phoenix-firestorm/indra/newview/gltf/asset.cpp

665 lines
17 KiB
C++

/**
* @file asset.cpp
* @brief LL GLTF Implementation
*
* $LicenseInfo:firstyear=2024&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2024, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
#include "../llviewerprecompiledheaders.h"
#include "asset.h"
#include "llvolumeoctree.h"
#include "../llviewershadermgr.h"
#include "../llviewercontrol.h"
using namespace LL::GLTF;
void Scene::updateTransforms(Asset& asset)
{
LLMatrix4a identity;
identity.setIdentity();
for (auto& nodeIndex : mNodes)
{
Node& node = asset.mNodes[nodeIndex];
node.updateTransforms(asset, identity);
}
}
void Scene::updateRenderTransforms(Asset& asset, const LLMatrix4a& modelview)
{
for (auto& nodeIndex : mNodes)
{
Node& node = asset.mNodes[nodeIndex];
node.updateRenderTransforms(asset, modelview);
}
}
void Node::updateRenderTransforms(Asset& asset, const LLMatrix4a& modelview)
{
matMul(mMatrix, modelview, mRenderMatrix);
for (auto& childIndex : mChildren)
{
Node& child = asset.mNodes[childIndex];
child.updateRenderTransforms(asset, mRenderMatrix);
}
}
LLMatrix4a inverse(const LLMatrix4a& mat);
void Node::updateTransforms(Asset& asset, const LLMatrix4a& parentMatrix)
{
makeMatrixValid();
matMul(mMatrix, parentMatrix, mAssetMatrix);
mAssetMatrixInv = inverse(mAssetMatrix);
S32 my_index = this - &asset.mNodes[0];
for (auto& childIndex : mChildren)
{
Node& child = asset.mNodes[childIndex];
child.mParent = my_index;
child.updateTransforms(asset, mAssetMatrix);
}
}
void Asset::updateTransforms()
{
for (auto& scene : mScenes)
{
scene.updateTransforms(*this);
}
}
void Asset::updateRenderTransforms(const LLMatrix4a& modelview)
{
#if 0
// traverse hierarchy and update render transforms from scratch
for (auto& scene : mScenes)
{
scene.updateRenderTransforms(*this, modelview);
}
#else
// use mAssetMatrix to update render transforms from node list
for (auto& node : mNodes)
{
//if (node.mMesh != INVALID_INDEX)
{
matMul(node.mAssetMatrix, modelview, node.mRenderMatrix);
}
}
#endif
}
S32 Asset::lineSegmentIntersect(const LLVector4a& start, const LLVector4a& end,
LLVector4a* intersection, // return the intersection point
LLVector2* tex_coord, // return the texture coordinates of the intersection point
LLVector4a* normal, // return the surface normal at the intersection point
LLVector4a* tangent, // return the surface tangent at the intersection point
S32* primitive_hitp
)
{
S32 node_hit = -1;
S32 primitive_hit = -1;
LLVector4a local_start;
LLVector4a asset_end = end;
LLVector4a local_end;
LLVector4a p;
for (auto& node : mNodes)
{
if (node.mMesh != INVALID_INDEX)
{
bool newHit = false;
// transform start and end to this node's local space
node.mAssetMatrixInv.affineTransform(start, local_start);
node.mAssetMatrixInv.affineTransform(asset_end, local_end);
Mesh& mesh = mMeshes[node.mMesh];
for (auto& primitive : mesh.mPrimitives)
{
const LLVolumeTriangle* tri = primitive.lineSegmentIntersect(local_start, local_end, &p, tex_coord, normal, tangent);
if (tri)
{
newHit = true;
local_end = p;
// pointer math to get the node index
