2576 lines
154 KiB
GLSL
2576 lines
154 KiB
GLSL
/**
|
|
* @file CASF.glsl
|
|
*
|
|
* $LicenseInfo:firstyear=2024&license=viewerlgpl$
|
|
* Second Life Viewer Source Code
|
|
* Copyright (C) 2024, Linden Research, Inc.
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation;
|
|
* version 2.1 of the License only.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*
|
|
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
|
|
* $/LicenseInfo$
|
|
*/
|
|
|
|
/*[EXTRA_CODE_HERE]*/
|
|
|
|
#ifndef A_CPU
|
|
#define A_GPU
|
|
#define A_GLSL
|
|
#define CAS_BETTER_DIAGONALS
|
|
#define CAS_SLOW
|
|
|
|
out vec4 frag_color;
|
|
in vec2 vary_fragcoord;
|
|
|
|
uniform sampler2D diffuseRect;
|
|
uniform vec2 out_screen_res;
|
|
uniform uvec4 cas_param_0;
|
|
uniform uvec4 cas_param_1;
|
|
|
|
vec3 srgb_to_linear(vec3 cs);
|
|
vec3 linear_to_srgb(vec3 cl);
|
|
#endif
|
|
|
|
#ifndef SHADER_PORTABILITY
|
|
//==============================================================================================================================
|
|
//
|
|
// [A] SHADER PORTABILITY 1.20210629
|
|
//
|
|
//==============================================================================================================================
|
|
// FidelityFX Super Resolution Sample
|
|
//
|
|
// Copyright (c) 2021 Advanced Micro Devices, Inc. All rights reserved.
|
|
// Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
// of this software and associated documentation files(the "Software"), to deal
|
|
// in the Software without restriction, including without limitation the rights
|
|
// to use, copy, modify, merge, publish, distribute, sublicense, and / or sell
|
|
// copies of the Software, and to permit persons to whom the Software is
|
|
// furnished to do so, subject to the following conditions :
|
|
// The above copyright notice and this permission notice shall be included in
|
|
// all copies or substantial portions of the Software.
|
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE
|
|
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
// THE SOFTWARE.
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
// MIT LICENSE
|
|
// ===========
|
|
// Copyright (c) 2014 Michal Drobot (for concepts used in "FLOAT APPROXIMATIONS").
|
|
// -----------
|
|
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation
|
|
// files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy,
|
|
// modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
|
|
// Software is furnished to do so, subject to the following conditions:
|
|
// -----------
|
|
// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
|
|
// Software.
|
|
// -----------
|
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
|
|
// WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
|
|
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
|
// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
#define A_2PI 6.28318530718
|
|
#ifdef A_CPU
|
|
// Supporting user defined overrides.
|
|
#ifndef A_RESTRICT
|
|
#define A_RESTRICT __restrict
|
|
#endif
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
#ifndef A_STATIC
|
|
#define A_STATIC static
|
|
#endif
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
// Same types across CPU and GPU.
|
|
// Predicate uses 32-bit integer (C friendly bool).
|
|
typedef uint32_t AP1;
|
|
typedef float AF1;
|
|
typedef double AD1;
|
|
typedef uint8_t AB1;
|
|
typedef uint16_t AW1;
|
|
typedef uint32_t AU1;
|
|
typedef uint64_t AL1;
|
|
typedef int8_t ASB1;
|
|
typedef int16_t ASW1;
|
|
typedef int32_t ASU1;
|
|
typedef int64_t ASL1;
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
#define AD1_(a) ((AD1)(a))
|
|
#define AF1_(a) ((AF1)(a))
|
|
#define AL1_(a) ((AL1)(a))
|
|
#define AU1_(a) ((AU1)(a))
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
#define ASL1_(a) ((ASL1)(a))
|
|
#define ASU1_(a) ((ASU1)(a))
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
A_STATIC AU1 AU1_AF1(AF1 a){union{AF1 f;AU1 u;}bits;bits.f=a;return bits.u;}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
#define A_TRUE 1
|
|
#define A_FALSE 0
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
//_____________________________________________________________/\_______________________________________________________________
|
|
//==============================================================================================================================
|
|
//
|
|
// CPU/GPU PORTING
|
|
//
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
// Get CPU and GPU to share all setup code, without duplicate code paths.
|
|
// This uses a lower-case prefix for special vector constructs.
|
|
// - In C restrict pointers are used.
|
|
// - In the shading language, in/inout/out arguments are used.
|
|
// This depends on the ability to access a vector value in both languages via array syntax (aka color[2]).
|
|
//==============================================================================================================================
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
//_____________________________________________________________/\_______________________________________________________________
|
|
//==============================================================================================================================
|
|
// VECTOR ARGUMENT/RETURN/INITIALIZATION PORTABILITY
|
|
//==============================================================================================================================
|
|
#define retAD2 AD1 *A_RESTRICT
|
|
#define retAD3 AD1 *A_RESTRICT
|
|
#define retAD4 AD1 *A_RESTRICT
|
|
#define retAF2 AF1 *A_RESTRICT
|
|
#define retAF3 AF1 *A_RESTRICT
|
|
#define retAF4 AF1 *A_RESTRICT
|
|
#define retAL2 AL1 *A_RESTRICT
|
|
#define retAL3 AL1 *A_RESTRICT
|
|
#define retAL4 AL1 *A_RESTRICT
|
|
#define retAU2 AU1 *A_RESTRICT
|
|
#define retAU3 AU1 *A_RESTRICT
|
|
#define retAU4 AU1 *A_RESTRICT
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
#define inAD2 AD1 *A_RESTRICT
|
|
#define inAD3 AD1 *A_RESTRICT
|
|
#define inAD4 AD1 *A_RESTRICT
|
|
#define inAF2 AF1 *A_RESTRICT
|
|
#define inAF3 AF1 *A_RESTRICT
|
|
#define inAF4 AF1 *A_RESTRICT
|
|
#define inAL2 AL1 *A_RESTRICT
|
|
#define inAL3 AL1 *A_RESTRICT
|
|
#define inAL4 AL1 *A_RESTRICT
|
|
#define inAU2 AU1 *A_RESTRICT
|
|
#define inAU3 AU1 *A_RESTRICT
|
|
#define inAU4 AU1 *A_RESTRICT
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
#define inoutAD2 AD1 *A_RESTRICT
|
|
#define inoutAD3 AD1 *A_RESTRICT
|
|
#define inoutAD4 AD1 *A_RESTRICT
|
|
#define inoutAF2 AF1 *A_RESTRICT
|
|
#define inoutAF3 AF1 *A_RESTRICT
|
|
#define inoutAF4 AF1 *A_RESTRICT
|
|
#define inoutAL2 AL1 *A_RESTRICT
|
|
#define inoutAL3 AL1 *A_RESTRICT
|
|
#define inoutAL4 AL1 *A_RESTRICT
|
|
#define inoutAU2 AU1 *A_RESTRICT
|
|
#define inoutAU3 AU1 *A_RESTRICT
|
|
#define inoutAU4 AU1 *A_RESTRICT
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
#define outAD2 AD1 *A_RESTRICT
|
|
#define outAD3 AD1 *A_RESTRICT
|
|
#define outAD4 AD1 *A_RESTRICT
|
|
#define outAF2 AF1 *A_RESTRICT
|
|
#define outAF3 AF1 *A_RESTRICT
|
|
#define outAF4 AF1 *A_RESTRICT
|
|
#define outAL2 AL1 *A_RESTRICT
|
|
#define outAL3 AL1 *A_RESTRICT
|
|
#define outAL4 AL1 *A_RESTRICT
|
|
#define outAU2 AU1 *A_RESTRICT
|
|
#define outAU3 AU1 *A_RESTRICT
|
|
#define outAU4 AU1 *A_RESTRICT
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
#define varAD2(x) AD1 x[2]
|
|
#define varAD3(x) AD1 x[3]
|
|
#define varAD4(x) AD1 x[4]
|
|
#define varAF2(x) AF1 x[2]
|
|
#define varAF3(x) AF1 x[3]
|
|
#define varAF4(x) AF1 x[4]
|
|
#define varAL2(x) AL1 x[2]
|
|
#define varAL3(x) AL1 x[3]
|
|
#define varAL4(x) AL1 x[4]
|
|
#define varAU2(x) AU1 x[2]
|
|
#define varAU3(x) AU1 x[3]
|
|
#define varAU4(x) AU1 x[4]
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
#define initAD2(x,y) {x,y}
|
|
#define initAD3(x,y,z) {x,y,z}
|
|
#define initAD4(x,y,z,w) {x,y,z,w}
|
|
#define initAF2(x,y) {x,y}
|
|
#define initAF3(x,y,z) {x,y,z}
|
|
#define initAF4(x,y,z,w) {x,y,z,w}
|
|
#define initAL2(x,y) {x,y}
|
|
#define initAL3(x,y,z) {x,y,z}
|
|
#define initAL4(x,y,z,w) {x,y,z,w}
|
|
#define initAU2(x,y) {x,y}
|
|
#define initAU3(x,y,z) {x,y,z}
|
|
#define initAU4(x,y,z,w) {x,y,z,w}
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
//_____________________________________________________________/\_______________________________________________________________
|
|
//==============================================================================================================================
|
|
// SCALAR RETURN OPS
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
// TODO
|
|
// ====
|
|
// - Replace transcendentals with manual versions.
