phoenix-firestorm/indra/llcommon/lltracerecording.h

532 lines
17 KiB
C++

/**
* @file lltracerecording.h
* @brief Sampling object for collecting runtime statistics originating from lltrace.
*
* $LicenseInfo:firstyear=2001&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2012, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
#ifndef LL_LLTRACERECORDING_H
#define LL_LLTRACERECORDING_H
#include "stdtypes.h"
#include "llpreprocessor.h"
#include "llpointer.h"
#include "lltimer.h"
#include "lltrace.h"
class LLStopWatchControlsMixinCommon
{
public:
virtual ~LLStopWatchControlsMixinCommon() {}
enum EPlayState
{
STOPPED,
PAUSED,
STARTED
};
void start();
void stop();
void pause();
void resume();
void restart();
void reset();
bool isStarted() const { return mPlayState == STARTED; }
bool isPaused() const { return mPlayState == PAUSED; }
bool isStopped() const { return mPlayState == STOPPED; }
EPlayState getPlayState() const { return mPlayState; }
// force play state to specific value by calling appropriate handle* methods
void setPlayState(EPlayState state);
protected:
LLStopWatchControlsMixinCommon()
: mPlayState(STOPPED)
{}
private:
// trigger active behavior (without reset)
virtual void handleStart() = 0;
// stop active behavior
virtual void handleStop() = 0;
// clear accumulated state, can be called while started
virtual void handleReset() = 0;
EPlayState mPlayState;
};
template<typename DERIVED>
class LLStopWatchControlsMixin
: public LLStopWatchControlsMixinCommon
{
public:
typedef LLStopWatchControlsMixin<DERIVED> self_t;
virtual void splitTo(DERIVED& other)
{
EPlayState play_state = getPlayState();
stop();
other.reset();
handleSplitTo(other);
other.setPlayState(play_state);
}
virtual void splitFrom(DERIVED& other)
{
static_cast<self_t&>(other).handleSplitTo(*static_cast<DERIVED*>(this));
}
private:
// atomically stop this object while starting the other
// no data can be missed in between stop and start
virtual void handleSplitTo(DERIVED& other) {};
};
namespace LLTrace
{
struct RecordingBuffers : public LLRefCount
{
RecordingBuffers();
void handOffTo(RecordingBuffers& other);
void makePrimary();
bool isPrimary() const;
void append(const RecordingBuffers& other);
void merge(const RecordingBuffers& other);
void reset(RecordingBuffers* other = NULL);
void flush();
AccumulatorBuffer<CountAccumulator> mCounts;
AccumulatorBuffer<SampleAccumulator> mSamples;
AccumulatorBuffer<EventAccumulator> mEvents;
AccumulatorBuffer<TimeBlockAccumulator> mStackTimers;
AccumulatorBuffer<MemStatAccumulator> mMemStats;
};
class Recording
: public LLStopWatchControlsMixin<Recording>
{
public:
Recording();
Recording(const Recording& other);
~Recording();
Recording& operator = (const Recording& other);
// accumulate data from subsequent, non-overlapping recording
void appendRecording(const Recording& other);
// gather data from recording, ignoring time relationship (for example, pulling data from slave threads)
void mergeRecording(const Recording& other);
// grab latest recorded data
void update();
// ensure that buffers are exclusively owned by this recording
void makeUnique() { mBuffers.makeUnique(); }
// Timer accessors
LLUnit<F64, LLUnits::Seconds> getSum(const TraceType<TimeBlockAccumulator>& stat);
LLUnit<F64, LLUnits::Seconds> getSum(const TraceType<TimeBlockAccumulator::SelfTimeFacet>& stat);
U32 getSum(const TraceType<TimeBlockAccumulator::CallCountFacet>& stat);
LLUnit<F64, LLUnits::Seconds> getPerSec(const TraceType<TimeBlockAccumulator>& stat);
LLUnit<F64, LLUnits::Seconds> getPerSec(const TraceType<TimeBlockAccumulator::SelfTimeFacet>& stat);
F32 getPerSec(const TraceType<TimeBlockAccumulator::CallCountFacet>& stat);
// Memory accessors
LLUnit<F64, LLUnits::Bytes> getMin(const TraceType<MemStatAccumulator>& stat);
LLUnit<F64, LLUnits::Bytes> getMean(const TraceType<MemStatAccumulator>& stat);
LLUnit<F64, LLUnits::Bytes> getMax(const TraceType<MemStatAccumulator>& stat);