node_hit = &node - &mNodes[0];
llassert(&mNodes[node_hit] == &node);
//pointer math to get the primitive index
primitive_hit = &primitive - &mesh.mPrimitives[0];
llassert(&mesh.mPrimitives[primitive_hit] == &primitive);
}
}
if (newHit)
{
// shorten line segment on hit
node.mAssetMatrix.affineTransform(p, asset_end);
// transform results back to asset space
if (intersection)
{
*intersection = asset_end;
}
if (normal || tangent)
{
LLMatrix4 normalMatrix(node.mAssetMatrixInv.getF32ptr());
normalMatrix.transpose();
LLMatrix4a norm_mat;
norm_mat.loadu((F32*)normalMatrix.mMatrix);
if (normal)
{
LLVector4a n = *normal;
F32 w = n.getF32ptr()[3];
n.getF32ptr()[3] = 0.0f;
norm_mat.affineTransform(n, *normal);
normal->getF32ptr()[3] = w;
}
if (tangent)
{
LLVector4a t = *tangent;
F32 w = t.getF32ptr()[3];
t.getF32ptr()[3] = 0.0f;
norm_mat.affineTransform(t, *tangent);
tangent->getF32ptr()[3] = w;
}
}
}
}
}
if (node_hit != -1)
{
if (primitive_hitp)
{
*primitive_hitp = primitive_hit;
}
}
return node_hit;
}
void Node::makeMatrixValid()
{
if (!mMatrixValid && mTRSValid)
{
glh::matrix4f rot;
mRotation.get_value(rot);
glh::matrix4f trans;
trans.set_translate(mTranslation);
glh::matrix4f sc;
sc.set_scale(mScale);
glh::matrix4f t;
//t = sc * rot * trans;
//t = trans * rot * sc; // best so far, still wrong on negative scale
//t = sc * trans * rot;
t = trans * sc * rot;
mMatrix.loadu(t.m);
mMatrixValid = true;
}
}
void Node::makeTRSValid()
{
if (!mTRSValid && mMatrixValid)
{
glh::matrix4f t(mMatrix.getF32ptr());
glh::vec4f p = t.get_column(3);
mTranslation.set_value(p.v[0], p.v[1], p.v[2]);
mScale.set_value(t.get_column(0).length(), t.get_column(1).length(), t.get_column(2).length());
mRotation.set_value(t);
mTRSValid = true;
}
}
void Node::setRotation(const glh::quaternionf& q)
{
makeTRSValid();
mRotation = q;
mMatrixValid = false;
}
void Node::setTranslation(const glh::vec3f& t)
{
makeTRSValid();
mTranslation = t;
mMatrixValid = false;
}
void Node::setScale(const glh::vec3f& s)
{
makeTRSValid();
mScale = s;
mMatrixValid = false;
}
const Node& Node::operator=(const tinygltf::Node& src)
{
F32* dstMatrix = mMatrix.getF32ptr();
if (src.matrix.size() == 16)
{
// Node has a transformation matrix, just copy it
for (U32 i = 0; i < 16; ++i)
{
dstMatrix[i] = (F32)src.matrix[i];
}
mMatrixValid = true;
}
else if (!src.rotation.empty() || !src.translation.empty() || !src.scale.empty())
{
// node has rotation/translation/scale, convert to matrix
if (src.rotation.size() == 4)
{
mRotation = glh::quaternionf((F32)src.rotation[0], (F32)src.rotation[1], (F32)src.rotation[2], (F32)src.rotation[3]);
}
if (src.translation.size() == 3)
{
mTranslation = glh::vec3f((F32)src.translation[0], (F32)src.translation[1], (F32)src.translation[2]);
}
glh::vec3f scale;
if (src.scale.size() == 3)
{
mScale = glh::vec3f((F32)src.scale[0], (F32)src.scale[1], (F32)src.scale[2]);
}
else
{
mScale.set_value(1.f, 1.f, 1.f);
}
mTRSValid = true;
}
else
{
// node specifies no transformation, set to identity
mMatrix.setIdentity();
}
mChildren = src.children;
mMesh = src.mesh;
mSkin = src.skin;
mName = src.name;
return *this;
}