|
|
//==============================================================================================================================
|
|
#ifdef A_GCC
|
|
A_STATIC AD1 AAbsD1(AD1 a){return __builtin_fabs(a);}
|
|
A_STATIC AF1 AAbsF1(AF1 a){return __builtin_fabsf(a);}
|
|
A_STATIC AU1 AAbsSU1(AU1 a){return AU1_(__builtin_abs(ASU1_(a)));}
|
|
A_STATIC AL1 AAbsSL1(AL1 a){return AL1_(__builtin_llabs(ASL1_(a)));}
|
|
#else
|
|
A_STATIC AD1 AAbsD1(AD1 a){return fabs(a);}
|
|
A_STATIC AF1 AAbsF1(AF1 a){return fabsf(a);}
|
|
A_STATIC AU1 AAbsSU1(AU1 a){return AU1_(abs(ASU1_(a)));}
|
|
A_STATIC AL1 AAbsSL1(AL1 a){return AL1_(labs((long)ASL1_(a)));}
|
|
#endif
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
#ifdef A_GCC
|
|
A_STATIC AD1 ACosD1(AD1 a){return __builtin_cos(a);}
|
|
A_STATIC AF1 ACosF1(AF1 a){return __builtin_cosf(a);}
|
|
#else
|
|
A_STATIC AD1 ACosD1(AD1 a){return cos(a);}
|
|
A_STATIC AF1 ACosF1(AF1 a){return cosf(a);}
|
|
#endif
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
A_STATIC AD1 ADotD2(inAD2 a,inAD2 b){return a[0]*b[0]+a[1]*b[1];}
|
|
A_STATIC AD1 ADotD3(inAD3 a,inAD3 b){return a[0]*b[0]+a[1]*b[1]+a[2]*b[2];}
|
|
A_STATIC AD1 ADotD4(inAD4 a,inAD4 b){return a[0]*b[0]+a[1]*b[1]+a[2]*b[2]+a[3]*b[3];}
|
|
A_STATIC AF1 ADotF2(inAF2 a,inAF2 b){return a[0]*b[0]+a[1]*b[1];}
|
|
A_STATIC AF1 ADotF3(inAF3 a,inAF3 b){return a[0]*b[0]+a[1]*b[1]+a[2]*b[2];}
|
|
A_STATIC AF1 ADotF4(inAF4 a,inAF4 b){return a[0]*b[0]+a[1]*b[1]+a[2]*b[2]+a[3]*b[3];}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
#ifdef A_GCC
|
|
A_STATIC AD1 AExp2D1(AD1 a){return __builtin_exp2(a);}
|
|
A_STATIC AF1 AExp2F1(AF1 a){return __builtin_exp2f(a);}
|
|
#else
|
|
A_STATIC AD1 AExp2D1(AD1 a){return exp2(a);}
|
|
A_STATIC AF1 AExp2F1(AF1 a){return exp2f(a);}
|
|
#endif
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
#ifdef A_GCC
|
|
A_STATIC AD1 AFloorD1(AD1 a){return __builtin_floor(a);}
|
|
A_STATIC AF1 AFloorF1(AF1 a){return __builtin_floorf(a);}
|
|
#else
|
|
A_STATIC AD1 AFloorD1(AD1 a){return floor(a);}
|
|
A_STATIC AF1 AFloorF1(AF1 a){return floorf(a);}
|
|
#endif
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
A_STATIC AD1 ALerpD1(AD1 a,AD1 b,AD1 c){return b*c+(-a*c+a);}
|
|
A_STATIC AF1 ALerpF1(AF1 a,AF1 b,AF1 c){return b*c+(-a*c+a);}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
#ifdef A_GCC
|
|
A_STATIC AD1 ALog2D1(AD1 a){return __builtin_log2(a);}
|
|
A_STATIC AF1 ALog2F1(AF1 a){return __builtin_log2f(a);}
|
|
#else
|
|
A_STATIC AD1 ALog2D1(AD1 a){return log2(a);}
|
|
A_STATIC AF1 ALog2F1(AF1 a){return log2f(a);}
|
|
#endif
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
A_STATIC AD1 AMaxD1(AD1 a,AD1 b){return a>b?a:b;}
|
|
A_STATIC AF1 AMaxF1(AF1 a,AF1 b){return a>b?a:b;}
|
|
A_STATIC AL1 AMaxL1(AL1 a,AL1 b){return a>b?a:b;}
|
|
A_STATIC AU1 AMaxU1(AU1 a,AU1 b){return a>b?a:b;}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
// These follow the convention that A integer types don't have signage, until they are operated on.
|
|
A_STATIC AL1 AMaxSL1(AL1 a,AL1 b){return (ASL1_(a)>ASL1_(b))?a:b;}
|
|
A_STATIC AU1 AMaxSU1(AU1 a,AU1 b){return (ASU1_(a)>ASU1_(b))?a:b;}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
A_STATIC AD1 AMinD1(AD1 a,AD1 b){return a<b?a:b;}
|
|
A_STATIC AF1 AMinF1(AF1 a,AF1 b){return a<b?a:b;}
|
|
A_STATIC AL1 AMinL1(AL1 a,AL1 b){return a<b?a:b;}
|
|
A_STATIC AU1 AMinU1(AU1 a,AU1 b){return a<b?a:b;}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
A_STATIC AL1 AMinSL1(AL1 a,AL1 b){return (ASL1_(a)<ASL1_(b))?a:b;}
|
|
A_STATIC AU1 AMinSU1(AU1 a,AU1 b){return (ASU1_(a)<ASU1_(b))?a:b;}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
A_STATIC AD1 ARcpD1(AD1 a){return 1.0/a;}
|
|
A_STATIC AF1 ARcpF1(AF1 a){return 1.0f/a;}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
A_STATIC AL1 AShrSL1(AL1 a,AL1 b){return AL1_(ASL1_(a)>>ASL1_(b));}
|
|
A_STATIC AU1 AShrSU1(AU1 a,AU1 b){return AU1_(ASU1_(a)>>ASU1_(b));}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
#ifdef A_GCC
|
|
A_STATIC AD1 ASinD1(AD1 a){return __builtin_sin(a);}
|
|
A_STATIC AF1 ASinF1(AF1 a){return __builtin_sinf(a);}
|
|
#else
|
|
A_STATIC AD1 ASinD1(AD1 a){return sin(a);}
|
|
A_STATIC AF1 ASinF1(AF1 a){return sinf(a);}
|
|
#endif
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
#ifdef A_GCC
|
|
A_STATIC AD1 ASqrtD1(AD1 a){return __builtin_sqrt(a);}
|
|
A_STATIC AF1 ASqrtF1(AF1 a){return __builtin_sqrtf(a);}
|
|
#else
|
|
A_STATIC AD1 ASqrtD1(AD1 a){return sqrt(a);}
|
|
A_STATIC AF1 ASqrtF1(AF1 a){return sqrtf(a);}
|
|
#endif
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
//_____________________________________________________________/\_______________________________________________________________
|
|
//==============================================================================================================================
|
|
// SCALAR RETURN OPS - DEPENDENT
|
|
//==============================================================================================================================
|
|
A_STATIC AD1 AClampD1(AD1 x,AD1 n,AD1 m){return AMaxD1(n,AMinD1(x,m));}
|
|
A_STATIC AF1 AClampF1(AF1 x,AF1 n,AF1 m){return AMaxF1(n,AMinF1(x,m));}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
A_STATIC AD1 AFractD1(AD1 a){return a-AFloorD1(a);}
|
|
A_STATIC AF1 AFractF1(AF1 a){return a-AFloorF1(a);}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
A_STATIC AD1 APowD1(AD1 a,AD1 b){return AExp2D1(b*ALog2D1(a));}
|
|
A_STATIC AF1 APowF1(AF1 a,AF1 b){return AExp2F1(b*ALog2F1(a));}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
A_STATIC AD1 ARsqD1(AD1 a){return ARcpD1(ASqrtD1(a));}
|
|
A_STATIC AF1 ARsqF1(AF1 a){return ARcpF1(ASqrtF1(a));}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
A_STATIC AD1 ASatD1(AD1 a){return AMinD1(1.0,AMaxD1(0.0,a));}
|
|
A_STATIC AF1 ASatF1(AF1 a){return AMinF1(1.0f,AMaxF1(0.0f,a));}
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
//_____________________________________________________________/\_______________________________________________________________
|
|
//==============================================================================================================================
|
|
// VECTOR OPS
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
// These are added as needed for production or prototyping, so not necessarily a complete set.
|
|
// They follow a convention of taking in a destination and also returning the destination value to increase utility.
