phoenix-firestorm/indra/llcommon/llsingleton.h

916 lines
38 KiB
C++

/**
* @file llsingleton.h
*
* $LicenseInfo:firstyear=2002&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2010, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
#ifndef LLSINGLETON_H
#define LLSINGLETON_H
#include <boost/noncopyable.hpp>
#include <boost/unordered_set.hpp>
#include <initializer_list>
#include <list>
#include <typeinfo>
#include <vector>
#include "mutex.h"
#include "lockstatic.h"
#include "llthread.h" // on_main_thread()
#include "llmainthreadtask.h"
class LLSingletonBase: private boost::noncopyable
{
public:
class MasterList;
private:
// All existing LLSingleton instances are tracked in this master list.
typedef std::list<LLSingletonBase*> list_t;
// Size of stack whose top indicates the LLSingleton currently being
// initialized.
static list_t::size_type get_initializing_size();
// Produce a vector<LLSingletonBase*> of master list, in dependency order.
typedef std::vector<LLSingletonBase*> vec_t;
static vec_t dep_sort();
// we directly depend on these other LLSingletons
typedef boost::unordered_set<LLSingletonBase*> set_t;
set_t mDepends;
protected:
typedef enum e_init_state
{
UNINITIALIZED = 0, // must be default-initialized state
QUEUED, // construction queued, not yet executing
CONSTRUCTING, // within DERIVED_TYPE constructor
INITIALIZING, // within DERIVED_TYPE::initSingleton()
INITIALIZED, // normal case
DELETED // deleteSingleton() or deleteAll() called
} EInitState;
// Define tag<T> to pass to our template constructor. You can't explicitly
// invoke a template constructor with ordinary template syntax:
// http://stackoverflow.com/a/3960925/5533635
template <typename T>
struct tag
{
typedef T type;
};
// Base-class constructor should only be invoked by the DERIVED_TYPE
// constructor, which passes tag<DERIVED_TYPE> for various purposes.
template <typename DERIVED_TYPE>
LLSingletonBase(tag<DERIVED_TYPE>);
virtual ~LLSingletonBase();
// Every new LLSingleton should be added to/removed from the master list
void add_master();
void remove_master();
// with a little help from our friends.
template <class T> friend struct LLSingleton_manage_master;
// Maintain a stack of the LLSingleton subclass instance currently being
// initialized. We use this to notice direct dependencies: we want to know
// if A requires B. We deduce a dependency if while initializing A,
// control reaches B::getInstance().
// We want &A to be at the top of that stack during both A::A() and
// A::initSingleton(), since a call to B::getInstance() might occur during
// either.
// Unfortunately the desired timespan does not correspond neatly with a
// single C++ scope, else we'd use RAII to track it. But we do know that
// LLSingletonBase's constructor definitely runs just before
// LLSingleton's, which runs just before the specific subclass's.
void push_initializing(const char*);
// LLSingleton is, and must remain, the only caller to initSingleton().
// That being the case, we control exactly when it happens -- and we can
// pop the stack immediately thereafter.
void pop_initializing();
// Remove 'this' from the init stack in case of exception in the
// LLSingleton subclass constructor.
static void reset_initializing(list_t::size_type size);
protected:
// If a given call to B::getInstance() happens during either A::A() or
// A::initSingleton(), record that A directly depends on B.
void capture_dependency();
// delegate logging calls to llsingleton.cpp
public:
typedef std::initializer_list<const std::string> string_params;
protected:
static void logerrs (const string_params&);
static void logwarns (const string_params&);
static void loginfos (const string_params&);
static void logdebugs(const string_params&);
static std::string demangle(const char* mangled);
// these classname() declarations restate template functions declared in
// llerror.h because we avoid #including that here
template <typename T>
static std::string classname() { return demangle(typeid(T).name()); }
template <typename T>
static std::string classname(T* ptr) { return demangle(typeid(*ptr).name()); }
// Default methods in case subclass doesn't declare them.