void Asset::render(bool opaque, bool rigged)
{
if (rigged)
{
gGL.loadIdentity();
}
for (auto& node : mNodes)
{
if (node.mSkin != INVALID_INDEX)
{
if (rigged)
{
Skin& skin = mSkins[node.mSkin];
skin.uploadMatrixPalette(*this, node);
}
else
{
//skip static nodes if we're rendering rigged
continue;
}
}
else if (rigged)
{
// skip rigged nodes if we're not rendering rigged
continue;
}
if (node.mMesh != INVALID_INDEX)
{
Mesh& mesh = mMeshes[node.mMesh];
for (auto& primitive : mesh.mPrimitives)
{
if (!rigged)
{
gGL.loadMatrix((F32*)node.mRenderMatrix.mMatrix);
}
bool cull = true;
if (primitive.mMaterial != INVALID_INDEX)
{
Material& material = mMaterials[primitive.mMaterial];
if ((material.mMaterial->mAlphaMode == LLGLTFMaterial::ALPHA_MODE_BLEND) == opaque)
{
continue;
}
material.mMaterial->bind();
cull = !material.mMaterial->mDoubleSided;
}
else
{
if (!opaque)
{
continue;
}
LLFetchedGLTFMaterial::sDefault.bind();
}
LLGLDisable cull_face(!cull ? GL_CULL_FACE : 0);
primitive.mVertexBuffer->setBuffer();
if (primitive.mVertexBuffer->getNumIndices() > 0)
{
primitive.mVertexBuffer->draw(primitive.mGLMode, primitive.mVertexBuffer->getNumIndices(), 0);
}
else
{
primitive.mVertexBuffer->drawArrays(primitive.mGLMode, 0, primitive.mVertexBuffer->getNumVerts());
}
}
}
}
}
void Asset::renderOpaque()
{
render(true);
}
void Asset::renderTransparent()
{
render(false);
}
void Asset::update()
{
F32 dt = gFrameTimeSeconds - mLastUpdateTime;
if (dt > 0.f)
{
mLastUpdateTime = gFrameTimeSeconds;
if (mAnimations.size() > 0)
{
static LLCachedControl<U32> anim_idx(gSavedSettings, "GLTFAnimationIndex", 0);
static LLCachedControl<F32> anim_speed(gSavedSettings, "GLTFAnimationSpeed", 1.f);
U32 idx = llclamp(anim_idx(), 0U, mAnimations.size() - 1);
mAnimations[idx].update(*this, dt*anim_speed);
}
updateTransforms();
}
}
void Asset::allocateGLResources(const std::string& filename, const tinygltf::Model& model)
{
// do images first as materials may depend on images
for (auto& image : mImages)
{
image.allocateGLResources();
}
// do materials before meshes as meshes may depend on materials
for (U32 i = 0; i < mMaterials.size(); ++i)
{
mMaterials[i].allocateGLResources(*this);
LLTinyGLTFHelper::getMaterialFromModel(filename, model, i, mMaterials[i].mMaterial, mMaterials[i].mName, true);
}
for (auto& mesh : mMeshes)
{
mesh.allocateGLResources(*this);
}
for (auto& animation : mAnimations)
{
animation.allocateGLResources(*this);
}
for (auto& skin : mSkins)
{
skin.allocateGLResources(*this);
}
}
const Asset& Asset::operator=(const tinygltf::Model& src)
{
mScenes.resize(src.scenes.size());
for (U32 i = 0; i < src.scenes.size(); ++i)
{
mScenes[i] = src.scenes[i];
}
mNodes.resize(src.nodes.size());
for (U32 i = 0; i < src.nodes.size(); ++i)
{
mNodes[i] = src.nodes[i];
}
mMeshes.resize(src.meshes.size());
for (U32 i = 0; i < src.meshes.size(); ++i)
{
mMeshes[i] = src.meshes[i];
}
mMaterials.resize(src.materials.size());
for (U32 i = 0; i < src.materials.size(); ++i)
{
mMaterials[i] = src.materials[i];
}
mBuffers.resize(src.buffers.size());
for (U32 i = 0; i < src.buffers.size(); ++i)
{
mBuffers[i] = src.buffers[i];
