndices() / 3;
|
|
// Initialize all the triangles we need
|
|
mOctreeTriangles.resize(num_triangles);
|
|
|
|
for (U32 triangle_index = 0; triangle_index < num_triangles; ++triangle_index)
|
|
{ //for each triangle
|
|
const U32 index = triangle_index * 3;
|
|
LLVolumeTriangle* tri = &mOctreeTriangles[triangle_index];
|
|
S32 i0 = mIndexArray[index];
|
|
S32 i1 = mIndexArray[index + 1];
|
|
S32 i2 = mIndexArray[index + 2];
|
|
|
|
const LLVector4a& v0 = mPositions[i0];
|
|
const LLVector4a& v1 = mPositions[i1];
|
|
const LLVector4a& v2 = mPositions[i2];
|
|
|
|
initOctreeTriangle(tri, scaler, i0, i1, i2, v0, v1, v2);
|
|
|
|
//insert
|
|
mOctree->insert(tri);
|
|
}
|
|
}
|
|
else if (mMode == Mode::TRIANGLE_STRIP)
|
|
{
|
|
const U32 num_triangles = mVertexBuffer->getNumIndices() - 2;
|
|
// Initialize all the triangles we need
|
|
mOctreeTriangles.resize(num_triangles);
|
|
|
|
for (U32 triangle_index = 0; triangle_index < num_triangles; ++triangle_index)
|
|
{ //for each triangle
|
|
const U32 index = triangle_index + 2;
|
|
LLVolumeTriangle* tri = &mOctreeTriangles[triangle_index];
|
|
S32 i0 = mIndexArray[index];
|
|
S32 i1 = mIndexArray[index - 1];
|
|
S32 i2 = mIndexArray[index - 2];
|
|
|
|
const LLVector4a& v0 = mPositions[i0];
|
|
const LLVector4a& v1 = mPositions[i1];
|
|
const LLVector4a& v2 = mPositions[i2];
|
|
|
|
initOctreeTriangle(tri, scaler, i0, i1, i2, v0, v1, v2);
|
|
|
|
//insert
|
|
mOctree->insert(tri);
|
|
}
|
|
}
|
|
else if (mMode == Mode::TRIANGLE_FAN)
|
|
{
|
|
const U32 num_triangles = mVertexBuffer->getNumIndices() - 2;
|
|
// Initialize all the triangles we need
|
|
mOctreeTriangles.resize(num_triangles);
|
|
|
|
for (U32 triangle_index = 0; triangle_index < num_triangles; ++triangle_index)
|
|
{ //for each triangle
|
|
const U32 index = triangle_index + 2;
|
|
LLVolumeTriangle* tri = &mOctreeTriangles[triangle_index];
|
|
S32 i0 = mIndexArray[0];
|
|
S32 i1 = mIndexArray[index - 1];
|
|
S32 i2 = mIndexArray[index - 2];
|
|
|
|
const LLVector4a& v0 = mPositions[i0];
|
|
const LLVector4a& v1 = mPositions[i1];
|
|
const LLVector4a& v2 = mPositions[i2];
|
|
|
|
initOctreeTriangle(tri, scaler, i0, i1, i2, v0, v1, v2);
|
|
|
|
//insert
|
|
mOctree->insert(tri);
|
|
}
|
|
}
|
|
else if (mMode == Mode::POINTS ||
|
|
mMode == Mode::LINES ||
|
|
mMode == Mode::LINE_LOOP ||
|
|
mMode == Mode::LINE_STRIP)
|
|
{
|
|
// nothing to do, no volume... maybe add some collision geometry around these primitive types?
|
|
}
|
|
|
|
else
|
|
{
|
|
LL_ERRS() << "Unsupported Primitive mode" << LL_ENDL;
|
|
}
|
|
|
|
//remove unneeded octree layers
|
|
while (!mOctree->balance()) {}
|
|
|
|
//calculate AABB for each node
|
|
LLVolumeOctreeRebound rebound;
|
|
rebound.traverse(mOctree);
|
|
}
|
|
|
|
const LLVolumeTriangle* Primitive::lineSegmentIntersect(const LLVector4a& start, const LLVector4a& end,
|
|
LLVector4a* intersection, LLVector2* tex_coord, LLVector4a* normal, LLVector4a* tangent_out)
|
|
{
|
|
if (mOctree.isNull())
|
|
{
|
|
return nullptr;
|
|
}
|
|
|
|
LLVector4a dir;
|
|
dir.setSub(end, start);
|
|
|
|
F32 closest_t = 2.f; // must be larger than 1
|
|
|
|
//create a proxy LLVolumeFace for the raycast
|
|
LLVolumeFace face;
|
|
face.mPositions = mPositions.data();
|
|
face.mTexCoords = mTexCoords.data();
|
|
face.mNormals = mNormals.data();
|
|
face.mTangents = mTangents.data();
|
|
face.mIndices = nullptr; // unreferenced
|
|
|
|
face.mNumIndices = mIndexArray.size();
|
|
face.mNumVertices = mPositions.size();
|
|
|
|
LLOctreeTriangleRayIntersect intersect(start, dir, &face, &closest_t, intersection, tex_coord, normal, tangent_out);
|
|
intersect.traverse(mOctree);
|
|
|
|
// null out proxy data so it doesn't get freed
|
|
face.mPositions = face.mNormals = face.mTangents = nullptr;
|
|
face.mIndices = nullptr;
|
|
face.mTexCoords = nullptr;
|
|
|
|
return intersect.mHitTriangle;
|
|
}
|
|
|
|
Primitive::~Primitive()
|
|
{
|
|
mOctree = nullptr;
|
|
}
|
|
|
|
LLRender::eGeomModes gltf_mode_to_gl_mode(Primitive::Mode mode)
|
|
{
|
|
switch (mode)
|
|
{
|
|
case Primitive::Mode::POINTS:
|
|
return LLRender::POINTS;
|
|
case Primitive::Mode::LINES:
|
|
return LLRender::LINES;
|
|
case Primitive::Mode::LINE_LOOP:
|
|
return LLRender::LINE_LOOP;
|
|
case Primitive::Mode::LINE_STRIP:
|
|
return LLRender::LINE_STRIP;
|
|
case Primitive::Mode::TRIANGLES:
|
|
return LLRender::TRIANGLES;
|
|
case Primitive::Mode::TRIANGLE_STRIP:
|
|
return LLRender::TRIANGLE_STRIP;
|
|
case Primitive::Mode::TRIANGLE_FAN:
|
|
return LLRender::TRIANGLE_FAN;
|
|
default:
|
|
return LLRender::TRIANGLES;
|
|
}
|
|
}
|
|
|
|
void Primitive::serialize(boost::json::object& dst) const
|
|
{
|
|
write(mMaterial, "material", dst, -1);
|
|
write(mMode, "mode", dst, Primitive::Mode::TRIANGLES);
|
|
write(mIndices, "indices", dst, INVALID_INDEX);
|
|
write(mAttributes, "attributes", dst);
|
|
}
|
|
|
|
const Primitive& Primitive::operator=(const Value& src)
|
|
{
|
|
if (src.is_object())
|
|
{
|
|
copy(src, "material", mMaterial);
|
|
copy(src, "mode", mMode);
|
|
copy(src, "indices", mIndices);
|
|
copy(src, "attributes", mAttributes);
|
|
|
|
mGLMode = gltf_mode_to_gl_mode(mMode);
|
|
}
|
|
return *this;
|
|
}
|
|
|