|
|
//==============================================================================================================================
|
|
A_STATIC retAD2 opAAbsD2(outAD2 d,inAD2 a){d[0]=AAbsD1(a[0]);d[1]=AAbsD1(a[1]);return d;}
|
|
A_STATIC retAD3 opAAbsD3(outAD3 d,inAD3 a){d[0]=AAbsD1(a[0]);d[1]=AAbsD1(a[1]);d[2]=AAbsD1(a[2]);return d;}
|
|
A_STATIC retAD4 opAAbsD4(outAD4 d,inAD4 a){d[0]=AAbsD1(a[0]);d[1]=AAbsD1(a[1]);d[2]=AAbsD1(a[2]);d[3]=AAbsD1(a[3]);return d;}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
A_STATIC retAF2 opAAbsF2(outAF2 d,inAF2 a){d[0]=AAbsF1(a[0]);d[1]=AAbsF1(a[1]);return d;}
|
|
A_STATIC retAF3 opAAbsF3(outAF3 d,inAF3 a){d[0]=AAbsF1(a[0]);d[1]=AAbsF1(a[1]);d[2]=AAbsF1(a[2]);return d;}
|
|
A_STATIC retAF4 opAAbsF4(outAF4 d,inAF4 a){d[0]=AAbsF1(a[0]);d[1]=AAbsF1(a[1]);d[2]=AAbsF1(a[2]);d[3]=AAbsF1(a[3]);return d;}
|
|
//==============================================================================================================================
|
|
A_STATIC retAD2 opAAddD2(outAD2 d,inAD2 a,inAD2 b){d[0]=a[0]+b[0];d[1]=a[1]+b[1];return d;}
|
|
A_STATIC retAD3 opAAddD3(outAD3 d,inAD3 a,inAD3 b){d[0]=a[0]+b[0];d[1]=a[1]+b[1];d[2]=a[2]+b[2];return d;}
|
|
A_STATIC retAD4 opAAddD4(outAD4 d,inAD4 a,inAD4 b){d[0]=a[0]+b[0];d[1]=a[1]+b[1];d[2]=a[2]+b[2];d[3]=a[3]+b[3];return d;}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
A_STATIC retAF2 opAAddF2(outAF2 d,inAF2 a,inAF2 b){d[0]=a[0]+b[0];d[1]=a[1]+b[1];return d;}
|
|
A_STATIC retAF3 opAAddF3(outAF3 d,inAF3 a,inAF3 b){d[0]=a[0]+b[0];d[1]=a[1]+b[1];d[2]=a[2]+b[2];return d;}
|
|
A_STATIC retAF4 opAAddF4(outAF4 d,inAF4 a,inAF4 b){d[0]=a[0]+b[0];d[1]=a[1]+b[1];d[2]=a[2]+b[2];d[3]=a[3]+b[3];return d;}
|
|
//==============================================================================================================================
|
|
A_STATIC retAD2 opAAddOneD2(outAD2 d,inAD2 a,AD1 b){d[0]=a[0]+b;d[1]=a[1]+b;return d;}
|
|
A_STATIC retAD3 opAAddOneD3(outAD3 d,inAD3 a,AD1 b){d[0]=a[0]+b;d[1]=a[1]+b;d[2]=a[2]+b;return d;}
|
|
A_STATIC retAD4 opAAddOneD4(outAD4 d,inAD4 a,AD1 b){d[0]=a[0]+b;d[1]=a[1]+b;d[2]=a[2]+b;d[3]=a[3]+b;return d;}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
A_STATIC retAF2 opAAddOneF2(outAF2 d,inAF2 a,AF1 b){d[0]=a[0]+b;d[1]=a[1]+b;return d;}
|
|
A_STATIC retAF3 opAAddOneF3(outAF3 d,inAF3 a,AF1 b){d[0]=a[0]+b;d[1]=a[1]+b;d[2]=a[2]+b;return d;}
|
|
A_STATIC retAF4 opAAddOneF4(outAF4 d,inAF4 a,AF1 b){d[0]=a[0]+b;d[1]=a[1]+b;d[2]=a[2]+b;d[3]=a[3]+b;return d;}
|
|
//==============================================================================================================================
|
|
A_STATIC retAD2 opACpyD2(outAD2 d,inAD2 a){d[0]=a[0];d[1]=a[1];return d;}
|
|
A_STATIC retAD3 opACpyD3(outAD3 d,inAD3 a){d[0]=a[0];d[1]=a[1];d[2]=a[2];return d;}
|
|
A_STATIC retAD4 opACpyD4(outAD4 d,inAD4 a){d[0]=a[0];d[1]=a[1];d[2]=a[2];d[3]=a[3];return d;}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
A_STATIC retAF2 opACpyF2(outAF2 d,inAF2 a){d[0]=a[0];d[1]=a[1];return d;}
|
|
A_STATIC retAF3 opACpyF3(outAF3 d,inAF3 a){d[0]=a[0];d[1]=a[1];d[2]=a[2];return d;}
|
|
A_STATIC retAF4 opACpyF4(outAF4 d,inAF4 a){d[0]=a[0];d[1]=a[1];d[2]=a[2];d[3]=a[3];return d;}
|
|
//==============================================================================================================================
|
|
A_STATIC retAD2 opALerpD2(outAD2 d,inAD2 a,inAD2 b,inAD2 c){d[0]=ALerpD1(a[0],b[0],c[0]);d[1]=ALerpD1(a[1],b[1],c[1]);return d;}
|
|
A_STATIC retAD3 opALerpD3(outAD3 d,inAD3 a,inAD3 b,inAD3 c){d[0]=ALerpD1(a[0],b[0],c[0]);d[1]=ALerpD1(a[1],b[1],c[1]);d[2]=ALerpD1(a[2],b[2],c[2]);return d;}
|
|
A_STATIC retAD4 opALerpD4(outAD4 d,inAD4 a,inAD4 b,inAD4 c){d[0]=ALerpD1(a[0],b[0],c[0]);d[1]=ALerpD1(a[1],b[1],c[1]);d[2]=ALerpD1(a[2],b[2],c[2]);d[3]=ALerpD1(a[3],b[3],c[3]);return d;}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
A_STATIC retAF2 opALerpF2(outAF2 d,inAF2 a,inAF2 b,inAF2 c){d[0]=ALerpF1(a[0],b[0],c[0]);d[1]=ALerpF1(a[1],b[1],c[1]);return d;}
|
|
A_STATIC retAF3 opALerpF3(outAF3 d,inAF3 a,inAF3 b,inAF3 c){d[0]=ALerpF1(a[0],b[0],c[0]);d[1]=ALerpF1(a[1],b[1],c[1]);d[2]=ALerpF1(a[2],b[2],c[2]);return d;}
|
|
A_STATIC retAF4 opALerpF4(outAF4 d,inAF4 a,inAF4 b,inAF4 c){d[0]=ALerpF1(a[0],b[0],c[0]);d[1]=ALerpF1(a[1],b[1],c[1]);d[2]=ALerpF1(a[2],b[2],c[2]);d[3]=ALerpF1(a[3],b[3],c[3]);return d;}
|
|
//==============================================================================================================================
|
|
A_STATIC retAD2 opALerpOneD2(outAD2 d,inAD2 a,inAD2 b,AD1 c){d[0]=ALerpD1(a[0],b[0],c);d[1]=ALerpD1(a[1],b[1],c);return d;}
|
|
A_STATIC retAD3 opALerpOneD3(outAD3 d,inAD3 a,inAD3 b,AD1 c){d[0]=ALerpD1(a[0],b[0],c);d[1]=ALerpD1(a[1],b[1],c);d[2]=ALerpD1(a[2],b[2],c);return d;}
|
|
A_STATIC retAD4 opALerpOneD4(outAD4 d,inAD4 a,inAD4 b,AD1 c){d[0]=ALerpD1(a[0],b[0],c);d[1]=ALerpD1(a[1],b[1],c);d[2]=ALerpD1(a[2],b[2],c);d[3]=ALerpD1(a[3],b[3],c);return d;}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
A_STATIC retAF2 opALerpOneF2(outAF2 d,inAF2 a,inAF2 b,AF1 c){d[0]=ALerpF1(a[0],b[0],c);d[1]=ALerpF1(a[1],b[1],c);return d;}
|
|
A_STATIC retAF3 opALerpOneF3(outAF3 d,inAF3 a,inAF3 b,AF1 c){d[0]=ALerpF1(a[0],b[0],c);d[1]=ALerpF1(a[1],b[1],c);d[2]=ALerpF1(a[2],b[2],c);return d;}
|
|
A_STATIC retAF4 opALerpOneF4(outAF4 d,inAF4 a,inAF4 b,AF1 c){d[0]=ALerpF1(a[0],b[0],c);d[1]=ALerpF1(a[1],b[1],c);d[2]=ALerpF1(a[2],b[2],c);d[3]=ALerpF1(a[3],b[3],c);return d;}
|
|
//==============================================================================================================================
|
|
A_STATIC retAD2 opAMaxD2(outAD2 d,inAD2 a,inAD2 b){d[0]=AMaxD1(a[0],b[0]);d[1]=AMaxD1(a[1],b[1]);return d;}
|
|
A_STATIC retAD3 opAMaxD3(outAD3 d,inAD3 a,inAD3 b){d[0]=AMaxD1(a[0],b[0]);d[1]=AMaxD1(a[1],b[1]);d[2]=AMaxD1(a[2],b[2]);return d;}
|
|
A_STATIC retAD4 opAMaxD4(outAD4 d,inAD4 a,inAD4 b){d[0]=AMaxD1(a[0],b[0]);d[1]=AMaxD1(a[1],b[1]);d[2]=AMaxD1(a[2],b[2]);d[3]=AMaxD1(a[3],b[3]);return d;}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
A_STATIC retAF2 opAMaxF2(outAF2 d,inAF2 a,inAF2 b){d[0]=AMaxF1(a[0],b[0]);d[1]=AMaxF1(a[1],b[1]);return d;}
|
|
A_STATIC retAF3 opAMaxF3(outAF3 d,inAF3 a,inAF3 b){d[0]=AMaxF1(a[0],b[0]);d[1]=AMaxF1(a[1],b[1]);d[2]=AMaxF1(a[2],b[2]);return d;}
|
|
A_STATIC retAF4 opAMaxF4(outAF4 d,inAF4 a,inAF4 b){d[0]=AMaxF1(a[0],b[0]);d[1]=AMaxF1(a[1],b[1]);d[2]=AMaxF1(a[2],b[2]);d[3]=AMaxF1(a[3],b[3]);return d;}
|
|
//==============================================================================================================================
|
|
A_STATIC retAD2 opAMinD2(outAD2 d,inAD2 a,inAD2 b){d[0]=AMinD1(a[0],b[0]);d[1]=AMinD1(a[1],b[1]);return d;}
|
|
A_STATIC retAD3 opAMinD3(outAD3 d,inAD3 a,inAD3 b){d[0]=AMinD1(a[0],b[0]);d[1]=AMinD1(a[1],b[1]);d[2]=AMinD1(a[2],b[2]);return d;}
|
|
A_STATIC retAD4 opAMinD4(outAD4 d,inAD4 a,inAD4 b){d[0]=AMinD1(a[0],b[0]);d[1]=AMinD1(a[1],b[1]);d[2]=AMinD1(a[2],b[2]);d[3]=AMinD1(a[3],b[3]);return d;}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
A_STATIC retAF2 opAMinF2(outAF2 d,inAF2 a,inAF2 b){d[0]=AMinF1(a[0],b[0]);d[1]=AMinF1(a[1],b[1]);return d;}
|
|
A_STATIC retAF3 opAMinF3(outAF3 d,inAF3 a,inAF3 b){d[0]=AMinF1(a[0],b[0]);d[1]=AMinF1(a[1],b[1]);d[2]=AMinF1(a[2],b[2]);return d;}
|
|
A_STATIC retAF4 opAMinF4(outAF4 d,inAF4 a,inAF4 b){d[0]=AMinF1(a[0],b[0]);d[1]=AMinF1(a[1],b[1]);d[2]=AMinF1(a[2],b[2]);d[3]=AMinF1(a[3],b[3]);return d;}
|
|
//==============================================================================================================================
|
|
A_STATIC retAD2 opAMulD2(outAD2 d,inAD2 a,inAD2 b){d[0]=a[0]*b[0];d[1]=a[1]*b[1];return d;}
|
|
A_STATIC retAD3 opAMulD3(outAD3 d,inAD3 a,inAD3 b){d[0]=a[0]*b[0];d[1]=a[1]*b[1];d[2]=a[2]*b[2];return d;}
|
|
A_STATIC retAD4 opAMulD4(outAD4 d,inAD4 a,inAD4 b){d[0]=a[0]*b[0];d[1]=a[1]*b[1];d[2]=a[2]*b[2];d[3]=a[3]*b[3];return d;}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