virtual void initSingleton() {}
virtual void cleanupSingleton() {}
// internal wrapper around calls to cleanupSingleton()
void cleanup_();
// deleteSingleton() isn't -- and shouldn't be -- a virtual method. It's a
// class static. However, given only Foo*, deleteAll() does need to be
// able to reach Foo::deleteSingleton(). Make LLSingleton (which declares
// deleteSingleton()) store a pointer here. Since we know it's a static
// class method, a classic-C function pointer will do.
void (*mDeleteSingleton)();
public:
/**
* deleteAll() calls the cleanupSingleton() and deleteSingleton() methods
* for every LLSingleton constructed since the start of the last
* deleteAll() call. (Any LLSingleton constructed DURING a deleteAll()
* call won't be cleaned up until the next deleteAll() call.)
* deleteSingleton() deletes and destroys its LLSingleton. Any cleanup
* logic that might take significant realtime -- or throw an exception --
* must not be placed in your LLSingleton's destructor, but rather in its
* cleanupSingleton() method, which is called implicitly by
* deleteSingleton().
*
* The most important property of deleteAll() is that deleteSingleton()
* methods are called in dependency order, leaf classes last. Thus, given
* two LLSingleton subclasses A and B, if A's dependency on B is properly
* expressed as a B::getInstance() or B::instance() call during either
* A::A() or A::initSingleton(), B will be cleaned up after A.
*
* If a cleanupSingleton() or deleteSingleton() method throws an
* exception, the exception is logged, but deleteAll() attempts to
* continue calling the rest of the deleteSingleton() methods.
*/
static void deleteAll();
};
// Most of the time, we want LLSingleton_manage_master() to forward its
// methods to real LLSingletonBase methods.
template <class T>
struct LLSingleton_manage_master
{
void add(LLSingletonBase* sb) { sb->add_master(); }
void remove(LLSingletonBase* sb) { sb->remove_master(); }
void push_initializing(LLSingletonBase* sb) { sb->push_initializing(typeid(T).name()); }
void pop_initializing (LLSingletonBase* sb) { sb->pop_initializing(); }
// used for init stack cleanup in case an LLSingleton subclass constructor
// throws an exception
void reset_initializing(LLSingletonBase::list_t::size_type size)
{
LLSingletonBase::reset_initializing(size);
}
// For any LLSingleton subclass except the MasterList, obtain the size of
// the init stack from the MasterList singleton instance.
LLSingletonBase::list_t::size_type get_initializing_size()
{
return LLSingletonBase::get_initializing_size();
}
void capture_dependency(LLSingletonBase* sb)
{
sb->capture_dependency();
}
};
// But for the specific case of LLSingletonBase::MasterList, don't.
template <>
struct LLSingleton_manage_master<LLSingletonBase::MasterList>
{
void add(LLSingletonBase*) {}
void remove(LLSingletonBase*) {}
void push_initializing(LLSingletonBase*) {}
void pop_initializing (LLSingletonBase*) {}
// since we never pushed, no need to clean up
void reset_initializing(LLSingletonBase::list_t::size_type size) {}
LLSingletonBase::list_t::size_type get_initializing_size() { return 0; }
void capture_dependency(LLSingletonBase*) {}
};
// Now we can implement LLSingletonBase's template constructor.
template <typename DERIVED_TYPE>
LLSingletonBase::LLSingletonBase(tag<DERIVED_TYPE>):
mDeleteSingleton(nullptr)
{
// This is the earliest possible point at which we can push this new
// instance onto the init stack. LLSingleton::constructSingleton() can't
// do it before calling the constructor, because it doesn't have an
// instance pointer until the constructor returns. Fortunately this
// constructor is guaranteed to be called before any subclass constructor.
// Make this new instance the currently-initializing LLSingleton.
LLSingleton_manage_master<DERIVED_TYPE>().push_initializing(this);
}
// forward declare for friend directive within LLSingleton
template <typename DERIVED_TYPE>
class LLParamSingleton;
/**
* LLSingleton implements the getInstance() method part of the Singleton
* pattern. It can't make the derived class constructors protected, though, so
* you have to do that yourself.
