phoenix-firestorm/indra/newview/gltf/primitive.cpp

401 lines
11 KiB
C++

/**
* @file primitive.cpp
* @brief LL GLTF Implementation
*
* $LicenseInfo:firstyear=2024&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2024, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
#include "../llviewerprecompiledheaders.h"
#include "asset.h"
#include "buffer_util.h"
#include "../lltinygltfhelper.h"
using namespace LL::GLTF;
void Primitive::allocateGLResources(Asset& asset)
{
// allocate vertex buffer
// We diverge from the intent of the GLTF format here to work with our existing render pipeline
// GLTF wants us to copy the buffer views into GPU storage as is and build render commands that source that data.
// For our engine, though, it's better to rearrange the buffers at load time into a layout that's more consistent.
// The GLTF native approach undoubtedly works well if you can count on VAOs, but VAOs perform much worse with our scenes.
// load vertex data
for (auto& it : mAttributes)
{
const std::string& attribName = it.first;
Accessor& accessor = asset.mAccessors[it.second];
// load vertex data
if (attribName == "POSITION")
{
copy(asset, accessor, mPositions);
}
else if (attribName == "NORMAL")
{
copy(asset, accessor, mNormals);
}
else if (attribName == "TANGENT")
{
copy(asset, accessor, mTangents);
}
else if (attribName == "COLOR_0")
{
copy(asset, accessor, mColors);
}
else if (attribName == "TEXCOORD_0")
{
copy(asset, accessor, mTexCoords);
}
else if (attribName == "JOINTS_0")
{
copy(asset, accessor, mJoints);
}
else if (attribName == "WEIGHTS_0")
{
copy(asset, accessor, mWeights);
}
}
// copy index buffer
if (mIndices != INVALID_INDEX)
{
Accessor& accessor = asset.mAccessors[mIndices];
copy(asset, accessor, mIndexArray);
}
U32 mask = ATTRIBUTE_MASK;
if (!mWeights.empty())
{
mask |= LLVertexBuffer::MAP_WEIGHT4;
}
mVertexBuffer = new LLVertexBuffer(mask);
mVertexBuffer->allocateBuffer((U32)mPositions.size(), (U32)mIndexArray.size()*2); // double the size of the index buffer for 32-bit indices
mVertexBuffer->setBuffer();
mVertexBuffer->setPositionData(mPositions.data());
if (!mIndexArray.empty())
{
mVertexBuffer->setIndexData(mIndexArray.data());
}
if (mTexCoords.empty())
{
mTexCoords.resize(mPositions.size());
}
// flip texcoord y, upload, then flip back (keep the off-spec data in vram only)
for (auto& tc : mTexCoords)
{
tc[1] = 1.f - tc[1];
}
mVertexBuffer->setTexCoordData(mTexCoords.data());
for (auto& tc : mTexCoords)
{
tc[1] = 1.f - tc[1];
}
if (mColors.empty())
{
mColors.resize(mPositions.size(), LLColor4U::white);
}
// bake material basecolor into color array
if (mMaterial != INVALID_INDEX)
{
const Material& material = asset.mMaterials[mMaterial];
LLColor4 baseColor = material.mMaterial->mBaseColor;
for (auto& dst : mColors)
{
dst = LLColor4U(baseColor * LLColor4(dst));
}
}
mVertexBuffer->setColorData(mColors.data());
if (mNormals.empty())
{
mNormals.resize(mPositions.size(), LLVector4a(0, 0, 1, 0));
}
mVertexBuffer->setNormalData(mNormals.data());
if (mTangents.empty())
{
// TODO: generate tangents if needed
mTangents.resize(mPositions.size(), LLVector4a(1, 0, 0, 1));
}
mVertexBuffer->setTangentData(mTangents.data());
if (!mWeights.empty())
{
std::vector<LLVector4a> weight_data;
weight_data.resize(mWeights.size());
F32 max_weight = 1.f - FLT_EPSILON*100.f;
LLVector4a maxw(max_weight, max_weight, max_weight, max_weight);
for (U32 i = 0; i < mWeights.size(); ++i)
{
LLVector4a& w = weight_data[i];
w.setMin(mWeights[i], maxw);
w.add(mJoints[i]);
};
mVertexBuffer->setWeight4Data(weight_data.data());
}
createOctree();
mVertexBuffer->unbind();
}
void initOctreeTriangle(LLVolumeTriangle* tri, F32 scaler, S32 i0, S32 i1, S32 i2, const LLVector4a& v0, const LLVector4a& v1, const LLVector4a& v2)
{
//store pointers to vertex data
tri->mV[0] = &v0;
tri->mV[1] = &v1;
tri->mV[2] = &v2;
//store indices
tri->mIndex[0] = i0;
tri->mIndex[1] = i1;
tri->mIndex[2] = i2;
//get minimum point
LLVector4a min = v0;
min.setMin(min, v1);
min.setMin(min, v2);
//get maximum point
LLVector4a max = v0;
max.setMax(max, v1);
max.setMax(max, v2);
//compute center
LLVector4a center;
center.setAdd(min, max);
center.mul(0.5f);
tri->mPositionGroup = center;
//compute "radius"
LLVector4a size;
size.setSub(max, min);
tri->mRadius = size.getLength3().getF32() * scaler;
}
void Primitive::createOctree()
{
// create octree
mOctree = new LLVolumeOctree();