A_STATIC retAF2 opAMulF2(outAF2 d,inAF2 a,inAF2 b){d[0]=a[0]*b[0];d[1]=a[1]*b[1];return d;}
|
|
A_STATIC retAF3 opAMulF3(outAF3 d,inAF3 a,inAF3 b){d[0]=a[0]*b[0];d[1]=a[1]*b[1];d[2]=a[2]*b[2];return d;}
|
|
A_STATIC retAF4 opAMulF4(outAF4 d,inAF4 a,inAF4 b){d[0]=a[0]*b[0];d[1]=a[1]*b[1];d[2]=a[2]*b[2];d[3]=a[3]*b[3];return d;}
|
|
//==============================================================================================================================
|
|
A_STATIC retAD2 opAMulOneD2(outAD2 d,inAD2 a,AD1 b){d[0]=a[0]*b;d[1]=a[1]*b;return d;}
|
|
A_STATIC retAD3 opAMulOneD3(outAD3 d,inAD3 a,AD1 b){d[0]=a[0]*b;d[1]=a[1]*b;d[2]=a[2]*b;return d;}
|
|
A_STATIC retAD4 opAMulOneD4(outAD4 d,inAD4 a,AD1 b){d[0]=a[0]*b;d[1]=a[1]*b;d[2]=a[2]*b;d[3]=a[3]*b;return d;}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
A_STATIC retAF2 opAMulOneF2(outAF2 d,inAF2 a,AF1 b){d[0]=a[0]*b;d[1]=a[1]*b;return d;}
|
|
A_STATIC retAF3 opAMulOneF3(outAF3 d,inAF3 a,AF1 b){d[0]=a[0]*b;d[1]=a[1]*b;d[2]=a[2]*b;return d;}
|
|
A_STATIC retAF4 opAMulOneF4(outAF4 d,inAF4 a,AF1 b){d[0]=a[0]*b;d[1]=a[1]*b;d[2]=a[2]*b;d[3]=a[3]*b;return d;}
|
|
//==============================================================================================================================
|
|
A_STATIC retAD2 opANegD2(outAD2 d,inAD2 a){d[0]=-a[0];d[1]=-a[1];return d;}
|
|
A_STATIC retAD3 opANegD3(outAD3 d,inAD3 a){d[0]=-a[0];d[1]=-a[1];d[2]=-a[2];return d;}
|
|
A_STATIC retAD4 opANegD4(outAD4 d,inAD4 a){d[0]=-a[0];d[1]=-a[1];d[2]=-a[2];d[3]=-a[3];return d;}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
A_STATIC retAF2 opANegF2(outAF2 d,inAF2 a){d[0]=-a[0];d[1]=-a[1];return d;}
|
|
A_STATIC retAF3 opANegF3(outAF3 d,inAF3 a){d[0]=-a[0];d[1]=-a[1];d[2]=-a[2];return d;}
|
|
A_STATIC retAF4 opANegF4(outAF4 d,inAF4 a){d[0]=-a[0];d[1]=-a[1];d[2]=-a[2];d[3]=-a[3];return d;}
|
|
//==============================================================================================================================
|
|
A_STATIC retAD2 opARcpD2(outAD2 d,inAD2 a){d[0]=ARcpD1(a[0]);d[1]=ARcpD1(a[1]);return d;}
|
|
A_STATIC retAD3 opARcpD3(outAD3 d,inAD3 a){d[0]=ARcpD1(a[0]);d[1]=ARcpD1(a[1]);d[2]=ARcpD1(a[2]);return d;}
|
|
A_STATIC retAD4 opARcpD4(outAD4 d,inAD4 a){d[0]=ARcpD1(a[0]);d[1]=ARcpD1(a[1]);d[2]=ARcpD1(a[2]);d[3]=ARcpD1(a[3]);return d;}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
A_STATIC retAF2 opARcpF2(outAF2 d,inAF2 a){d[0]=ARcpF1(a[0]);d[1]=ARcpF1(a[1]);return d;}
|
|
A_STATIC retAF3 opARcpF3(outAF3 d,inAF3 a){d[0]=ARcpF1(a[0]);d[1]=ARcpF1(a[1]);d[2]=ARcpF1(a[2]);return d;}
|
|
A_STATIC retAF4 opARcpF4(outAF4 d,inAF4 a){d[0]=ARcpF1(a[0]);d[1]=ARcpF1(a[1]);d[2]=ARcpF1(a[2]);d[3]=ARcpF1(a[3]);return d;}
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
//_____________________________________________________________/\_______________________________________________________________
|
|
//==============================================================================================================================
|
|
// HALF FLOAT PACKING
|
|
//==============================================================================================================================
|
|
// Convert float to half (in lower 16-bits of output).
|
|
// Same fast technique as documented here: ftp://ftp.fox-toolkit.org/pub/fasthalffloatconversion.pdf
|
|
// Supports denormals.
|
|
// Conversion rules are to make computations possibly "safer" on the GPU,
|
|
// -INF & -NaN -> -65504
|
|
// +INF & +NaN -> +65504
|
|
A_STATIC AU1 AU1_AH1_AF1(AF1 f){
|
|
static AW1 base[512]={
|
|
0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,
|
|
0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,
|
|
0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,
|
|
0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,
|
|
0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,
|
|
0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,
|
|
0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0001,0x0002,0x0004,0x0008,0x0010,0x0020,0x0040,0x0080,0x0100,
|
|
0x0200,0x0400,0x0800,0x0c00,0x1000,0x1400,0x1800,0x1c00,0x2000,0x2400,0x2800,0x2c00,0x3000,0x3400,0x3800,0x3c00,
|
|
0x4000,0x4400,0x4800,0x4c00,0x5000,0x5400,0x5800,0x5c00,0x6000,0x6400,0x6800,0x6c00,0x7000,0x7400,0x7800,0x7bff,
|
|
0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,
|
|
0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,
|
|
0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,
|
|
0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,
|
|
0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,
|
|
0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,
|
|
0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,
|
|
0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,
|
|
0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,
|
|
0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,
|
|
0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,
|
|
0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,
|
|
0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,
|
|
0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8001,0x8002,0x8004,0x8008,0x8010,0x8020,0x8040,0x8080,0x8100,
|
|
0x8200,0x8400,0x8800,0x8c00,0x9000,0x9400,0x9800,0x9c00,0xa000,0xa400,0xa800,0xac00,0xb000,0xb400,0xb800,0xbc00,
|
|
0xc000,0xc400,0xc800,0xcc00,0xd000,0xd400,0xd800,0xdc00,0xe000,0xe400,0xe800,0xec00,0xf000,0xf400,0xf800,0xfbff,
|
|
0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,
|
|
0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,
|
|
0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,
|
|
0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,
|
|
0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,
|
|
0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,
|
|
0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff};
|
|
static AB1 shift[512]={
|
|
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
|
|
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
|
|
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
|
|
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
|
|
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
|
|
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
|
|
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x17,0x16,0x15,0x14,0x13,0x12,0x11,0x10,0x0f,
|
|
0x0e,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,
|
|
0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x18,
|
|
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
|
|
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
|
|
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
|
|
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
|
|
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
|
|
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
|
|
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
|
|
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
|
|
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
|
|
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
|
|
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
|
|
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
|
|
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
|
|
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x17,0x16,0x15,0x14,0x13,0x12,0x11,0x10,0x0f,
|
|
0x0e,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,
|
|
0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x18,
|
|
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
|
|
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
|
|
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
|
|
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
|
|
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
|
|
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
|
|
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18};
|
|
union{AF1 f;AU1 u;}bits;bits.f=f;AU1 u=bits.u;AU1 i=u>>23;return (AU1)(base[i])+((u&0x7fffff)>>shift[i]);}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
// Used to output packed constant.