*
* Derive your class from LLSingleton, passing your subclass name as
* LLSingleton's template parameter, like so:
*
* class Foo: public LLSingleton<Foo>
* {
* // use this macro at start of every LLSingleton subclass
* LLSINGLETON(Foo);
* public:
* // ...
* };
*
* Foo& instance = Foo::instance();
*
* LLSingleton recognizes a couple special methods in your derived class.
*
* If you override LLSingleton<T>::initSingleton(), your method will be called
* immediately after the instance is constructed. This is useful for breaking
* circular dependencies: if you find that your LLSingleton subclass
* constructor references other LLSingleton subclass instances in a chain
* leading back to yours, move the instance reference from your constructor to
* your initSingleton() method.
*
* If you override LLSingleton<T>::cleanupSingleton(), your method will
* implicitly be called by LLSingleton<T>::deleteSingleton() just before the
* instance is destroyed. We introduce a special cleanupSingleton() method
* because cleanupSingleton() operations can involve nontrivial realtime, or
* throw an exception. A destructor should do neither!
*
* If your cleanupSingleton() method throws an exception, we log that
* exception but carry on.
*
* If at some point you call LLSingletonBase::deleteAll(), all remaining
* LLSingleton<T> instances will be destroyed in reverse dependency order. (Or
* call MySubclass::deleteSingleton() to specifically destroy the canonical
* MySubclass instance.)
*
* That is, consider LLSingleton subclasses C, B and A. A depends on B, which
* in turn depends on C. These dependencies are expressed as calls to
* B::instance() or B::getInstance(), and C::instance() or C::getInstance().
* It shouldn't matter whether these calls appear in A::A() or
* A::initSingleton(), likewise B::B() or B::initSingleton().
*
* We promise that if you later call LLSingletonBase::deleteAll():
* 1. A::deleteSingleton() will be called before
* 2. B::deleteSingleton(), which will be called before
* 3. C::deleteSingleton().
* Put differently, if your LLSingleton subclass constructor or
* initSingleton() method explicitly depends on some other LLSingleton
* subclass, you may continue to rely on that other subclass in your
* cleanupSingleton() method.
*/
template <typename DERIVED_TYPE>
class LLSingleton : public LLSingletonBase
{
private:
// LLSingleton<DERIVED_TYPE> must have a distinct instance of
// SingletonData for every distinct DERIVED_TYPE. It's tempting to
// consider hoisting SingletonData up into LLSingletonBase. Don't do it.
struct SingletonData
{
// Use a recursive_mutex in case of constructor circularity. With a
// non-recursive mutex, that would result in deadlock.
typedef std::recursive_mutex mutex_t;
mutex_t mMutex; // LockStatic looks for mMutex
EInitState mInitState{UNINITIALIZED};
DERIVED_TYPE* mInstance{nullptr};
};
typedef llthread::LockStatic<SingletonData> LockStatic;
// Allow LLParamSingleton subclass -- but NOT DERIVED_TYPE itself -- to
// access our private members.
friend class LLParamSingleton<DERIVED_TYPE>;
// Scoped lock on the mutex associated with this LLSingleton<T>
class Locker
{
public:
Locker(): mLock(getMutex()) {}
private:
// Use a recursive_mutex in case of constructor circularity. With a
// non-recursive mutex, that would result in deadlock.
typedef std::recursive_mutex mutex_t;
// LLSingleton<T> must have a distinct instance of sMutex for every
// distinct T. It's tempting to consider hoisting Locker up into
// LLSingletonBase. Don't do it.
//
// sMutex must be a function-local static rather than a static member. One
// of the essential features of LLSingleton and friends is that they must
// support getInstance() even when the containing module's static
// variables have not yet been runtime-initialized. A mutex requires
// construction. A static class member might not yet have been
// constructed.
//
// We could store a dumb mutex_t*, notice when it's NULL and allocate a
// heap mutex -- but that's vulnerable to race conditions. And we can't
// defend the dumb pointer with another mutex.