LLUnit<F64, LLUnits::Bytes> getStandardDeviation(const TraceType<MemStatAccumulator>& stat);
LLUnit<F64, LLUnits::Bytes> getLastValue(const TraceType<MemStatAccumulator>& stat);
LLUnit<F64, LLUnits::Bytes> getMin(const TraceType<MemStatAccumulator::ChildMemFacet>& stat);
LLUnit<F64, LLUnits::Bytes> getMean(const TraceType<MemStatAccumulator::ChildMemFacet>& stat);
LLUnit<F64, LLUnits::Bytes> getMax(const TraceType<MemStatAccumulator::ChildMemFacet>& stat);
LLUnit<F64, LLUnits::Bytes> getStandardDeviation(const TraceType<MemStatAccumulator::ChildMemFacet>& stat);
LLUnit<F64, LLUnits::Bytes> getLastValue(const TraceType<MemStatAccumulator::ChildMemFacet>& stat);
U32 getSum(const TraceType<MemStatAccumulator::AllocationCountFacet>& stat);
U32 getSum(const TraceType<MemStatAccumulator::DeallocationCountFacet>& stat);
// CountStatHandle accessors
F64 getSum(const TraceType<CountAccumulator>& stat);
template <typename T>
T getSum(const CountStatHandle<T>& stat)
{
return (T)getSum(static_cast<const TraceType<CountAccumulator>&> (stat));
}
F64 getPerSec(const TraceType<CountAccumulator>& stat);
template <typename T>
T getPerSec(const CountStatHandle<T>& stat)
{
return (T)getPerSec(static_cast<const TraceType<CountAccumulator>&> (stat));
}
U32 getSampleCount(const TraceType<CountAccumulator>& stat);
// SampleStatHandle accessors
F64 getMin(const TraceType<SampleAccumulator>& stat);
template <typename T>
T getMin(const SampleStatHandle<T>& stat)
{
return (T)getMin(static_cast<const TraceType<SampleAccumulator>&> (stat));
}
F64 getMean(const TraceType<SampleAccumulator>& stat);
template <typename T>
T getMean(SampleStatHandle<T>& stat)
{
return (T)getMean(static_cast<const TraceType<SampleAccumulator>&> (stat));
}
F64 getMax(const TraceType<SampleAccumulator>& stat);
template <typename T>
T getMax(const SampleStatHandle<T>& stat)
{
return (T)getMax(static_cast<const TraceType<SampleAccumulator>&> (stat));
}
F64 getStandardDeviation(const TraceType<SampleAccumulator>& stat);
template <typename T>
T getStandardDeviation(const SampleStatHandle<T>& stat)
{
return (T)getStandardDeviation(static_cast<const TraceType<SampleAccumulator>&> (stat));
}
F64 getLastValue(const TraceType<SampleAccumulator>& stat);
template <typename T>
T getLastValue(const SampleStatHandle<T>& stat)
{
return (T)getLastValue(static_cast<const TraceType<SampleAccumulator>&> (stat));
}
U32 getSampleCount(const TraceType<SampleAccumulator>& stat);
// EventStatHandle accessors
F64 getSum(const TraceType<EventAccumulator>& stat);
template <typename T>
T getSum(const EventStatHandle<T>& stat)
{
return (T)getSum(static_cast<const TraceType<EventAccumulator>&> (stat));
}
F64 getMin(const TraceType<EventAccumulator>& stat);
template <typename T>
T getMin(const EventStatHandle<T>& stat)
{
return (T)getMin(static_cast<const TraceType<EventAccumulator>&> (stat));
}
F64 getMax(const TraceType<EventAccumulator>& stat);
template <typename T>
T getMax(const EventStatHandle<T>& stat)
{
return (T)getMax(static_cast<const TraceType<EventAccumulator>&> (stat));
}
F64 getMean(const TraceType<EventAccumulator>& stat);
template <typename T>
T getMean(EventStatHandle<T>& stat)
{
return (T)getMean(static_cast<const TraceType<EventAccumulator>&> (stat));
}
F64 getStandardDeviation(const TraceType<EventAccumulator>& stat);
template <typename T>
T getStandardDeviation(const EventStatHandle<T>& stat)
{
return (T)getStandardDeviation(static_cast<const TraceType<EventAccumulator>&> (stat));
}
F64 getLastValue(const TraceType<EventAccumulator>& stat);
template <typename T>
T getLastValue(const EventStatHandle<T>& stat)
{
return (T)getLastValue(static_cast<const TraceType<EventAccumulator>&> (stat));
}
U32 getSampleCount(const TraceType<EventAccumulator>& stat);
LLUnit<F64, LLUnits::Seconds> getDuration() const { return mElapsedSeconds; }
protected:
friend class ThreadRecorder;
// implementation for LLStopWatchControlsMixin