|
|
A_STATIC AU1 AU1_AH2_AF2(inAF2 a){return AU1_AH1_AF1(a[0])+(AU1_AH1_AF1(a[1])<<16);}
|
|
#endif
|
|
//_____________________________________________________________/\_______________________________________________________________
|
|
//==============================================================================================================================
|
|
// GLSL
|
|
//==============================================================================================================================
|
|
#if defined(A_GLSL) && defined(A_GPU)
|
|
#ifndef A_SKIP_EXT
|
|
#ifdef A_LONG
|
|
#extension GL_ARB_gpu_shader_int64:require
|
|
#extension GL_NV_shader_atomic_int64:require
|
|
#endif
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
#ifdef A_WAVE
|
|
#extension GL_KHR_shader_subgroup_arithmetic:require
|
|
#extension GL_KHR_shader_subgroup_ballot:require
|
|
#extension GL_KHR_shader_subgroup_quad:require
|
|
#extension GL_KHR_shader_subgroup_shuffle:require
|
|
#endif
|
|
#endif
|
|
//==============================================================================================================================
|
|
#define AP1 bool
|
|
#define AP2 bvec2
|
|
#define AP3 bvec3
|
|
#define AP4 bvec4
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
#define AF1 float
|
|
#define AF2 vec2
|
|
#define AF3 vec3
|
|
#define AF4 vec4
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
#define AU1 uint
|
|
#define AU2 uvec2
|
|
#define AU3 uvec3
|
|
#define AU4 uvec4
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
#define ASU1 int
|
|
#define ASU2 ivec2
|
|
#define ASU3 ivec3
|
|
#define ASU4 ivec4
|
|
//==============================================================================================================================
|
|
#define AF1_AU1(x) uintBitsToFloat(AU1(x))
|
|
#define AF2_AU2(x) uintBitsToFloat(AU2(x))
|
|
#define AF3_AU3(x) uintBitsToFloat(AU3(x))
|
|
#define AF4_AU4(x) uintBitsToFloat(AU4(x))
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
#define AU1_AF1(x) floatBitsToUint(AF1(x))
|
|
#define AU2_AF2(x) floatBitsToUint(AF2(x))
|
|
#define AU3_AF3(x) floatBitsToUint(AF3(x))
|
|
#define AU4_AF4(x) floatBitsToUint(AF4(x))
|
|
//==============================================================================================================================
|
|
AF1 AF1_x(AF1 a){return AF1(a);}
|
|
AF2 AF2_x(AF1 a){return AF2(a,a);}
|
|
AF3 AF3_x(AF1 a){return AF3(a,a,a);}
|
|
AF4 AF4_x(AF1 a){return AF4(a,a,a,a);}
|
|
#define AF1_(a) AF1_x(AF1(a))
|
|
#define AF2_(a) AF2_x(AF1(a))
|
|
#define AF3_(a) AF3_x(AF1(a))
|
|
#define AF4_(a) AF4_x(AF1(a))
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AU1 AU1_x(AU1 a){return AU1(a);}
|
|
AU2 AU2_x(AU1 a){return AU2(a,a);}
|
|
AU3 AU3_x(AU1 a){return AU3(a,a,a);}
|
|
AU4 AU4_x(AU1 a){return AU4(a,a,a,a);}
|
|
#define AU1_(a) AU1_x(AU1(a))
|
|
#define AU2_(a) AU2_x(AU1(a))
|
|
#define AU3_(a) AU3_x(AU1(a))
|
|
#define AU4_(a) AU4_x(AU1(a))
|
|
//==============================================================================================================================
|
|
AU1 AAbsSU1(AU1 a){return AU1(abs(ASU1(a)));}
|
|
AU2 AAbsSU2(AU2 a){return AU2(abs(ASU2(a)));}
|
|
AU3 AAbsSU3(AU3 a){return AU3(abs(ASU3(a)));}
|
|
AU4 AAbsSU4(AU4 a){return AU4(abs(ASU4(a)));}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AU1 ABfe(AU1 src,AU1 off,AU1 bits){return bitfieldExtract(src,ASU1(off),ASU1(bits));}
|
|
AU1 ABfi(AU1 src,AU1 ins,AU1 mask){return (ins&mask)|(src&(~mask));}
|
|
// Proxy for V_BFI_B32 where the 'mask' is set as 'bits', 'mask=(1<<bits)-1', and 'bits' needs to be an immediate.
|
|
AU1 ABfiM(AU1 src,AU1 ins,AU1 bits){return bitfieldInsert(src,ins,0,ASU1(bits));}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
// V_MED3_F32.
|
|
AF1 AClampF1(AF1 x,AF1 n,AF1 m){return clamp(x,n,m);}
|
|
AF2 AClampF2(AF2 x,AF2 n,AF2 m){return clamp(x,n,m);}
|
|
AF3 AClampF3(AF3 x,AF3 n,AF3 m){return clamp(x,n,m);}
|
|
AF4 AClampF4(AF4 x,AF4 n,AF4 m){return clamp(x,n,m);}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
// V_FRACT_F32 (note DX frac() is different).
|
|
AF1 AFractF1(AF1 x){return fract(x);}
|
|
AF2 AFractF2(AF2 x){return fract(x);}
|
|
AF3 AFractF3(AF3 x){return fract(x);}
|
|
AF4 AFractF4(AF4 x){return fract(x);}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AF1 ALerpF1(AF1 x,AF1 y,AF1 a){return mix(x,y,a);}
|
|
AF2 ALerpF2(AF2 x,AF2 y,AF2 a){return mix(x,y,a);}
|
|
AF3 ALerpF3(AF3 x,AF3 y,AF3 a){return mix(x,y,a);}
|
|
AF4 ALerpF4(AF4 x,AF4 y,AF4 a){return mix(x,y,a);}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
// V_MAX3_F32.
|
|
AF1 AMax3F1(AF1 x,AF1 y,AF1 z){return max(x,max(y,z));}
|
|
AF2 AMax3F2(AF2 x,AF2 y,AF2 z){return max(x,max(y,z));}
|
|
AF3 AMax3F3(AF3 x,AF3 y,AF3 z){return max(x,max(y,z));}
|
|
AF4 AMax3F4(AF4 x,AF4 y,AF4 z){return max(x,max(y,z));}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AU1 AMax3SU1(AU1 x,AU1 y,AU1 z){return AU1(max(ASU1(x),max(ASU1(y),ASU1(z))));}
|
|
AU2 AMax3SU2(AU2 x,AU2 y,AU2 z){return AU2(max(ASU2(x),max(ASU2(y),ASU2(z))));}
|
|
AU3 AMax3SU3(AU3 x,AU3 y,AU3 z){return AU3(max(ASU3(x),max(ASU3(y),ASU3(z))));}
|
|
AU4 AMax3SU4(AU4 x,AU4 y,AU4 z){return AU4(max(ASU4(x),max(ASU4(y),ASU4(z))));}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AU1 AMax3U1(AU1 x,AU1 y,AU1 z){return max(x,max(y,z));}
|
|
AU2 AMax3U2(AU2 x,AU2 y,AU2 z){return max(x,max(y,z));}
|
|
AU3 AMax3U3(AU3 x,AU3 y,AU3 z){return max(x,max(y,z));}
|
|
AU4 AMax3U4(AU4 x,AU4 y,AU4 z){return max(x,max(y,z));}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AU1 AMaxSU1(AU1 a,AU1 b){return AU1(max(ASU1(a),ASU1(b)));}
|
|
AU2 AMaxSU2(AU2 a,AU2 b){return AU2(max(ASU2(a),ASU2(b)));}
|
|
AU3 AMaxSU3(AU3 a,AU3 b){return AU3(max(ASU3(a),ASU3(b)));}
|
|
AU4 AMaxSU4(AU4 a,AU4 b){return AU4(max(ASU4(a),ASU4(b)));}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
// Clamp has an easier pattern match for med3 when some ordering is known.
|
|
// V_MED3_F32.
|
|
AF1 AMed3F1(AF1 x,AF1 y,AF1 z){return max(min(x,y),min(max(x,y),z));}
|
|
AF2 AMed3F2(AF2 x,AF2 y,AF2 z){return max(min(x,y),min(max(x,y),z));}
|
|
AF3 AMed3F3(AF3 x,AF3 y,AF3 z){return max(min(x,y),min(max(x,y),z));}
|
|
AF4 AMed3F4(AF4 x,AF4 y,AF4 z){return max(min(x,y),min(max(x,y),z));}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
// V_MIN3_F32.