//
// We could store a std::atomic<mutex_t*> -- but a default-constructed
// std::atomic<T> does not contain a valid T, even a default-constructed
// T! Which means std::atomic, too, requires runtime initialization.
//
// But a function-local static is guaranteed to be initialized exactly
// once, the first time control reaches that declaration.
static mutex_t& getMutex()
{
static mutex_t sMutex;
return sMutex;
}
std::unique_lock<mutex_t> mLock;
};
// LLSingleton only supports a nullary constructor. However, the specific
// purpose for its subclass LLParamSingleton is to support Singletons
// requiring constructor arguments. constructSingleton() supports both use
// cases.
// Accepting LockStatic& requires that the caller has already locked our
// static data before calling.
template <typename... Args>
static void constructSingleton(LockStatic& lk, Args&&... args)
{
auto prev_size = LLSingleton_manage_master<DERIVED_TYPE>().get_initializing_size();
// Any getInstance() calls after this point are from within constructor
lk->mInitState = CONSTRUCTING;
try
{
lk->mInstance = new DERIVED_TYPE(std::forward<Args>(args)...);
}
catch (const std::exception& err)
{
// LLSingletonBase might -- or might not -- have pushed the new
// instance onto the init stack before the exception. Reset the
// init stack to its previous size BEFORE logging so log-machinery
// LLSingletons don't record a dependency on DERIVED_TYPE!
LLSingleton_manage_master<DERIVED_TYPE>().reset_initializing(prev_size);
logwarns({"Error constructing ", classname<DERIVED_TYPE>(),
": ", err.what()});
// There isn't a separate EInitState value meaning "we attempted
// to construct this LLSingleton subclass but could not," so use
// DELETED. That seems slightly more appropriate than UNINITIALIZED.
lk->mInitState = DELETED;
// propagate the exception
throw;
}
// Any getInstance() calls after this point are from within initSingleton()
lk->mInitState = INITIALIZING;
try
{
// initialize singleton after constructing it so that it can
// reference other singletons which in turn depend on it, thus
// breaking cyclic dependencies
lk->mInstance->initSingleton();
lk->mInitState = INITIALIZED;
// pop this off stack of initializing singletons
pop_initializing(lk->mInstance);
}
catch (const std::exception& err)
{
// pop this off stack of initializing singletons here, too --
// BEFORE logging, so log-machinery LLSingletons don't record a
// dependency on DERIVED_TYPE!
pop_initializing(lk->mInstance);
logwarns({"Error in ", classname<DERIVED_TYPE>(),
"::initSingleton(): ", err.what()});
// Get rid of the instance entirely. This call depends on our
// recursive_mutex. We could have a deleteSingleton(LockStatic&)
// overload and pass lk, but we don't strictly need it.
deleteSingleton();
// propagate the exception
throw;
}
}
static void pop_initializing(LLSingletonBase* sb)
{
// route through LLSingleton_manage_master so we Do The Right Thing
// (namely, nothing) for MasterList
LLSingleton_manage_master<DERIVED_TYPE>().pop_initializing(sb);
}
static void capture_dependency(LLSingletonBase* sb)
{
// By this point, if DERIVED_TYPE was pushed onto the initializing
// stack, it has been popped off. So the top of that stack, if any, is
// an LLSingleton that directly depends on DERIVED_TYPE. If
// getInstance() was called by another LLSingleton, rather than from
// vanilla application code, record the dependency.
LLSingleton_manage_master<DERIVED_TYPE>().capture_dependency(sb);
}
// We know of no way to instruct the compiler that every subclass
// constructor MUST be private. However, we can make the LLSINGLETON()
// macro both declare a private constructor and provide the required
// friend declaration. How can we ensure that every subclass uses
// LLSINGLETON()? By making that macro provide a definition for this pure
// virtual method. If you get "can't instantiate class due to missing pure
// virtual method" for this method, then add LLSINGLETON(yourclass) in the
// subclass body.
virtual void you_must_use_LLSINGLETON_macro() = 0;
protected:
// Pass DERIVED_TYPE explicitly to LLSingletonBase's constructor because,
// until our subclass constructor completes, *this isn't yet a
// full-fledged DERIVED_TYPE.