/*virtual*/ void handleStart();
/*virtual*/ void handleStop();
/*virtual*/ void handleReset();
/*virtual*/ void handleSplitTo(Recording& other);
// returns data for current thread
class ThreadRecorder* getThreadRecorder();
LLTimer mSamplingTimer;
LLUnit<F64, LLUnits::Seconds> mElapsedSeconds;
LLCopyOnWritePointer<RecordingBuffers> mBuffers;
};
class LL_COMMON_API PeriodicRecording
: public LLStopWatchControlsMixin<PeriodicRecording>
{
public:
PeriodicRecording(U32 num_periods, EPlayState state = STOPPED);
void nextPeriod();
size_t getNumRecordedPeriods() { return mNumPeriods; }
LLUnit<F64, LLUnits::Seconds> getDuration() const;
void appendPeriodicRecording(PeriodicRecording& other);
void appendRecording(Recording& recording);
Recording& getLastRecording();
const Recording& getLastRecording() const;
Recording& getCurRecording();
const Recording& getCurRecording() const;
Recording& getPrevRecording(U32 offset);
const Recording& getPrevRecording(U32 offset) const;
Recording snapshotCurRecording() const;
// catch all for stats that have a defined sum
template <typename T>
typename T::value_t getPeriodMin(const TraceType<T>& stat, size_t num_periods = U32_MAX)
{
size_t total_periods = mRecordingPeriods.size();
num_periods = llmin(num_periods, isStarted() ? total_periods - 1 : total_periods);
typename T::value_t min_val = std::numeric_limits<typename T::value_t>::max();
for (S32 i = 1; i <= num_periods; i++)
{
S32 index = (mCurPeriod + total_periods - i) % total_periods;
min_val = llmin(min_val, mRecordingPeriods[index].getSum(stat));
}
return min_val;
}
F64 getPeriodMin(const TraceType<SampleAccumulator>& stat, size_t num_periods = U32_MAX);
template<typename T>
T getPeriodMin(const SampleStatHandle<T>& stat, size_t num_periods = U32_MAX)
{
return T(getPeriodMin(static_cast<const TraceType<SampleAccumulator>&>(stat), num_periods));
}
F64 getPeriodMin(const TraceType<EventAccumulator>& stat, size_t num_periods = U32_MAX);
template<typename T>
T getPeriodMin(const EventStatHandle<T>& stat, size_t num_periods = U32_MAX)
{
return T(getPeriodMin(static_cast<const TraceType<EventAccumulator>&>(stat), num_periods));
}
template <typename T>
F64 getPeriodMinPerSec(const TraceType<T>& stat, size_t num_periods = U32_MAX)
{
size_t total_periods = mRecordingPeriods.size();
num_periods = llmin(num_periods, isStarted() ? total_periods - 1 : total_periods);
F64 min_val = std::numeric_limits<F64>::max();
for (S32 i = 1; i <= num_periods; i++)
{
S32 index = (mCurPeriod + total_periods - i) % total_periods;
min_val = llmin(min_val, mRecordingPeriods[index].getPerSec(stat));
}
return min_val;
}
// catch all for stats that have a defined sum
template <typename T>
typename T::value_t getPeriodMax(const TraceType<T>& stat, size_t num_periods = U32_MAX)
{
size_t total_periods = mRecordingPeriods.size();
num_periods = llmin(num_periods, isStarted() ? total_periods - 1 : total_periods);
typename T::value_t max_val = std::numeric_limits<typename T::value_t>::min();
for (S32 i = 1; i <= num_periods; i++)
{
S32 index = (mCurPeriod + total_periods - i) % total_periods;
max_val = llmax(max_val, mRecordingPeriods[index].getSum(stat));
}
return max_val;
}
F64 getPeriodMax(const TraceType<SampleAccumulator>& stat, size_t num_periods = U32_MAX);
template<typename T>
T getPeriodMax(const SampleStatHandle<T>& stat, size_t num_periods = U32_MAX)
{
return T(getPeriodMax(static_cast<const TraceType<SampleAccumulator>&>(stat), num_periods));
}
F64 getPeriodMax(const TraceType<EventAccumulator>& stat, size_t num_periods = U32_MAX);
template<typename T>
T getPeriodMax(const EventStatHandle<T>& stat, size_t num_periods = U32_MAX)
{
return T(getPeriodMax(static_cast<const TraceType<EventAccumulator>&>(stat), num_periods));
}
template <typename T>
F64 getPeriodMaxPerSec(const TraceType<T>& stat, size_t num_periods = U32_MAX)
{
size_t total_periods = mRecordingPeriods.size();
