phoenix-firestorm/indra/llcommon/lltrace.h

467 lines
12 KiB
C++

/**
* @file lltrace.h
* @brief Runtime statistics accumulation.
*
* $LicenseInfo:firstyear=2001&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2012, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
#ifndef LL_LLTRACE_H
#define LL_LLTRACE_H
#include "stdtypes.h"
#include "llpreprocessor.h"
#include "llmemory.h"
#include "llrefcount.h"
#include "lltraceaccumulators.h"
#include "llthreadlocalstorage.h"
#include "lltimer.h"
#include <list>
#define LL_RECORD_BLOCK_TIME(block_timer) LLTrace::TimeBlock::Recorder LL_GLUE_TOKENS(block_time_recorder, __COUNTER__)(block_timer);
namespace LLTrace
{
class Recording;
template<typename T>
T storage_value(T val) { return val; }
template<typename UNIT_TYPE, typename STORAGE_TYPE>
STORAGE_TYPE storage_value(LLUnit<STORAGE_TYPE, UNIT_TYPE> val) { return val.value(); }
template<typename UNIT_TYPE, typename STORAGE_TYPE>
STORAGE_TYPE storage_value(LLUnitImplicit<STORAGE_TYPE, UNIT_TYPE> val) { return val.value(); }
class TraceBase
{
public:
TraceBase(const char* name, const char* description);
virtual ~TraceBase() {};
virtual const char* getUnitLabel() const;
const std::string& getName() const { return mName; }
const std::string& getDescription() const { return mDescription; }
protected:
const std::string mName;
const std::string mDescription;
};
template<typename ACCUMULATOR>
class TraceType
: public TraceBase,
public LLInstanceTracker<TraceType<ACCUMULATOR>, std::string>
{
public:
TraceType(const char* name, const char* description = NULL)
: LLInstanceTracker<TraceType<ACCUMULATOR>, std::string>(name),
TraceBase(name, description),
mAccumulatorIndex(AccumulatorBuffer<ACCUMULATOR>::getDefaultBuffer()->reserveSlot())
{}
LL_FORCE_INLINE ACCUMULATOR& getPrimaryAccumulator() const
{
ACCUMULATOR* accumulator_storage = AccumulatorBuffer<ACCUMULATOR>::getPrimaryStorage();
return accumulator_storage[mAccumulatorIndex];
}
size_t getIndex() const { return mAccumulatorIndex; }
static size_t getNumIndices() { return AccumulatorBuffer<ACCUMULATOR>::getNumIndices(); }
private:
const size_t mAccumulatorIndex;
};
template<>
class TraceType<TimeBlockAccumulator::CallCountFacet>
: public TraceType<TimeBlockAccumulator>
{
public:
TraceType(const char* name, const char* description = "")
: TraceType<TimeBlockAccumulator>(name, description)
{}
};
template<>
class TraceType<TimeBlockAccumulator::SelfTimeFacet>
: public TraceType<TimeBlockAccumulator>
{
public:
TraceType(const char* name, const char* description = "")
: TraceType<TimeBlockAccumulator>(name, description)
{}
};
template <typename T = F64>
class EventStatHandle
: public TraceType<EventAccumulator>
{
public:
typedef F64 storage_t;
typedef TraceType<EventAccumulator> trace_t;
typedef EventStatHandle<T> self_t;
EventStatHandle(const char* name, const char* description = NULL)
: trace_t(name, description)
{}
/*virtual*/ const char* getUnitLabel() const { return LLGetUnitLabel<T>::getUnitLabel(); }
};
template<typename T, typename VALUE_T>
void record(EventStatHandle<T>& measurement, VALUE_T value)
{
T converted_value(value);
measurement.getPrimaryAccumulator().record(storage_value(converted_value));
}
template <typename T = F64>
class SampleStatHandle
: public TraceType<SampleAccumulator>
{
public:
typedef F64 storage_t;
typedef TraceType<SampleAccumulator> trace_t;
typedef SampleStatHandle<T> self_t;
SampleStatHandle(const char* name, const char* description = NULL)
: trace_t(name, description)
{}
/*virtual*/ const char* getUnitLabel() const { return LLGetUnitLabel<T>::getUnitLabel(); }
};
template<typename T, typename VALUE_T>
void sample(SampleStatHandle<T>& measurement, VALUE_T value)
{
T converted_value(value);
measurement.getPrimaryAccumulator().sample(storage_value(converted_value));
}
template <typename T = F64>
class CountStatHandle