LLSingleton(): LLSingletonBase(LLSingletonBase::tag<DERIVED_TYPE>())
{
// populate base-class function pointer with the static
// deleteSingleton() function for this particular specialization
mDeleteSingleton = &deleteSingleton;
// add this new instance to the master list
LLSingleton_manage_master<DERIVED_TYPE>().add(this);
}
protected:
virtual ~LLSingleton()
{
// This phase of cleanup is performed in the destructor rather than in
// deleteSingleton() to defend against manual deletion. When we moved
// cleanup to deleteSingleton(), we hit crashes due to dangling
// pointers in the MasterList.
LockStatic lk;
lk->mInstance = nullptr;
lk->mInitState = DELETED;
// Remove this instance from the master list.
LLSingleton_manage_master<DERIVED_TYPE>().remove(this);
}
public:
/**
* @brief Cleanup and destroy the singleton instance.
*
* deleteSingleton() calls this instance's cleanupSingleton() method and
* then destroys the instance.
*
* A subsequent call to LLSingleton<T>::getInstance() will construct a new
* instance of the class.
*
* Without an explicit call to LLSingletonBase::deleteAll(), or
* LLSingleton<T>::deleteSingleton(), LLSingleton instances are simply
* leaked. (Allowing implicit destruction at shutdown caused too many
* problems.)
*/
static void deleteSingleton()
{
// Hold the lock while we call cleanupSingleton() and the destructor.
// Our destructor also instantiates LockStatic, requiring a recursive
// mutex.
LockStatic lk;
// of course, only cleanup and delete if there's something there
if (lk->mInstance)
{
lk->mInstance->cleanup_();
delete lk->mInstance;
// destructor clears mInstance (and mInitState)
}
}
static DERIVED_TYPE* getInstance()
{
//LL_PROFILE_ZONE_SCOPED_CATEGORY_THREAD; // TODO -- reenable this when we have a fix for using Tracy with coroutines
// We know the viewer has LLSingleton dependency circularities. If you
// feel strongly motivated to eliminate them, cheers and good luck.
// (At that point we could consider a much simpler locking mechanism.)
// If A and B depend on each other, and thread T1 requests A at the
// same moment thread T2 requests B, you could get a sequence like this:
// - T1 locks A
// - T2 locks B
// - T1, having constructed A, calls A::initSingleton(), which calls
// B::getInstance() and blocks on B's lock
// - T2, having constructed B, calls B::initSingleton(), which calls
// A::getInstance() and blocks on A's lock
// In other words, classic deadlock.
// Avoid that by constructing and initializing every LLSingleton on
// the main thread. In that scenario:
// - T1 locks A
// - T2 locks B
// - T1 discovers A is UNINITIALIZED, so it queues a task for the main
// thread, unlocks A and blocks on the std::future.
// - T2 discovers B is UNINITIALIZED, so it queues a task for the main
// thread, unlocks B and blocks on the std::future.
// - The main thread executes T1's request for A. It locks A and
// starts to construct it.
// - A::initSingleton() calls B::getInstance(). Fine: nobody's holding
// B's lock.
// - The main thread locks B, constructs B, calls B::initSingleton(),
// which calls A::getInstance(), which returns A.
// - B::getInstance() returns B to A::initSingleton(), unlocking B.
// - A::getInstance() returns A to the task wrapper, unlocking A.
// - The task wrapper passes A to T1 via the future. T1 resumes.
// - The main thread executes T2's request for B. Oh look, B already
// exists. The task wrapper passes B to T2 via the future. T2
// resumes.
// This still works even if one of T1 or T2 *is* the main thread.
// This still works even if thread T3 requests B at the same moment as
// T2. Finding B still UNINITIALIZED, T3 also queues a task for the
// main thread, unlocks B and blocks on a (distinct) std::future. By
// the time the main thread executes T3's request for B, B already
// exists, and is simply delivered via the future.
