phoenix-firestorm/indra/newview/llheroprobemanager.cpp

549 lines
17 KiB
C++

/**
* @file LLHeroProbeManager.cpp
* @brief LLHeroProbeManager class implementation
*
* $LicenseInfo:firstyear=2022&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2022, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
#include "llviewerprecompiledheaders.h"
#include "llheroprobemanager.h"
#include "llreflectionmapmanager.h"
#include "llviewercamera.h"
#include "llspatialpartition.h"
#include "llviewerregion.h"
#include "pipeline.h"
#include "llviewershadermgr.h"
#include "llviewercontrol.h"
#include "llenvironment.h"
#include "llstartup.h"
#include "llagent.h"
#include "llagentcamera.h"
#include "llviewerwindow.h"
#include "llviewerjoystick.h"
#include "llviewermediafocus.h"
extern BOOL gCubeSnapshot;
extern BOOL gTeleportDisplay;
// get the next highest power of two of v (or v if v is already a power of two)
//defined in llvertexbuffer.cpp
extern U32 nhpo2(U32 v);
static void touch_default_probe(LLReflectionMap* probe)
{
if (LLViewerCamera::getInstance())
{
LLVector3 origin = LLViewerCamera::getInstance()->getOrigin();
origin.mV[2] += 64.f;
probe->mOrigin.load3(origin.mV);
}
}
LLHeroProbeManager::LLHeroProbeManager()
{
}
// helper class to seed octree with probes
void LLHeroProbeManager::update()
{
if (!LLPipeline::sReflectionProbesEnabled || gTeleportDisplay || LLStartUp::getStartupState() < STATE_PRECACHE)
{
return;
}
LL_PROFILE_ZONE_SCOPED_CATEGORY_DISPLAY;
llassert(!gCubeSnapshot); // assert a snapshot is not in progress
if (LLAppViewer::instance()->logoutRequestSent())
{
return;
}
initReflectionMaps();
if (!mRenderTarget.isComplete())
{
U32 color_fmt = GL_RGB16F;
U32 targetRes = mProbeResolution * 4; // super sample
mRenderTarget.allocate(targetRes, targetRes, color_fmt, true);
}
if (mMipChain.empty())
{
U32 res = mProbeResolution;
U32 count = log2((F32)res) + 0.5f;
mMipChain.resize(count);
for (int i = 0; i < count; ++i)
{
mMipChain[i].allocate(res, res, GL_RGB16F);
res /= 2;
}
}
llassert(mProbes[0] == mDefaultProbe);
LLVector3 camera_pos = LLViewerCamera::instance().getOrigin();
LLVector4a probe_pos;
LLVector3 focus_point;
LLViewerObject* obj = LLViewerMediaFocus::getInstance()->getFocusedObject();
if (obj && obj->mDrawable && obj->isSelected())
{ // focus on selected media object
S32 face_idx = LLViewerMediaFocus::getInstance()->getFocusedFace();
if (obj && obj->mDrawable)
{
LLFace* face = obj->mDrawable->getFace(face_idx);
if (face)
{
focus_point = face->getPositionAgent();
}
}
}
if (focus_point.isExactlyZero())
{
if (LLViewerJoystick::getInstance()->getOverrideCamera())
{ // focus on point under cursor
focus_point.set(gDebugRaycastIntersection.getF32ptr());
}
else if (gAgentCamera.cameraMouselook())
{ // focus on point under mouselook crosshairs
LLVector4a result;
result.clear();
gViewerWindow->cursorIntersect(-1, -1, 512.f, NULL, -1, FALSE, FALSE, TRUE, NULL, &result);
focus_point.set(result.getF32ptr());
}
else
{
// focus on alt-zoom target
LLViewerRegion* region = gAgent.getRegion();
if (region)
{
focus_point = LLVector3(gAgentCamera.getFocusGlobal() - region->getOriginGlobal());
}
}
}
probe_pos.load3(((focus_point + camera_pos) / 2).mV);
static LLCachedControl<S32> sDetail(gSavedSettings, "RenderHeroReflectionProbeDetail", -1);
static LLCachedControl<S32> sLevel(gSavedSettings, "RenderHeroReflectionProbeLevel", 3);
{
LL_PROFILE_ZONE_NAMED_CATEGORY_DISPLAY("hpmu - realtime");
// Probe 0 is always our mirror probe.
mProbes[0]->mOrigin = probe_pos;
bool radiance_pass = gPipeline.mReflectionMapManager.isRadiancePass();
gPipeline.mReflectionMapManager.mRadiancePass = true;
for (U32 j = 0; j < mProbes.size(); j++)
{
for (U32 i = 0; i < 6; ++i)
{
updateProbeFace(mProbes[j], i);
}
}
gPipeline.mReflectionMapManager.mRadiancePass = radiance_pass;
}
}
// Do the reflection map update render passes.
