phoenix-firestorm/indra/llcommon/workqueue.cpp

246 lines
5.4 KiB
C++

/**
* @file workqueue.cpp
* @author Nat Goodspeed
* @date 2021-10-06
* @brief Implementation for WorkQueue.
*
* $LicenseInfo:firstyear=2021&license=viewerlgpl$
* Copyright (c) 2021, Linden Research, Inc.
* $/LicenseInfo$
*/
// Precompiled header
#include "linden_common.h"
// associated header
#include "workqueue.h"
// STL headers
// std headers
// external library headers
// other Linden headers
#include "llcoros.h"
#include LLCOROS_MUTEX_HEADER
#include "llerror.h"
#include "llexception.h"
#include "stringize.h"
using Mutex = LLCoros::Mutex;
using Lock = LLCoros::LockType;
/*****************************************************************************
* WorkQueueBase
*****************************************************************************/
LL::WorkQueueBase::WorkQueueBase(const std::string& name):
super(makeName(name))
{
// TODO: register for "LLApp" events so we can implicitly close() on
// viewer shutdown.
}
void LL::WorkQueueBase::runUntilClose()
{
try
{
for (;;)
{
LL_PROFILE_ZONE_SCOPED_CATEGORY_THREAD;
callWork(pop_());
}
}
catch (const Closed&)
{
}
}
bool LL::WorkQueueBase::runPending()
{
LL_PROFILE_ZONE_SCOPED_CATEGORY_THREAD;
for (Work work; tryPop_(work); )
{
callWork(work);
}
return ! done();
}
bool LL::WorkQueueBase::runOne()
{
Work work;
if (tryPop_(work))
{
callWork(work);
}
return ! done();
}
bool LL::WorkQueueBase::runUntil(const TimePoint& until)
{
LL_PROFILE_ZONE_SCOPED_CATEGORY_THREAD;
// Should we subtract some slop to allow for typical Work execution time?
// How much slop?
// runUntil() is simply a time-bounded runPending().
for (Work work; TimePoint::clock::now() < until && tryPop_(work); )
{
callWork(work);
}
return ! done();
}
std::string LL::WorkQueueBase::makeName(const std::string& name)
{
if (! name.empty())
return name;
static U32 discriminator = 0;
static Mutex mutex;
U32 num;
{
// Protect discriminator from concurrent access by different threads.
// It can't be thread_local, else two racing threads will come up with
// the same name.
Lock lk(mutex);
num = discriminator++;
}
return STRINGIZE("WorkQueue" << num);
}
void LL::WorkQueueBase::callWork(const Work& work)
{
LL_PROFILE_ZONE_SCOPED_CATEGORY_THREAD;
try
{
work();
}
catch (...)
{
// No matter what goes wrong with any individual work item, the worker
// thread must go on! Log our own instance name with the exception.
LOG_UNHANDLED_EXCEPTION(getKey());
}
}
void LL::WorkQueueBase::error(const std::string& msg)
{
LL_ERRS("WorkQueue") << msg << LL_ENDL;
}
void LL::WorkQueueBase::checkCoroutine(const std::string& method)
{
// By convention, the default coroutine on each thread has an empty name
// string. See also LLCoros::logname().
if (LLCoros::getName().empty())
{
LLTHROW(Error("Do not call " + method + " from a thread's default coroutine"));
}
}
/*****************************************************************************
* WorkQueue
*****************************************************************************/
LL::WorkQueue::WorkQueue(const std::string& name, size_t capacity):
super(name),
mQueue(capacity)
{
}
void LL::WorkQueue::close()
{
mQueue.close();
}
size_t LL::WorkQueue::size()
{
return mQueue.size();
}
bool LL::WorkQueue::isClosed()
{
return mQueue.isClosed();
}
bool LL::WorkQueue::done()
{
return mQueue.done();
}
bool LL::WorkQueue::post(const Work& callable)
{
return mQueue.pushIfOpen(callable);
}
bool LL::WorkQueue::tryPost(const Work& callable)
{
return mQueue.tryPush(callable);
}
LL::WorkQueue::Work LL::WorkQueue::pop_()
{
return mQueue.pop();
}
bool LL::WorkQueue::tryPop_(Work& work)
{
return mQueue.tryPop(work);
}
/*****************************************************************************
* WorkSchedule
*****************************************************************************/
LL::WorkSchedule::WorkSchedule(const std::string& name, size_t capacity):
super(name),
mQueue(capacity)
{
}
void LL::WorkSchedule::close()
{
mQueue.close();
}
size_t LL::WorkSchedule::size()
{
return mQueue.size();
}
bool LL::WorkSchedule::isClosed()
{
return mQueue.isClosed();
}
bool LL::WorkSchedule::done()
{
return mQueue.done();
}
bool LL::WorkSchedule::post(const Work& callable)
{
// Use TimePoint::clock::now() instead of TimePoint's representation of
// the epoch because this WorkSchedule may contain a mix of past-due
// TimedWork items and TimedWork items scheduled for the future. Sift this
// new item into the correct place.
return post(callable, TimePoint::clock::now());
}
bool LL::WorkSchedule::post(const Work& callable, const TimePoint& time)
{
return mQueue.pushIfOpen(TimedWork(time, callable));
}
bool LL::WorkSchedule::tryPost(const Work& callable)
{
return tryPost(callable, TimePoint::clock::now());
}
bool LL::WorkSchedule::tryPost(const Work& callable, const TimePoint& time)
{
return mQueue.tryPush(TimedWork(time, callable));
}
LL::WorkSchedule::Work LL::WorkSchedule::pop_()
{
return std::get<0>(mQueue.pop());
}
bool LL::WorkSchedule::tryPop_(Work& work)
{
return mQueue.tryPop(work);
}