{ // nested scope for 'lk'
// In case racing threads call getInstance() at the same moment,
// serialize the calls.
LockStatic lk;
switch (lk->mInitState)
{
case CONSTRUCTING:
// here if DERIVED_TYPE's constructor (directly or indirectly)
// calls DERIVED_TYPE::getInstance()
logerrs({"Tried to access singleton ",
classname<DERIVED_TYPE>(),
" from singleton constructor!"});
return nullptr;
case INITIALIZING:
// here if DERIVED_TYPE::initSingleton() (directly or indirectly)
// calls DERIVED_TYPE::getInstance(): go ahead and allow it
case INITIALIZED:
// normal subsequent calls
// record the dependency, if any: check if we got here from another
// LLSingleton's constructor or initSingleton() method
capture_dependency(lk->mInstance);
return lk->mInstance;
case DELETED:
// called after deleteSingleton()
logwarns({"Trying to access deleted singleton ",
classname<DERIVED_TYPE>(),
" -- creating new instance"});
// fall through
case UNINITIALIZED:
case QUEUED:
// QUEUED means some secondary thread has already requested an
// instance, but for present purposes that's semantically
// identical to UNINITIALIZED: either way, we must ourselves
// request an instance.
break;
}
// Here we need to construct a new instance.
if (on_main_thread())
{
// On the main thread, directly construct the instance while
// holding the lock.
constructSingleton(lk);
capture_dependency(lk->mInstance);
return lk->mInstance;
}
// Here we need to construct a new instance, but we're on a secondary
// thread.
lk->mInitState = QUEUED;
} // unlock 'lk'
// Per the comment block above, dispatch to the main thread.
loginfos({classname<DERIVED_TYPE>(),
"::getInstance() dispatching to main thread"});
auto instance = LLMainThreadTask::dispatch(
[](){
// VERY IMPORTANT to call getInstance() on the main thread,
// rather than going straight to constructSingleton()!
// During the time window before mInitState is INITIALIZED,
// multiple requests might be queued. It's essential that, as
// the main thread processes them, only the FIRST such request
// actually constructs the instance -- every subsequent one
// simply returns the existing instance.
loginfos({classname<DERIVED_TYPE>(),
"::getInstance() on main thread"});
return getInstance();
});
// record the dependency chain tracked on THIS thread, not the main
// thread (consider a getInstance() overload with a tag param that
// suppresses dep tracking when dispatched to the main thread)
capture_dependency(instance);
loginfos({classname<DERIVED_TYPE>(),
"::getInstance() returning on requesting thread"});
return instance;
}
// Reference version of getInstance()
// Preferred over getInstance() as it disallows checking for nullptr
static DERIVED_TYPE& instance()
{
return *getInstance();
}
// Has this singleton been created yet?
// Use this to avoid accessing singletons before they can safely be constructed.
static bool instanceExists()
{
// defend any access to sData from racing threads
LockStatic lk;
return lk->mInitState == INITIALIZED;
}
// Has this singleton been deleted? This can be useful during shutdown
// processing to avoid "resurrecting" a singleton we thought we'd already
// cleaned up.
static bool wasDeleted()
{
// defend any access to sData from racing threads
LockStatic lk;
return lk->mInitState == DELETED;
}
};
/**
* LLParamSingleton<T> is like LLSingleton<T>, except in the following ways:
*
* * It is NOT instantiated on demand (instance() or getInstance()). You must
* first call initParamSingleton(constructor args...).
* * Before initParamSingleton(), calling instance() or getInstance() dies with
* LL_ERRS.
* * initParamSingleton() may be called only once. A second call dies with
* LL_ERRS.
* * However, distinct initParamSingleton() calls can be used to engage
* different constructors, as long as only one such call is executed at
* runtime.
* * Unlike LLSingleton, an LLParamSingleton cannot be "revived" by an
* instance() or getInstance() call after deleteSingleton().