|
|
AF1 AMin3F1(AF1 x,AF1 y,AF1 z){return min(x,min(y,z));}
|
|
AF2 AMin3F2(AF2 x,AF2 y,AF2 z){return min(x,min(y,z));}
|
|
AF3 AMin3F3(AF3 x,AF3 y,AF3 z){return min(x,min(y,z));}
|
|
AF4 AMin3F4(AF4 x,AF4 y,AF4 z){return min(x,min(y,z));}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AU1 AMin3SU1(AU1 x,AU1 y,AU1 z){return AU1(min(ASU1(x),min(ASU1(y),ASU1(z))));}
|
|
AU2 AMin3SU2(AU2 x,AU2 y,AU2 z){return AU2(min(ASU2(x),min(ASU2(y),ASU2(z))));}
|
|
AU3 AMin3SU3(AU3 x,AU3 y,AU3 z){return AU3(min(ASU3(x),min(ASU3(y),ASU3(z))));}
|
|
AU4 AMin3SU4(AU4 x,AU4 y,AU4 z){return AU4(min(ASU4(x),min(ASU4(y),ASU4(z))));}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AU1 AMin3U1(AU1 x,AU1 y,AU1 z){return min(x,min(y,z));}
|
|
AU2 AMin3U2(AU2 x,AU2 y,AU2 z){return min(x,min(y,z));}
|
|
AU3 AMin3U3(AU3 x,AU3 y,AU3 z){return min(x,min(y,z));}
|
|
AU4 AMin3U4(AU4 x,AU4 y,AU4 z){return min(x,min(y,z));}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AU1 AMinSU1(AU1 a,AU1 b){return AU1(min(ASU1(a),ASU1(b)));}
|
|
AU2 AMinSU2(AU2 a,AU2 b){return AU2(min(ASU2(a),ASU2(b)));}
|
|
AU3 AMinSU3(AU3 a,AU3 b){return AU3(min(ASU3(a),ASU3(b)));}
|
|
AU4 AMinSU4(AU4 a,AU4 b){return AU4(min(ASU4(a),ASU4(b)));}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
// Normalized trig. Valid input domain is {-256 to +256}. No GLSL compiler intrinsic exists to map to this currently.
|
|
// V_COS_F32.
|
|
AF1 ANCosF1(AF1 x){return cos(x*AF1_(A_2PI));}
|
|
AF2 ANCosF2(AF2 x){return cos(x*AF2_(A_2PI));}
|
|
AF3 ANCosF3(AF3 x){return cos(x*AF3_(A_2PI));}
|
|
AF4 ANCosF4(AF4 x){return cos(x*AF4_(A_2PI));}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
// Normalized trig. Valid input domain is {-256 to +256}. No GLSL compiler intrinsic exists to map to this currently.
|
|
// V_SIN_F32.
|
|
AF1 ANSinF1(AF1 x){return sin(x*AF1_(A_2PI));}
|
|
AF2 ANSinF2(AF2 x){return sin(x*AF2_(A_2PI));}
|
|
AF3 ANSinF3(AF3 x){return sin(x*AF3_(A_2PI));}
|
|
AF4 ANSinF4(AF4 x){return sin(x*AF4_(A_2PI));}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AF1 ARcpF1(AF1 x){return AF1_(1.0)/x;}
|
|
AF2 ARcpF2(AF2 x){return AF2_(1.0)/x;}
|
|
AF3 ARcpF3(AF3 x){return AF3_(1.0)/x;}
|
|
AF4 ARcpF4(AF4 x){return AF4_(1.0)/x;}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AF1 ARsqF1(AF1 x){return AF1_(1.0)/sqrt(x);}
|
|
AF2 ARsqF2(AF2 x){return AF2_(1.0)/sqrt(x);}
|
|
AF3 ARsqF3(AF3 x){return AF3_(1.0)/sqrt(x);}
|
|
AF4 ARsqF4(AF4 x){return AF4_(1.0)/sqrt(x);}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AF1 ASatF1(AF1 x){return clamp(x,AF1_(0.0),AF1_(1.0));}
|
|
AF2 ASatF2(AF2 x){return clamp(x,AF2_(0.0),AF2_(1.0));}
|
|
AF3 ASatF3(AF3 x){return clamp(x,AF3_(0.0),AF3_(1.0));}
|
|
AF4 ASatF4(AF4 x){return clamp(x,AF4_(0.0),AF4_(1.0));}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AU1 AShrSU1(AU1 a,AU1 b){return AU1(ASU1(a)>>ASU1(b));}
|
|
AU2 AShrSU2(AU2 a,AU2 b){return AU2(ASU2(a)>>ASU2(b));}
|
|
AU3 AShrSU3(AU3 a,AU3 b){return AU3(ASU3(a)>>ASU3(b));}
|
|
AU4 AShrSU4(AU4 a,AU4 b){return AU4(ASU4(a)>>ASU4(b));}
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
//_____________________________________________________________/\_______________________________________________________________
|
|
//==============================================================================================================================
|
|
// GLSL BYTE
|
|
//==============================================================================================================================
|
|
#ifdef A_BYTE
|
|
#define AB1 uint8_t
|
|
#define AB2 u8vec2
|
|
#define AB3 u8vec3
|
|
#define AB4 u8vec4
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
#define ASB1 int8_t
|
|
#define ASB2 i8vec2
|
|
#define ASB3 i8vec3
|
|
#define ASB4 i8vec4
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AB1 AB1_x(AB1 a){return AB1(a);}
|
|
AB2 AB2_x(AB1 a){return AB2(a,a);}
|
|
AB3 AB3_x(AB1 a){return AB3(a,a,a);}
|
|
AB4 AB4_x(AB1 a){return AB4(a,a,a,a);}
|
|
#define AB1_(a) AB1_x(AB1(a))
|
|
#define AB2_(a) AB2_x(AB1(a))
|
|
#define AB3_(a) AB3_x(AB1(a))
|
|
#define AB4_(a) AB4_x(AB1(a))
|
|
#endif
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
//_____________________________________________________________/\_______________________________________________________________
|
|
//==============================================================================================================================
|
|
// GLSL DOUBLE
|
|
//==============================================================================================================================
|
|
#ifdef A_DUBL
|
|
#define AD1 double
|
|
#define AD2 dvec2
|
|
#define AD3 dvec3
|
|
#define AD4 dvec4
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AD1 AD1_x(AD1 a){return AD1(a);}
|
|
AD2 AD2_x(AD1 a){return AD2(a,a);}
|
|
AD3 AD3_x(AD1 a){return AD3(a,a,a);}
|
|
AD4 AD4_x(AD1 a){return AD4(a,a,a,a);}
|
|
#define AD1_(a) AD1_x(AD1(a))
|
|
#define AD2_(a) AD2_x(AD1(a))
|
|
#define AD3_(a) AD3_x(AD1(a))
|
|
#define AD4_(a) AD4_x(AD1(a))
|
|
//==============================================================================================================================
|
|
AD1 AFractD1(AD1 x){return fract(x);}
|
|
AD2 AFractD2(AD2 x){return fract(x);}
|
|
AD3 AFractD3(AD3 x){return fract(x);}
|
|
AD4 AFractD4(AD4 x){return fract(x);}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AD1 ALerpD1(AD1 x,AD1 y,AD1 a){return mix(x,y,a);}
|
|
AD2 ALerpD2(AD2 x,AD2 y,AD2 a){return mix(x,y,a);}
|
|
AD3 ALerpD3(AD3 x,AD3 y,AD3 a){return mix(x,y,a);}
|
|
AD4 ALerpD4(AD4 x,AD4 y,AD4 a){return mix(x,y,a);}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AD1 ARcpD1(AD1 x){return AD1_(1.0)/x;}
|
|
AD2 ARcpD2(AD2 x){return AD2_(1.0)/x;}
|
|
AD3 ARcpD3(AD3 x){return AD3_(1.0)/x;}
|
|
AD4 ARcpD4(AD4 x){return AD4_(1.0)/x;}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AD1 ARsqD1(AD1 x){return AD1_(1.0)/sqrt(x);}
|
|
AD2 ARsqD2(AD2 x){return AD2_(1.0)/sqrt(x);}
|
|
AD3 ARsqD3(AD3 x){return AD3_(1.0)/sqrt(x);}
|
|
AD4 ARsqD4(AD4 x){return AD4_(1.0)/sqrt(x);}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AD1 ASatD1(AD1 x){return clamp(x,AD1_(0.0),AD1_(1.0));}
|
|
AD2 ASatD2(AD2 x){return clamp(x,AD2_(0.0),AD2_(1.0));}
|
|
AD3 ASatD3(AD3 x){return clamp(x,AD3_(0.0),AD3_(1.0));}
|
|
AD4 ASatD4(AD4 x){return clamp(x,AD4_(0.0),AD4_(1.0));}
|
|
#endif
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
//_____________________________________________________________/\_______________________________________________________________
|
|
//==============================================================================================================================
|
|
// GLSL LONG
|
|
//==============================================================================================================================
|
|
#ifdef A_LONG
|
|
#define AL1 uint64_t
|
|
#define AL2 u64vec2
|
|
#define AL3 u64vec3
|
|
#define AL4 u64vec4
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
#define ASL1 int64_t
|
|
#define ASL2 i64vec2
|
|
#define ASL3 i64vec3
|
|
#define ASL4 i64vec4
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
#define AL1_AU2(x) packUint2x32(AU2(x))
|
|
#define AU2_AL1(x) unpackUint2x32(AL1(x))
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AL1 AL1_x(AL1 a){return AL1(a);}
|
|
AL2 AL2_x(AL1 a){return AL2(a,a);}
|
|
AL3 AL3_x(AL1 a){return AL3(a,a,a);}
|
|
AL4 AL4_x(AL1 a){return AL4(a,a,a,a);}
|
|
#define AL1_(a) AL1_x(AL1(a))
|
|
#define AL2_(a) AL2_x(AL1(a))
|
|
#define AL3_(a) AL3_x(AL1(a))
|
|
#define AL4_(a) AL4_x(AL1(a))
|
|
//==============================================================================================================================
|
|
AL1 AAbsSL1(AL1 a){return AL1(abs(ASL1(a)));}
|
|
AL2 AAbsSL2(AL2 a){return AL2(abs(ASL2(a)));}
|
|
AL3 AAbsSL3(AL3 a){return AL3(abs(ASL3(a)));}
|
|
AL4 AAbsSL4(AL4 a){return AL4(abs(ASL4(a)));}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AL1 AMaxSL1(AL1 a,AL1 b){return AL1(max(ASU1(a),ASU1(b)));}
|
|
AL2 AMaxSL2(AL2 a,AL2 b){return AL2(max(ASU2(a),ASU2(b)));}
|
|
AL3 AMaxSL3(AL3 a,AL3 b){return AL3(max(ASU3(a),ASU3(b)));}
|
|
AL4 AMaxSL4(AL4 a,AL4 b){return AL4(max(ASU4(a),ASU4(b)));}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AL1 AMinSL1(AL1 a,AL1 b){return AL1(min(ASU1(a),ASU1(b)));}
|
|
AL2 AMinSL2(AL2 a,AL2 b){return AL2(min(ASU2(a),ASU2(b)));}
|
|
AL3 AMinSL3(AL3 a,AL3 b){return AL3(min(ASU3(a),ASU3(b)));}
|
|
AL4 AMinSL4(AL4 a,AL4 b){return AL4(min(ASU4(a),ASU4(b)));}
|
|
#endif
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
//_____________________________________________________________/\_______________________________________________________________
|
|
//==============================================================================================================================
|
|
// WAVE OPERATIONS
|
|
//==============================================================================================================================
|
|
#ifdef A_WAVE
|
|
// Where 'x' must be a compile time literal.