: public TraceType<CountAccumulator>
{
public:
typedef F64 storage_t;
typedef TraceType<CountAccumulator> trace_t;
typedef CountStatHandle<T> self_t;
CountStatHandle(const char* name, const char* description = NULL)
: trace_t(name, description)
{}
/*virtual*/ const char* getUnitLabel() const { return LLGetUnitLabel<T>::getUnitLabel(); }
};
template<typename T, typename VALUE_T>
void add(CountStatHandle<T>& count, VALUE_T value)
{
T converted_value(value);
count.getPrimaryAccumulator().add(storage_value(converted_value));
}
template<>
class TraceType<MemStatAccumulator::AllocationCountFacet>
: public TraceType<MemStatAccumulator>
{
public:
TraceType(const char* name, const char* description = "")
: TraceType<MemStatAccumulator>(name, description)
{}
};
template<>
class TraceType<MemStatAccumulator::DeallocationCountFacet>
: public TraceType<MemStatAccumulator>
{
public:
TraceType(const char* name, const char* description = "")
: TraceType<MemStatAccumulator>(name, description)
{}
};
template<>
class TraceType<MemStatAccumulator::ChildMemFacet>
: public TraceType<MemStatAccumulator>
{
public:
TraceType(const char* name, const char* description = "")
: TraceType<MemStatAccumulator>(name, description)
{}
};
class MemStatHandle : public TraceType<MemStatAccumulator>
{
public:
typedef TraceType<MemStatAccumulator> trace_t;
MemStatHandle(const char* name)
: trace_t(name)
{}
/*virtual*/ const char* getUnitLabel() const { return "B"; }
TraceType<MemStatAccumulator::AllocationCountFacet>& allocationCount()
{
return static_cast<TraceType<MemStatAccumulator::AllocationCountFacet>&>(*(TraceType<MemStatAccumulator>*)this);
}
TraceType<MemStatAccumulator::DeallocationCountFacet>& deallocationCount()
{
return static_cast<TraceType<MemStatAccumulator::DeallocationCountFacet>&>(*(TraceType<MemStatAccumulator>*)this);
}
TraceType<MemStatAccumulator::ChildMemFacet>& childMem()
{
return static_cast<TraceType<MemStatAccumulator::ChildMemFacet>&>(*(TraceType<MemStatAccumulator>*)this);
}
};
// measures effective memory footprint of specified type
// specialize to cover different types
template<typename T>
struct MemFootprint
{
static size_t measure(const T& value)
{
return sizeof(T);
}
static size_t measure()
{
return sizeof(T);
}
};
template<typename T>
struct MemFootprint<T*>
{
static size_t measure(const T* value)
{
if (!value)
{
return 0;
}
return MemFootprint<T>::measure(*value);
}
static size_t measure()
{
return MemFootprint<T>::measure();
}
};
template<typename T>
struct MemFootprint<std::basic_string<T> >
{
static size_t measure(const std::basic_string<T>& value)
{
return value.capacity() * sizeof(T);
}
static size_t measure()
{
return sizeof(std::basic_string<T>);
}
};
template<typename T>
struct MemFootprint<std::vector<T> >
{
static size_t measure(const std::vector<T>& value)
{
return value.capacity() * MemFootprint<T>::measure();
}
static size_t measure()
{
return sizeof(std::vector<T>);
}
};
template<typename T>
struct MemFootprint<std::list<T> >
{
static size_t measure(const std::list<T>& value)
{
return value.size() * (MemFootprint<T>::measure() + sizeof(void*) * 2);
}
static size_t measure()
{
return sizeof(std::list<T>);
}
};
template<typename DERIVED, size_t ALIGNMENT = LL_DEFAULT_HEAP_ALIGN>
class MemTrackable
{
template<typename TRACKED, typename TRACKED_IS_TRACKER>
struct TrackMemImpl;
typedef MemTrackable<DERIVED, ALIGNMENT> mem_trackable_t;
public:
typedef void mem_trackable_tag_t;
virtual ~MemTrackable()
{
memDisclaim(mMemFootprint);
}
void* operator new(size_t size)
{
MemStatAccumulator& accumulator = DERIVED::sMemStat.getPrimaryAccumulator();
accumulator.mSize.sample(accumulator.mSize.hasValue() ? accumulator.mSize.getLastValue() + (F64)size : (F64)size);
accumulator.mAllocatedCount++;
return ::operator new(size);
}
void operator delete(void* ptr, size_t size)
{