*
* Importantly, though, each LLParamSingleton subclass does participate in the
* dependency-ordered LLSingletonBase::deleteAll() processing.
*/
template <typename DERIVED_TYPE>
class LLParamSingleton : public LLSingleton<DERIVED_TYPE>
{
private:
typedef LLSingleton<DERIVED_TYPE> super;
using typename super::LockStatic;
// Passes arguments to DERIVED_TYPE's constructor and sets appropriate
// states, returning a pointer to the new instance.
template <typename... Args>
static DERIVED_TYPE* initParamSingleton_(Args&&... args)
{
// In case racing threads both call initParamSingleton() at the same
// time, serialize them. One should initialize; the other should see
// mInitState already set.
LockStatic lk;
// For organizational purposes this function shouldn't be called twice
if (lk->mInitState != super::UNINITIALIZED)
{
super::logerrs({"Tried to initialize singleton ",
super::template classname<DERIVED_TYPE>(),
" twice!"});
return nullptr;
}
else if (on_main_thread())
{
// on the main thread, simply construct instance while holding lock
super::logdebugs({super::template classname<DERIVED_TYPE>(),
"::initParamSingleton()"});
super::constructSingleton(lk, std::forward<Args>(args)...);
return lk->mInstance;
}
else
{
// on secondary thread, dispatch to main thread --
// set state so we catch any other calls before the main thread
// picks up the task
lk->mInitState = super::QUEUED;
// very important to unlock here so main thread can actually process
lk.unlock();
super::loginfos({super::template classname<DERIVED_TYPE>(),
"::initParamSingleton() dispatching to main thread"});
// Normally it would be the height of folly to reference-bind
// 'args' into a lambda to be executed on some other thread! By
// the time that thread executed the lambda, the references would
// all be dangling, and Bad Things would result. But
// LLMainThreadTask::dispatch() promises to block until the passed
// task has completed. So in this case we know the references will
// remain valid until the lambda has run, so we dare to bind
// references.
auto instance = LLMainThreadTask::dispatch(
[&](){
super::loginfos({super::template classname<DERIVED_TYPE>(),
"::initParamSingleton() on main thread"});
return initParamSingleton_(std::forward<Args>(args)...);
});
super::loginfos({super::template classname<DERIVED_TYPE>(),
"::initParamSingleton() returning on requesting thread"});
return instance;
}
}
public:
using super::deleteSingleton;
using super::instanceExists;
using super::wasDeleted;
/// initParamSingleton() constructs the instance, returning a reference.
/// Pass whatever arguments are required to construct DERIVED_TYPE.
template <typename... Args>
static DERIVED_TYPE& initParamSingleton(Args&&... args)
{
return *initParamSingleton_(std::forward<Args>(args)...);
}
static DERIVED_TYPE* getInstance()
{
// In case racing threads call getInstance() at the same moment as
// initParamSingleton(), serialize the calls.
LockStatic lk;
switch (lk->mInitState)
{
case super::UNINITIALIZED:
case super::QUEUED:
super::logerrs({"Uninitialized param singleton ",
super::template classname<DERIVED_TYPE>()});
break;
case super::CONSTRUCTING:
super::logerrs({"Tried to access param singleton ",
super::template classname<DERIVED_TYPE>(),
" from singleton constructor!"});
break;
case super::INITIALIZING:
// As with LLSingleton, explicitly permit circular calls from
// within initSingleton()
case super::INITIALIZED:
// for any valid call, capture dependencies
super::capture_dependency(lk->mInstance);
return lk->mInstance;
case super::DELETED:
super::logerrs({"Trying to access deleted param singleton ",
super::template classname<DERIVED_TYPE>()});
break;
}
// should never actually get here; this is to pacify the compiler,
// which assumes control might return from logerrs()
return nullptr;
}
// instance() is replicated here so it calls
// LLParamSingleton::getInstance() rather than LLSingleton::getInstance()
// -- avoid making getInstance() virtual
static DERIVED_TYPE& instance()
{
return *getInstance();
}
};
/**
* Initialization locked singleton, only derived class can decide when to initialize.