F32 scaler = 0.25f;
if (mMode == TINYGLTF_MODE_TRIANGLES)
{
const U32 num_triangles = mVertexBuffer->getNumIndices() / 3;
// Initialize all the triangles we need
mOctreeTriangles.resize(num_triangles);
for (U32 triangle_index = 0; triangle_index < num_triangles; ++triangle_index)
{ //for each triangle
const U32 index = triangle_index * 3;
LLVolumeTriangle* tri = &mOctreeTriangles[triangle_index];
S32 i0 = mIndexArray[index];
S32 i1 = mIndexArray[index + 1];
S32 i2 = mIndexArray[index + 2];
const LLVector4a& v0 = mPositions[i0];
const LLVector4a& v1 = mPositions[i1];
const LLVector4a& v2 = mPositions[i2];
initOctreeTriangle(tri, scaler, i0, i1, i2, v0, v1, v2);
//insert
mOctree->insert(tri);
}
}
else if (mMode == TINYGLTF_MODE_TRIANGLE_STRIP)
{
const U32 num_triangles = mVertexBuffer->getNumIndices() - 2;
// Initialize all the triangles we need
mOctreeTriangles.resize(num_triangles);
for (U32 triangle_index = 0; triangle_index < num_triangles; ++triangle_index)
{ //for each triangle
const U32 index = triangle_index + 2;
LLVolumeTriangle* tri = &mOctreeTriangles[triangle_index];
S32 i0 = mIndexArray[index];
S32 i1 = mIndexArray[index - 1];
S32 i2 = mIndexArray[index - 2];
const LLVector4a& v0 = mPositions[i0];
const LLVector4a& v1 = mPositions[i1];
const LLVector4a& v2 = mPositions[i2];
initOctreeTriangle(tri, scaler, i0, i1, i2, v0, v1, v2);
//insert
mOctree->insert(tri);
}
}
else if (mMode == TINYGLTF_MODE_TRIANGLE_FAN)
{
const U32 num_triangles = mVertexBuffer->getNumIndices() - 2;
// Initialize all the triangles we need
mOctreeTriangles.resize(num_triangles);
for (U32 triangle_index = 0; triangle_index < num_triangles; ++triangle_index)
{ //for each triangle
const U32 index = triangle_index + 2;
LLVolumeTriangle* tri = &mOctreeTriangles[triangle_index];
S32 i0 = mIndexArray[0];
S32 i1 = mIndexArray[index - 1];
S32 i2 = mIndexArray[index - 2];
const LLVector4a& v0 = mPositions[i0];
const LLVector4a& v1 = mPositions[i1];
const LLVector4a& v2 = mPositions[i2];
initOctreeTriangle(tri, scaler, i0, i1, i2, v0, v1, v2);
//insert
mOctree->insert(tri);
}
}
else if (mMode == TINYGLTF_MODE_POINTS ||
mMode == TINYGLTF_MODE_LINE ||
mMode == TINYGLTF_MODE_LINE_LOOP ||
mMode == TINYGLTF_MODE_LINE_STRIP)
{
// nothing to do, no volume... maybe add some collision geometry around these primitive types?
}
else
{
LL_ERRS() << "Unsupported Primitive mode" << LL_ENDL;
}
//remove unneeded octree layers
while (!mOctree->balance()) {}
//calculate AABB for each node
LLVolumeOctreeRebound rebound;
rebound.traverse(mOctree);
}
const LLVolumeTriangle* Primitive::lineSegmentIntersect(const LLVector4a& start, const LLVector4a& end,
LLVector4a* intersection, LLVector2* tex_coord, LLVector4a* normal, LLVector4a* tangent_out)
{
if (mOctree.isNull())
{
return nullptr;
}
LLVector4a dir;
dir.setSub(end, start);
F32 closest_t = 2.f; // must be larger than 1
//create a proxy LLVolumeFace for the raycast
LLVolumeFace face;
face.mPositions = mPositions.data();
face.mTexCoords = mTexCoords.data();
face.mNormals = mNormals.data();
face.mTangents = mTangents.data();
face.mIndices = nullptr; // unreferenced
face.mNumIndices = (S32)mIndexArray.size();
face.mNumVertices = (S32)mPositions.size();
LLOctreeTriangleRayIntersect intersect(start, dir, &face, &closest_t, intersection, tex_coord, normal, tangent_out);
intersect.traverse(mOctree);
// null out proxy data so it doesn't get freed
face.mPositions = face.mNormals = face.mTangents = nullptr;
face.mIndices = nullptr;
face.mTexCoords = nullptr;
return intersect.mHitTriangle;
}
Primitive::~Primitive()
{
mOctree = nullptr;
}
const Primitive& Primitive::operator=(const tinygltf::Primitive& src)
{
// load material
mMaterial = src.material;
// load mode
mMode = src.mode;
// load indices
mIndices = src.indices;
// load attributes
for (auto& it : src.attributes)
{
mAttributes[it.first] = it.second;
}
switch (mMode)
{
case TINYGLTF_MODE_POINTS:
mGLMode = LLRender::POINTS;
break;
case TINYGLTF_MODE_LINE:
mGLMode = LLRender::LINES;
break;
case TINYGLTF_MODE_LINE_LOOP:
mGLMode = LLRender::LINE_LOOP;
break;
case TINYGLTF_MODE_LINE_STRIP:
mGLMode = LLRender::LINE_STRIP;
break;
case TINYGLTF_MODE_TRIANGLES:
mGLMode = LLRender::TRIANGLES;
break;
case TINYGLTF_MODE_TRIANGLE_STRIP:
mGLMode = LLRender::TRIANGLE_STRIP;
break;
case TINYGLTF_MODE_TRIANGLE_FAN:
mGLMode = LLRender::TRIANGLE_FAN;
break;
default:
mGLMode = GL_TRIANGLES;
}
return *this;
}