num_periods = llmin(num_periods, isStarted() ? total_periods - 1 : total_periods);
F64 max_val = std::numeric_limits<F64>::min();
for (S32 i = 1; i <= num_periods; i++)
{
S32 index = (mCurPeriod + total_periods - i) % total_periods;
max_val = llmax(max_val, mRecordingPeriods[index].getPerSec(stat));
}
return max_val;
}
// catch all for stats that have a defined sum
template <typename T>
typename T::mean_t getPeriodMean(const TraceType<T >& stat, size_t num_periods = U32_MAX)
{
size_t total_periods = mRecordingPeriods.size();
num_periods = llmin(num_periods, isStarted() ? total_periods - 1 : total_periods);
typename T::mean_t mean = 0;
if (num_periods <= 0) { return mean; }
for (S32 i = 1; i <= num_periods; i++)
{
S32 index = (mCurPeriod + total_periods - i) % total_periods;
if (mRecordingPeriods[index].getDuration() > 0.f)
{
mean += mRecordingPeriods[index].getSum(stat);
}
}
mean = mean / num_periods;
return mean;
}
F64 getPeriodMean(const TraceType<SampleAccumulator>& stat, size_t num_periods = U32_MAX);
template<typename T>
T getPeriodMean(const SampleStatHandle<T>& stat, size_t num_periods = U32_MAX)
{
return T(getPeriodMean(static_cast<const TraceType<SampleAccumulator>&>(stat), num_periods));
}
F64 getPeriodMean(const TraceType<EventAccumulator>& stat, size_t num_periods = U32_MAX);
template<typename T>
T getPeriodMean(const EventStatHandle<T>& stat, size_t num_periods = U32_MAX)
{
return T(getPeriodMean(static_cast<const TraceType<EventAccumulator>&>(stat), num_periods));
}
template <typename T>
typename T::mean_t getPeriodMeanPerSec(const TraceType<T>& stat, size_t num_periods = U32_MAX)
{
size_t total_periods = mRecordingPeriods.size();
num_periods = llmin(num_periods, isStarted() ? total_periods - 1 : total_periods);
typename T::mean_t mean = 0;
if (num_periods <= 0) { return mean; }
for (S32 i = 1; i <= num_periods; i++)
{
S32 index = (mCurPeriod + total_periods - i) % total_periods;
if (mRecordingPeriods[index].getDuration() > 0.f)
{
mean += mRecordingPeriods[index].getPerSec(stat);
}
}
mean = mean / num_periods;
return mean;
}
private:
// implementation for LLStopWatchControlsMixin
/*virtual*/ void handleStart();
/*virtual*/ void handleStop();
/*virtual*/ void handleReset();
/*virtual*/ void handleSplitTo(PeriodicRecording& other);
private:
std::vector<Recording> mRecordingPeriods;
const bool mAutoResize;
size_t mCurPeriod;
size_t mNumPeriods;
};
PeriodicRecording& get_frame_recording();
class ExtendableRecording
: public LLStopWatchControlsMixin<ExtendableRecording>
{
public:
void extend();
Recording& getAcceptedRecording() { return mAcceptedRecording; }
const Recording& getAcceptedRecording() const {return mAcceptedRecording;}
Recording& getPotentialRecording() { return mPotentialRecording; }
const Recording& getPotentialRecording() const { return mPotentialRecording;}
private:
// implementation for LLStopWatchControlsMixin
/*virtual*/ void handleStart();
/*virtual*/ void handleStop();
/*virtual*/ void handleReset();
/*virtual*/ void handleSplitTo(ExtendableRecording& other);
private:
Recording mAcceptedRecording;
Recording mPotentialRecording;
};
class ExtendablePeriodicRecording
: public LLStopWatchControlsMixin<ExtendablePeriodicRecording>
{
public:
ExtendablePeriodicRecording();
void extend();
PeriodicRecording& getAcceptedRecording() { return mAcceptedRecording; }
const PeriodicRecording& getAcceptedRecording() const {return mAcceptedRecording;}
PeriodicRecording& getPotentialRecording() { return mPotentialRecording; }
const PeriodicRecording& getPotentialRecording() const {return mPotentialRecording;}
private:
// implementation for LLStopWatchControlsMixin
/*virtual*/ void handleStart();
/*virtual*/ void handleStop();
/*virtual*/ void handleReset();
/*virtual*/ void handleSplitTo(ExtendablePeriodicRecording& other);
private:
PeriodicRecording mAcceptedRecording;
PeriodicRecording mPotentialRecording;
};
}
#endif // LL_LLTRACERECORDING_H