MemStatAccumulator& accumulator = DERIVED::sMemStat.getPrimaryAccumulator();
accumulator.mSize.sample(accumulator.mSize.hasValue() ? accumulator.mSize.getLastValue() - (F64)size : -(F64)size);
accumulator.mAllocatedCount--;
accumulator.mDeallocatedCount++;
::operator delete(ptr);
}
void *operator new [](size_t size)
{
MemStatAccumulator& accumulator = DERIVED::sMemStat.getPrimaryAccumulator();
accumulator.mSize.sample(accumulator.mSize.hasValue() ? accumulator.mSize.getLastValue() + (F64)size : (F64)size);
accumulator.mAllocatedCount++;
return ::operator new[](size);
}
void operator delete[](void* ptr, size_t size)
{
MemStatAccumulator& accumulator = DERIVED::sMemStat.getPrimaryAccumulator();
accumulator.mSize.sample(accumulator.mSize.hasValue() ? accumulator.mSize.getLastValue() - (F64)size : -(F64)size);
accumulator.mAllocatedCount--;
accumulator.mDeallocatedCount++;
::operator delete[](ptr);
}
// claim memory associated with other objects/data as our own, adding to our calculated footprint
template<typename CLAIM_T>
CLAIM_T& memClaim(CLAIM_T& value)
{
TrackMemImpl<CLAIM_T>::claim(*this, value);
return value;
}
template<typename CLAIM_T>
const CLAIM_T& memClaim(const CLAIM_T& value)
{
TrackMemImpl<CLAIM_T>::claim(*this, value);
return value;
}
template<typename AMOUNT_T>
AMOUNT_T& memClaimAmount(AMOUNT_T& size)
{
MemStatAccumulator& accumulator = DERIVED::sMemStat.getPrimaryAccumulator();
mMemFootprint += (size_t)size;
accumulator.mSize.sample(accumulator.mSize.hasValue() ? accumulator.mSize.getLastValue() + (F64)size : (F64)size);
return size;
}
// remove memory we had claimed from our calculated footprint
template<typename CLAIM_T>
CLAIM_T& memDisclaim(CLAIM_T& value)
{
TrackMemImpl<CLAIM_T>::disclaim(*this, value);
return value;
}
template<typename CLAIM_T>
const CLAIM_T& memDisclaim(const CLAIM_T& value)
{
TrackMemImpl<CLAIM_T>::disclaim(*this, value);
return value;
}
template<typename AMOUNT_T>
AMOUNT_T& memDisclaimAmount(AMOUNT_T& size)
{
MemStatAccumulator& accumulator = DERIVED::sMemStat.getPrimaryAccumulator();
accumulator.mSize.sample(accumulator.mSize.hasValue() ? accumulator.mSize.getLastValue() - (F64)size : -(F64)size);
return size;
}
private:
size_t mMemFootprint;
template<typename TRACKED, typename TRACKED_IS_TRACKER = void>
struct TrackMemImpl
{
static void claim(mem_trackable_t& tracker, const TRACKED& tracked)
{
MemStatAccumulator& accumulator = DERIVED::sMemStat.getPrimaryAccumulator();
size_t footprint = MemFootprint<TRACKED>::measure(tracked);
accumulator.mSize.sample(accumulator.mSize.hasValue() ? accumulator.mSize.getLastValue() + (F64)footprint : (F64)footprint);
tracker.mMemFootprint += footprint;
}
static void disclaim(mem_trackable_t& tracker, const TRACKED& tracked)
{
MemStatAccumulator& accumulator = DERIVED::sMemStat.getPrimaryAccumulator();
size_t footprint = MemFootprint<TRACKED>::measure(tracked);
accumulator.mSize.sample(accumulator.mSize.hasValue() ? accumulator.mSize.getLastValue() - (F64)footprint : -(F64)footprint);
tracker.mMemFootprint -= footprint;
}
};
template<typename TRACKED>
struct TrackMemImpl<TRACKED, typename TRACKED::mem_trackable_tag_t>
{
static void claim(mem_trackable_t& tracker, TRACKED& tracked)
{
MemStatAccumulator& accumulator = DERIVED::sMemStat.getPrimaryAccumulator();
accumulator.mChildSize.sample(accumulator.mChildSize.hasValue() ? accumulator.mChildSize.getLastValue() + (F64)MemFootprint<TRACKED>::measure(tracked) : (F64)MemFootprint<TRACKED>::measure(tracked));
}
static void disclaim(mem_trackable_t& tracker, TRACKED& tracked)
{
MemStatAccumulator& accumulator = DERIVED::sMemStat.getPrimaryAccumulator();
accumulator.mChildSize.sample(accumulator.mChildSize.hasValue() ? accumulator.mChildSize.getLastValue() - (F64)MemFootprint<TRACKED>::measure(tracked) : -(F64)MemFootprint<TRACKED>::measure(tracked));
}
};
};
}
#endif // LL_LLTRACE_H