// For every 12 calls of this function, one complete reflection probe radiance map and irradiance map is generated
// First six passes render the scene with direct lighting only into a scratch space cube map at the end of the cube map array and generate
// a simple mip chain (not convolution filter).
// At the end of these passes, an irradiance map is generated for this probe and placed into the irradiance cube map array at the index for this probe
// The next six passes render the scene with both radiance and irradiance into the same scratch space cube map and generate a simple mip chain.
// At the end of these passes, a radiance map is generated for this probe and placed into the radiance cube map array at the index for this probe.
// In effect this simulates single-bounce lighting.
void LLHeroProbeManager::updateProbeFace(LLReflectionMap* probe, U32 face)
{
// hacky hot-swap of camera specific render targets
gPipeline.mRT = &gPipeline.mAuxillaryRT;
probe->update(mRenderTarget.getWidth(), face, true);
gPipeline.mRT = &gPipeline.mMainRT;
S32 sourceIdx = mReflectionProbeCount;
// Unlike the reflectionmap manager, all probes are considered "realtime" for hero probes.
sourceIdx += 1;
gGL.setColorMask(true, true);
LLGLDepthTest depth(GL_FALSE, GL_FALSE);
LLGLDisable cull(GL_CULL_FACE);
LLGLDisable blend(GL_BLEND);
// downsample to placeholder map
{
gGL.matrixMode(gGL.MM_MODELVIEW);
gGL.pushMatrix();
gGL.loadIdentity();
gGL.matrixMode(gGL.MM_PROJECTION);
gGL.pushMatrix();
gGL.loadIdentity();
gGL.flush();
U32 res = mProbeResolution * 2;
static LLStaticHashedString resScale("resScale");
static LLStaticHashedString direction("direction");
static LLStaticHashedString znear("znear");
static LLStaticHashedString zfar("zfar");
LLRenderTarget* screen_rt = &gPipeline.mAuxillaryRT.screen;
// perform a gaussian blur on the super sampled render before downsampling
{
gGaussianProgram.bind();
gGaussianProgram.uniform1f(resScale, 1.f / (mProbeResolution * 2));
S32 diffuseChannel = gGaussianProgram.enableTexture(LLShaderMgr::DEFERRED_DIFFUSE, LLTexUnit::TT_TEXTURE);
// horizontal
gGaussianProgram.uniform2f(direction, 1.f, 0.f);
gGL.getTexUnit(diffuseChannel)->bind(screen_rt);
mRenderTarget.bindTarget();
gPipeline.mScreenTriangleVB->setBuffer();
gPipeline.mScreenTriangleVB->drawArrays(LLRender::TRIANGLES, 0, 3);
mRenderTarget.flush();
// vertical
gGaussianProgram.uniform2f(direction, 0.f, 1.f);
gGL.getTexUnit(diffuseChannel)->bind(&mRenderTarget);
screen_rt->bindTarget();
gPipeline.mScreenTriangleVB->setBuffer();
gPipeline.mScreenTriangleVB->drawArrays(LLRender::TRIANGLES, 0, 3);
screen_rt->flush();
}
S32 mips = log2((F32)mProbeResolution) + 0.5f;
gReflectionMipProgram.bind();
S32 diffuseChannel = gReflectionMipProgram.enableTexture(LLShaderMgr::DEFERRED_DIFFUSE, LLTexUnit::TT_TEXTURE);
for (int i = 0; i < mMipChain.size(); ++i)
{
LL_PROFILE_GPU_ZONE("probe mip");
mMipChain[i].bindTarget();
if (i == 0)
{
gGL.getTexUnit(diffuseChannel)->bind(screen_rt);
}
else
{
gGL.getTexUnit(diffuseChannel)->bind(&(mMipChain[i - 1]));
}
gReflectionMipProgram.uniform1f(resScale, 1.f/(mProbeResolution*2));