* Starts locked.
* For cases when singleton has a dependency onto something or.
*
* LLLockedSingleton is like an LLParamSingleton with a nullary constructor.
* It cannot be instantiated on demand (instance() or getInstance() call) --
* it must be instantiated by calling construct(). However, it does
* participate in dependency-ordered LLSingletonBase::deleteAll() processing.
*/
template <typename DT>
class LLLockedSingleton : public LLParamSingleton<DT>
{
typedef LLParamSingleton<DT> super;
public:
using super::deleteSingleton;
using super::getInstance;
using super::instance;
using super::instanceExists;
using super::wasDeleted;
static DT* construct()
{
return super::initParamSingleton();
}
};
/**
* Use LLSINGLETON(Foo); at the start of an LLSingleton<Foo> subclass body
* when you want to declare an out-of-line constructor:
*
* @code
* class Foo: public LLSingleton<Foo>
* {
* // use this macro at start of every LLSingleton subclass
* LLSINGLETON(Foo);
* public:
* // ...
* };
* // ...
* [inline]
* Foo::Foo() { ... }
* @endcode
*
* Unfortunately, this mechanism does not permit you to define even a simple
* (but nontrivial) constructor within the class body. If it's literally
* trivial, use LLSINGLETON_EMPTY_CTOR(); if not, use LLSINGLETON() and define
* the constructor outside the class body. If you must define it in a header
* file, use 'inline' (unless it's a template class) to avoid duplicate-symbol
* errors at link time.
*/
#define LLSINGLETON(DERIVED_CLASS, ...) \
private: \
/* implement LLSingleton pure virtual method whose sole purpose */ \
/* is to remind people to use this macro */ \
virtual void you_must_use_LLSINGLETON_macro() {} \
friend class LLSingleton<DERIVED_CLASS>; \
DERIVED_CLASS(__VA_ARGS__)
/**
* A slight variance from the above, but includes the "override" keyword
*/
#define LLSINGLETON_C11(DERIVED_CLASS) \
private: \
/* implement LLSingleton pure virtual method whose sole purpose */ \
/* is to remind people to use this macro */ \
virtual void you_must_use_LLSINGLETON_macro() override {} \
friend class LLSingleton<DERIVED_CLASS>; \
DERIVED_CLASS()
/**
* Use LLSINGLETON_EMPTY_CTOR(Foo); at the start of an LLSingleton<Foo>
* subclass body when the constructor is trivial:
*
* @code
* class Foo: public LLSingleton<Foo>
* {
* // use this macro at start of every LLSingleton subclass
* LLSINGLETON_EMPTY_CTOR(Foo);
* public:
* // ...
* };
* @endcode
*/
#define LLSINGLETON_EMPTY_CTOR(DERIVED_CLASS) \
/* LLSINGLETON() is carefully implemented to permit exactly this */ \
LLSINGLETON(DERIVED_CLASS) {}
#define LLSINGLETON_EMPTY_CTOR_C11(DERIVED_CLASS) \
/* LLSINGLETON() is carefully implemented to permit exactly this */ \
LLSINGLETON_C11(DERIVED_CLASS) {}
// Relatively unsafe singleton implementation that is much faster
// and simpler than LLSingleton, but has no dependency tracking
// or inherent thread safety and requires manual invocation of
// createInstance before first use.
template<class T>
class LLSimpleton
{
public:
template <typename... ARGS>
static void createInstance(ARGS&&... args)
{
llassert(sInstance == nullptr);
sInstance = new T(std::forward<ARGS>(args)...);
}
static inline T* getInstance() { return sInstance; }
static inline T& instance() { return *getInstance(); }
static inline bool instanceExists() { return sInstance != nullptr; }
static void deleteSingleton()
{
delete sInstance;
sInstance = nullptr;
}
private:
static T* sInstance;
};
template <class T>
T* LLSimpleton<T>::sInstance{ nullptr };
#endif