}
mBufferViews.resize(src.bufferViews.size());
for (U32 i = 0; i < src.bufferViews.size(); ++i)
{
mBufferViews[i] = src.bufferViews[i];
}
mTextures.resize(src.textures.size());
for (U32 i = 0; i < src.textures.size(); ++i)
{
mTextures[i] = src.textures[i];
}
mSamplers.resize(src.samplers.size());
for (U32 i = 0; i < src.samplers.size(); ++i)
{
mSamplers[i] = src.samplers[i];
}
mImages.resize(src.images.size());
for (U32 i = 0; i < src.images.size(); ++i)
{
mImages[i] = src.images[i];
}
mAccessors.resize(src.accessors.size());
for (U32 i = 0; i < src.accessors.size(); ++i)
{
mAccessors[i] = src.accessors[i];
}
mAnimations.resize(src.animations.size());
for (U32 i = 0; i < src.animations.size(); ++i)
{
mAnimations[i] = src.animations[i];
}
mSkins.resize(src.skins.size());
for (U32 i = 0; i < src.skins.size(); ++i)
{
mSkins[i] = src.skins[i];
}
return *this;
}
const Material& Material::operator=(const tinygltf::Material& src)
{
mName = src.name;
return *this;
}
void Material::allocateGLResources(Asset& asset)
{
// allocate material
mMaterial = new LLFetchedGLTFMaterial();
}
const Mesh& Mesh::operator=(const tinygltf::Mesh& src)
{
mPrimitives.resize(src.primitives.size());
for (U32 i = 0; i < src.primitives.size(); ++i)
{
mPrimitives[i] = src.primitives[i];
}
mWeights = src.weights;
mName = src.name;
return *this;
}
void Mesh::allocateGLResources(Asset& asset)
{
for (auto& primitive : mPrimitives)
{
primitive.allocateGLResources(asset);
}
}
const Scene& Scene::operator=(const tinygltf::Scene& src)
{
mNodes = src.nodes;
mName = src.name;
return *this;
}
const Texture& Texture::operator=(const tinygltf::Texture& src)
{
mSampler = src.sampler;
mSource = src.source;
mName = src.name;
return *this;
}
const Sampler& Sampler::operator=(const tinygltf::Sampler& src)
{
mMagFilter = src.magFilter;
mMinFilter = src.minFilter;
mWrapS = src.wrapS;
mWrapT = src.wrapT;
mName = src.name;
return *this;
}
void Skin::uploadMatrixPalette(Asset& asset, Node& node)
{
// prepare matrix palette
// modelview will be applied by the shader, so assume matrix palette is in asset space
std::vector<glh::matrix4f> t_mp;
t_mp.resize(mJoints.size());
for (U32 i = 0; i < mJoints.size(); ++i)
{
Node& joint = asset.mNodes[mJoints[i]];
//t_mp[i].set_value(joint.mRenderMatrix.getF32ptr());
//t_mp[i] = t_mp[i] * mInverseBindMatricesData[i];
//t_mp[i].set_value(joint.mRenderMatrix.getF32ptr());
//t_mp[i] = mInverseBindMatricesData[i] * t_mp[i];
t_mp[i].set_value(joint.mRenderMatrix.getF32ptr());
t_mp[i] = t_mp[i] * mInverseBindMatricesData[i];
}
std::vector<F32> glmp;
glmp.resize(mJoints.size() * 12);
F32* mp = glmp.data();
for (U32 i = 0; i < mJoints.size(); ++i)
{
F32* m = (F32*)t_mp[i].m;
U32 idx = i * 12;
mp[idx + 0] = m[0];
mp[idx + 1] = m[1];
mp[idx + 2] = m[2];
mp[idx + 3] = m[12];
mp[idx + 4] = m[4];
mp[idx + 5] = m[5];
mp[idx + 6] = m[6];
mp[idx + 7] = m[13];
mp[idx + 8] = m[8];
mp[idx + 9] = m[9];
mp[idx + 10] = m[10];
mp[idx + 11] = m[14];
}
LLGLSLShader::sCurBoundShaderPtr->uniformMatrix3x4fv(LLViewerShaderMgr::AVATAR_MATRIX,
(U32)mJoints.size(),
GL_FALSE,
(GLfloat*)glmp.data());
}