|
|
AF1 AWaveXorF1(AF1 v,AU1 x){return subgroupShuffleXor(v,x);}
|
|
AF2 AWaveXorF2(AF2 v,AU1 x){return subgroupShuffleXor(v,x);}
|
|
AF3 AWaveXorF3(AF3 v,AU1 x){return subgroupShuffleXor(v,x);}
|
|
AF4 AWaveXorF4(AF4 v,AU1 x){return subgroupShuffleXor(v,x);}
|
|
AU1 AWaveXorU1(AU1 v,AU1 x){return subgroupShuffleXor(v,x);}
|
|
AU2 AWaveXorU2(AU2 v,AU1 x){return subgroupShuffleXor(v,x);}
|
|
AU3 AWaveXorU3(AU3 v,AU1 x){return subgroupShuffleXor(v,x);}
|
|
AU4 AWaveXorU4(AU4 v,AU1 x){return subgroupShuffleXor(v,x);}
|
|
#endif
|
|
//==============================================================================================================================
|
|
#endif
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
//_____________________________________________________________/\_______________________________________________________________
|
|
//==============================================================================================================================
|
|
//
|
|
//
|
|
// HLSL
|
|
//
|
|
//
|
|
//==============================================================================================================================
|
|
#if defined(A_HLSL) && defined(A_GPU)
|
|
#ifdef A_HLSL_6_2
|
|
#define AP1 bool
|
|
#define AP2 bool2
|
|
#define AP3 bool3
|
|
#define AP4 bool4
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
#define AF1 float32_t
|
|
#define AF2 float32_t2
|
|
#define AF3 float32_t3
|
|
#define AF4 float32_t4
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
#define AU1 uint32_t
|
|
#define AU2 uint32_t2
|
|
#define AU3 uint32_t3
|
|
#define AU4 uint32_t4
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
#define ASU1 int32_t
|
|
#define ASU2 int32_t2
|
|
#define ASU3 int32_t3
|
|
#define ASU4 int32_t4
|
|
#else
|
|
#define AP1 bool
|
|
#define AP2 bool2
|
|
#define AP3 bool3
|
|
#define AP4 bool4
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
#define AF1 float
|
|
#define AF2 float2
|
|
#define AF3 float3
|
|
#define AF4 float4
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
#define AU1 uint
|
|
#define AU2 uint2
|
|
#define AU3 uint3
|
|
#define AU4 uint4
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
#define ASU1 int
|
|
#define ASU2 int2
|
|
#define ASU3 int3
|
|
#define ASU4 int4
|
|
#endif
|
|
//==============================================================================================================================
|
|
#define AF1_AU1(x) asfloat(AU1(x))
|
|
#define AF2_AU2(x) asfloat(AU2(x))
|
|
#define AF3_AU3(x) asfloat(AU3(x))
|
|
#define AF4_AU4(x) asfloat(AU4(x))
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
#define AU1_AF1(x) asuint(AF1(x))
|
|
#define AU2_AF2(x) asuint(AF2(x))
|
|
#define AU3_AF3(x) asuint(AF3(x))
|
|
#define AU4_AF4(x) asuint(AF4(x))
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AU1 AU1_AH1_AF1_x(AF1 a){return f32tof16(a);}
|
|
#define AU1_AH1_AF1(a) AU1_AH1_AF1_x(AF1(a))
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AU1 AU1_AH2_AF2_x(AF2 a){return f32tof16(a.x)|(f32tof16(a.y)<<16);}
|
|
#define AU1_AH2_AF2(a) AU1_AH2_AF2_x(AF2(a))
|
|
#define AU1_AB4Unorm_AF4(x) D3DCOLORtoUBYTE4(AF4(x))
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AF2 AF2_AH2_AU1_x(AU1 x){return AF2(f16tof32(x&0xFFFF),f16tof32(x>>16));}
|
|
#define AF2_AH2_AU1(x) AF2_AH2_AU1_x(AU1(x))
|
|
//==============================================================================================================================
|
|
AF1 AF1_x(AF1 a){return AF1(a);}
|
|
AF2 AF2_x(AF1 a){return AF2(a,a);}
|
|
AF3 AF3_x(AF1 a){return AF3(a,a,a);}
|
|
AF4 AF4_x(AF1 a){return AF4(a,a,a,a);}
|
|
#define AF1_(a) AF1_x(AF1(a))
|
|
#define AF2_(a) AF2_x(AF1(a))
|
|
#define AF3_(a) AF3_x(AF1(a))
|
|
#define AF4_(a) AF4_x(AF1(a))
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AU1 AU1_x(AU1 a){return AU1(a);}
|
|
AU2 AU2_x(AU1 a){return AU2(a,a);}
|
|
AU3 AU3_x(AU1 a){return AU3(a,a,a);}
|
|
AU4 AU4_x(AU1 a){return AU4(a,a,a,a);}
|
|
#define AU1_(a) AU1_x(AU1(a))
|
|
#define AU2_(a) AU2_x(AU1(a))
|
|
#define AU3_(a) AU3_x(AU1(a))
|
|
#define AU4_(a) AU4_x(AU1(a))
|
|
//==============================================================================================================================
|
|
AU1 AAbsSU1(AU1 a){return AU1(abs(ASU1(a)));}
|
|
AU2 AAbsSU2(AU2 a){return AU2(abs(ASU2(a)));}
|
|
AU3 AAbsSU3(AU3 a){return AU3(abs(ASU3(a)));}
|
|
AU4 AAbsSU4(AU4 a){return AU4(abs(ASU4(a)));}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AU1 ABfe(AU1 src,AU1 off,AU1 bits){AU1 mask=(1u<<bits)-1;return (src>>off)&mask;}
|
|
AU1 ABfi(AU1 src,AU1 ins,AU1 mask){return (ins&mask)|(src&(~mask));}
|
|
AU1 ABfiM(AU1 src,AU1 ins,AU1 bits){AU1 mask=(1u<<bits)-1;return (ins&mask)|(src&(~mask));}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AF1 AClampF1(AF1 x,AF1 n,AF1 m){return max(n,min(x,m));}
|
|
AF2 AClampF2(AF2 x,AF2 n,AF2 m){return max(n,min(x,m));}
|
|
AF3 AClampF3(AF3 x,AF3 n,AF3 m){return max(n,min(x,m));}
|
|
AF4 AClampF4(AF4 x,AF4 n,AF4 m){return max(n,min(x,m));}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AF1 AFractF1(AF1 x){return x-floor(x);}
|
|
AF2 AFractF2(AF2 x){return x-floor(x);}
|
|
AF3 AFractF3(AF3 x){return x-floor(x);}
|
|
AF4 AFractF4(AF4 x){return x-floor(x);}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AF1 ALerpF1(AF1 x,AF1 y,AF1 a){return lerp(x,y,a);}
|
|
AF2 ALerpF2(AF2 x,AF2 y,AF2 a){return lerp(x,y,a);}
|
|
AF3 ALerpF3(AF3 x,AF3 y,AF3 a){return lerp(x,y,a);}
|
|
AF4 ALerpF4(AF4 x,AF4 y,AF4 a){return lerp(x,y,a);}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AF1 AMax3F1(AF1 x,AF1 y,AF1 z){return max(x,max(y,z));}
|
|
AF2 AMax3F2(AF2 x,AF2 y,AF2 z){return max(x,max(y,z));}
|
|
AF3 AMax3F3(AF3 x,AF3 y,AF3 z){return max(x,max(y,z));}
|
|
AF4 AMax3F4(AF4 x,AF4 y,AF4 z){return max(x,max(y,z));}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AU1 AMax3SU1(AU1 x,AU1 y,AU1 z){return AU1(max(ASU1(x),max(ASU1(y),ASU1(z))));}
|
|
AU2 AMax3SU2(AU2 x,AU2 y,AU2 z){return AU2(max(ASU2(x),max(ASU2(y),ASU2(z))));}
|
|
AU3 AMax3SU3(AU3 x,AU3 y,AU3 z){return AU3(max(ASU3(x),max(ASU3(y),ASU3(z))));}
|
|
AU4 AMax3SU4(AU4 x,AU4 y,AU4 z){return AU4(max(ASU4(x),max(ASU4(y),ASU4(z))));}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AU1 AMax3U1(AU1 x,AU1 y,AU1 z){return max(x,max(y,z));}
|
|
AU2 AMax3U2(AU2 x,AU2 y,AU2 z){return max(x,max(y,z));}
|
|
AU3 AMax3U3(AU3 x,AU3 y,AU3 z){return max(x,max(y,z));}
|
|
AU4 AMax3U4(AU4 x,AU4 y,AU4 z){return max(x,max(y,z));}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AU1 AMaxSU1(AU1 a,AU1 b){return AU1(max(ASU1(a),ASU1(b)));}
|
|
AU2 AMaxSU2(AU2 a,AU2 b){return AU2(max(ASU2(a),ASU2(b)));}
|
|
AU3 AMaxSU3(AU3 a,AU3 b){return AU3(max(ASU3(a),ASU3(b)));}