gPipeline.mScreenTriangleVB->setBuffer();
gPipeline.mScreenTriangleVB->drawArrays(LLRender::TRIANGLES, 0, 3);
res /= 2;
S32 mip = i - (mMipChain.size() - mips);
if (mip >= 0)
{
LL_PROFILE_GPU_ZONE("probe mip copy");
mTexture->bind(0);
//glCopyTexSubImage3D(GL_TEXTURE_CUBE_MAP_ARRAY, mip, 0, 0, probe->mCubeIndex * 6 + face, 0, 0, res, res);
glCopyTexSubImage3D(GL_TEXTURE_CUBE_MAP_ARRAY, mip, 0, 0, sourceIdx * 6 + face, 0, 0, res, res);
//if (i == 0)
//{
//glCopyTexSubImage3D(GL_TEXTURE_CUBE_MAP_ARRAY, mip, 0, 0, probe->mCubeIndex * 6 + face, 0, 0, res, res);
//}
mTexture->unbind();
}
mMipChain[i].flush();
}
gGL.popMatrix();
gGL.matrixMode(gGL.MM_MODELVIEW);
gGL.popMatrix();
gGL.getTexUnit(diffuseChannel)->unbind(LLTexUnit::TT_TEXTURE);
gReflectionMipProgram.unbind();
}
if (face == 5)
{
mMipChain[0].bindTarget();
static LLStaticHashedString sSourceIdx("sourceIdx");
{
//generate radiance map (even if this is not the irradiance map, we need the mip chain for the irradiance map)
gRadianceGenProgram.bind();
mVertexBuffer->setBuffer();
S32 channel = gRadianceGenProgram.enableTexture(LLShaderMgr::REFLECTION_PROBES, LLTexUnit::TT_CUBE_MAP_ARRAY);
mTexture->bind(channel);
gRadianceGenProgram.uniform1i(sSourceIdx, sourceIdx);
gRadianceGenProgram.uniform1f(LLShaderMgr::REFLECTION_PROBE_MAX_LOD, mMaxProbeLOD);
U32 res = mMipChain[0].getWidth();
for (int i = 0; i < mMipChain.size(); ++i)
{
LL_PROFILE_GPU_ZONE("probe radiance gen");
static LLStaticHashedString sMipLevel("mipLevel");
static LLStaticHashedString sRoughness("roughness");
static LLStaticHashedString sWidth("u_width");
gRadianceGenProgram.uniform1f(sRoughness, (F32)i / (F32)(mMipChain.size() - 1));
gRadianceGenProgram.uniform1f(sMipLevel, i);
gRadianceGenProgram.uniform1i(sWidth, mProbeResolution);
for (int cf = 0; cf < 6; ++cf)
{ // for each cube face
LLCoordFrame frame;
frame.lookAt(LLVector3(0, 0, 0), LLCubeMapArray::sClipToCubeLookVecs[cf], LLCubeMapArray::sClipToCubeUpVecs[cf]);
F32 mat[16];
frame.getOpenGLRotation(mat);
gGL.loadMatrix(mat);
mVertexBuffer->drawArrays(gGL.TRIANGLE_STRIP, 0, 4);
glCopyTexSubImage3D(GL_TEXTURE_CUBE_MAP_ARRAY, i, 0, 0, probe->mCubeIndex * 6 + cf, 0, 0, res, res);
}
if (i != mMipChain.size() - 1)
{
res /= 2;
glViewport(0, 0, res, res);
}
}
gRadianceGenProgram.unbind();
}
mMipChain[0].flush();
}
}
void LLHeroProbeManager::updateUniforms()
{
if (!LLPipeline::sReflectionProbesEnabled)
{
return;
}
LL_PROFILE_ZONE_SCOPED_CATEGORY_DISPLAY;
struct HeroProbeData
{
LLVector4 heroPosition[1];
GLint heroProbeCount = 1;
};
HeroProbeData hpd;
LLMatrix4a modelview;
modelview.loadu(gGLModelView);
LLVector4a oa; // scratch space for transformed origin
oa.set(0, 0, 0, 0);
hpd.heroProbeCount = 1;
modelview.affineTransform(mProbes[0]->mOrigin, oa);
hpd.heroPosition[0].set(oa.getF32ptr());
//copy rpd into uniform buffer object
if (mUBO == 0)
{
glGenBuffers(1, &mUBO);
}
{
LL_PROFILE_ZONE_NAMED_CATEGORY_DISPLAY("rmmsu - update buffer");
glBindBuffer(GL_UNIFORM_BUFFER, mUBO);
glBufferData(GL_UNIFORM_BUFFER, sizeof(HeroProbeData), &hpd, GL_STREAM_DRAW);
glBindBuffer(GL_UNIFORM_BUFFER, 0);
}
#if 0
if (!gCubeSnapshot)
{
for (auto& probe : mProbes)
{
LLViewerObject* vobj = probe->mViewerObject;
if (vobj)
{
F32 time = (F32)gFrameTimeSeconds - probe->mLastUpdateTime;
vobj->setDebugText(llformat("%d/%d/%d/%.1f - %.1f/%.1f", probe->mCubeIndex, probe->mProbeIndex, (U32) probe->mNeighbors.size(), probe->mMinDepth, probe->mMaxDepth, time), time > 1.f ? LLColor4::white : LLColor4::green);
}
}
}
#endif
}
void LLHeroProbeManager::setUniforms()
{
if (!LLPipeline::sReflectionProbesEnabled)
{
return;
}
if (mUBO == 0)
{
updateUniforms();
}
glBindBufferBase(GL_UNIFORM_BUFFER, 1, mUBO);
}
void LLHeroProbeManager::renderDebug()
{
gDebugProgram.bind();
for (auto& probe : mProbes)
{
renderReflectionProbe(probe);
}
gDebugProgram.unbind();
}
void LLHeroProbeManager::initReflectionMaps()
{
U32 count = LL_MAX_REFLECTION_PROBE_COUNT;
if (mTexture.isNull() || mReflectionProbeCount != count || mReset)
{
mReset = false;
mReflectionProbeCount = count;
mProbeResolution = nhpo2(1024);
mMaxProbeLOD = log2f(mProbeResolution) - 1.f; // number of mips - 1
mTexture = new LLCubeMapArray();
// store mReflectionProbeCount+2 cube maps, final two cube maps are used for render target and radiance map generation source)
mTexture->allocate(mProbeResolution, 3, mReflectionProbeCount + 2);
mIrradianceMaps = new LLCubeMapArray();
mIrradianceMaps->allocate(LL_IRRADIANCE_MAP_RESOLUTION, 3, mReflectionProbeCount, FALSE);
if (mDefaultProbe.isNull())
{
llassert(mProbes.empty()); // default probe MUST be the first probe created
mDefaultProbe = new LLReflectionMap();
mProbes.push_back(mDefaultProbe);
}
llassert(mProbes[0] == mDefaultProbe);
// For hero probes, we treat this as the main mirror probe.
mDefaultProbe->mCubeIndex = 0;
mDefaultProbe->mCubeArray = mTexture;
mDefaultProbe->mDistance = 64.f;
mDefaultProbe->mRadius = 4096.f;
mDefaultProbe->mProbeIndex = 0;
touch_default_probe(mDefaultProbe);
mProbes.push_back(mDefaultProbe);
}
if (mVertexBuffer.isNull())
{
U32 mask = LLVertexBuffer::MAP_VERTEX;
LLPointer<LLVertexBuffer> buff = new LLVertexBuffer(mask);
buff->allocateBuffer(4, 0);
LLStrider<LLVector3> v;
buff->getVertexStrider(v);
v[0] = LLVector3(-1, -1, -1);
v[1] = LLVector3(1, -1, -1);
v[2] = LLVector3(-1, 1, -1);
v[3] = LLVector3(1, 1, -1);
buff->unmapBuffer();
mVertexBuffer = buff;
}
}
void LLHeroProbeManager::cleanup()
{
mVertexBuffer = nullptr;
mRenderTarget.release();
mHeroRenderTarget.release();
mMipChain.clear();
mTexture = nullptr;
mProbes.clear();
mReflectionMaps.clear();
mDefaultProbe = nullptr;
mUpdatingProbe = nullptr;
glDeleteBuffers(1, &mUBO);
mUBO = 0;
mHeroList.clear();
mNearestHero = nullptr;
}
void LLHeroProbeManager::doOcclusion()
{
LLVector4a eye;
eye.load3(LLViewerCamera::instance().getOrigin().mV);
for (auto& probe : mProbes)
{
if (probe != nullptr && probe != mDefaultProbe)
{
probe->doOcclusion(eye);
}
}
}
void LLHeroProbeManager::registerHeroDrawable(LLDrawable* drawablep)
{
if (mHeroList.find(drawablep) == mHeroList.end())
{
mHeroList.insert(drawablep);
}
}
void LLHeroProbeManager::unregisterHeroDrawable(LLDrawable *drawablep)
{
if (mHeroList.find(drawablep) != mHeroList.end())
{
mHeroList.erase(drawablep);
}
}