|
|
AU4 AMaxSU4(AU4 a,AU4 b){return AU4(max(ASU4(a),ASU4(b)));}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AF1 AMed3F1(AF1 x,AF1 y,AF1 z){return max(min(x,y),min(max(x,y),z));}
|
|
AF2 AMed3F2(AF2 x,AF2 y,AF2 z){return max(min(x,y),min(max(x,y),z));}
|
|
AF3 AMed3F3(AF3 x,AF3 y,AF3 z){return max(min(x,y),min(max(x,y),z));}
|
|
AF4 AMed3F4(AF4 x,AF4 y,AF4 z){return max(min(x,y),min(max(x,y),z));}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AF1 AMin3F1(AF1 x,AF1 y,AF1 z){return min(x,min(y,z));}
|
|
AF2 AMin3F2(AF2 x,AF2 y,AF2 z){return min(x,min(y,z));}
|
|
AF3 AMin3F3(AF3 x,AF3 y,AF3 z){return min(x,min(y,z));}
|
|
AF4 AMin3F4(AF4 x,AF4 y,AF4 z){return min(x,min(y,z));}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AU1 AMin3SU1(AU1 x,AU1 y,AU1 z){return AU1(min(ASU1(x),min(ASU1(y),ASU1(z))));}
|
|
AU2 AMin3SU2(AU2 x,AU2 y,AU2 z){return AU2(min(ASU2(x),min(ASU2(y),ASU2(z))));}
|
|
AU3 AMin3SU3(AU3 x,AU3 y,AU3 z){return AU3(min(ASU3(x),min(ASU3(y),ASU3(z))));}
|
|
AU4 AMin3SU4(AU4 x,AU4 y,AU4 z){return AU4(min(ASU4(x),min(ASU4(y),ASU4(z))));}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AU1 AMin3U1(AU1 x,AU1 y,AU1 z){return min(x,min(y,z));}
|
|
AU2 AMin3U2(AU2 x,AU2 y,AU2 z){return min(x,min(y,z));}
|
|
AU3 AMin3U3(AU3 x,AU3 y,AU3 z){return min(x,min(y,z));}
|
|
AU4 AMin3U4(AU4 x,AU4 y,AU4 z){return min(x,min(y,z));}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AU1 AMinSU1(AU1 a,AU1 b){return AU1(min(ASU1(a),ASU1(b)));}
|
|
AU2 AMinSU2(AU2 a,AU2 b){return AU2(min(ASU2(a),ASU2(b)));}
|
|
AU3 AMinSU3(AU3 a,AU3 b){return AU3(min(ASU3(a),ASU3(b)));}
|
|
AU4 AMinSU4(AU4 a,AU4 b){return AU4(min(ASU4(a),ASU4(b)));}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AF1 ANCosF1(AF1 x){return cos(x*AF1_(A_2PI));}
|
|
AF2 ANCosF2(AF2 x){return cos(x*AF2_(A_2PI));}
|
|
AF3 ANCosF3(AF3 x){return cos(x*AF3_(A_2PI));}
|
|
AF4 ANCosF4(AF4 x){return cos(x*AF4_(A_2PI));}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AF1 ANSinF1(AF1 x){return sin(x*AF1_(A_2PI));}
|
|
AF2 ANSinF2(AF2 x){return sin(x*AF2_(A_2PI));}
|
|
AF3 ANSinF3(AF3 x){return sin(x*AF3_(A_2PI));}
|
|
AF4 ANSinF4(AF4 x){return sin(x*AF4_(A_2PI));}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AF1 ARcpF1(AF1 x){return rcp(x);}
|
|
AF2 ARcpF2(AF2 x){return rcp(x);}
|
|
AF3 ARcpF3(AF3 x){return rcp(x);}
|
|
AF4 ARcpF4(AF4 x){return rcp(x);}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AF1 ARsqF1(AF1 x){return rsqrt(x);}
|
|
AF2 ARsqF2(AF2 x){return rsqrt(x);}
|
|
AF3 ARsqF3(AF3 x){return rsqrt(x);}
|
|
AF4 ARsqF4(AF4 x){return rsqrt(x);}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AF1 ASatF1(AF1 x){return saturate(x);}
|
|
AF2 ASatF2(AF2 x){return saturate(x);}
|
|
AF3 ASatF3(AF3 x){return saturate(x);}
|
|
AF4 ASatF4(AF4 x){return saturate(x);}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AU1 AShrSU1(AU1 a,AU1 b){return AU1(ASU1(a)>>ASU1(b));}
|
|
AU2 AShrSU2(AU2 a,AU2 b){return AU2(ASU2(a)>>ASU2(b));}
|
|
AU3 AShrSU3(AU3 a,AU3 b){return AU3(ASU3(a)>>ASU3(b));}
|
|
AU4 AShrSU4(AU4 a,AU4 b){return AU4(ASU4(a)>>ASU4(b));}
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
//_____________________________________________________________/\_______________________________________________________________
|
|
//==============================================================================================================================
|
|
// HLSL BYTE
|
|
//==============================================================================================================================
|
|
#ifdef A_BYTE
|
|
#endif
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
//_____________________________________________________________/\_______________________________________________________________
|
|
//==============================================================================================================================
|
|
// HLSL DOUBLE
|
|
//==============================================================================================================================
|
|
#ifdef A_DUBL
|
|
#ifdef A_HLSL_6_2
|
|
#define AD1 float64_t
|
|
#define AD2 float64_t2
|
|
#define AD3 float64_t3
|
|
#define AD4 float64_t4
|
|
#else
|
|
#define AD1 double
|
|
#define AD2 double2
|
|
#define AD3 double3
|
|
#define AD4 double4
|
|
#endif
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AD1 AD1_x(AD1 a){return AD1(a);}
|
|
AD2 AD2_x(AD1 a){return AD2(a,a);}
|
|
AD3 AD3_x(AD1 a){return AD3(a,a,a);}
|
|
AD4 AD4_x(AD1 a){return AD4(a,a,a,a);}
|
|
#define AD1_(a) AD1_x(AD1(a))
|
|
#define AD2_(a) AD2_x(AD1(a))
|
|
#define AD3_(a) AD3_x(AD1(a))
|
|
#define AD4_(a) AD4_x(AD1(a))
|
|
//==============================================================================================================================
|
|
AD1 AFractD1(AD1 a){return a-floor(a);}
|
|
AD2 AFractD2(AD2 a){return a-floor(a);}
|
|
AD3 AFractD3(AD3 a){return a-floor(a);}
|
|
AD4 AFractD4(AD4 a){return a-floor(a);}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AD1 ALerpD1(AD1 x,AD1 y,AD1 a){return lerp(x,y,a);}
|
|
AD2 ALerpD2(AD2 x,AD2 y,AD2 a){return lerp(x,y,a);}
|
|
AD3 ALerpD3(AD3 x,AD3 y,AD3 a){return lerp(x,y,a);}
|
|
AD4 ALerpD4(AD4 x,AD4 y,AD4 a){return lerp(x,y,a);}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AD1 ARcpD1(AD1 x){return rcp(x);}
|
|
AD2 ARcpD2(AD2 x){return rcp(x);}
|
|
AD3 ARcpD3(AD3 x){return rcp(x);}
|
|
AD4 ARcpD4(AD4 x){return rcp(x);}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AD1 ARsqD1(AD1 x){return rsqrt(x);}
|
|
AD2 ARsqD2(AD2 x){return rsqrt(x);}
|
|
AD3 ARsqD3(AD3 x){return rsqrt(x);}
|
|
AD4 ARsqD4(AD4 x){return rsqrt(x);}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AD1 ASatD1(AD1 x){return saturate(x);}
|
|
AD2 ASatD2(AD2 x){return saturate(x);}
|
|
AD3 ASatD3(AD3 x){return saturate(x);}
|
|
AD4 ASatD4(AD4 x){return saturate(x);}
|
|
#endif
|
|
//==============================================================================================================================
|
|
// HLSL WAVE
|
|
//==============================================================================================================================
|
|
#ifdef A_WAVE
|
|
// Where 'x' must be a compile time literal.
|
|
AF1 AWaveXorF1(AF1 v,AU1 x){return WaveReadLaneAt(v,WaveGetLaneIndex()^x);}
|
|
AF2 AWaveXorF2(AF2 v,AU1 x){return WaveReadLaneAt(v,WaveGetLaneIndex()^x);}
|
|
AF3 AWaveXorF3(AF3 v,AU1 x){return WaveReadLaneAt(v,WaveGetLaneIndex()^x);}
|
|
AF4 AWaveXorF4(AF4 v,AU1 x){return WaveReadLaneAt(v,WaveGetLaneIndex()^x);}
|
|
AU1 AWaveXorU1(AU1 v,AU1 x){return WaveReadLaneAt(v,WaveGetLaneIndex()^x);}
|
|
AU2 AWaveXorU1(AU2 v,AU1 x){return WaveReadLaneAt(v,WaveGetLaneIndex()^x);}
|
|
AU3 AWaveXorU1(AU3 v,AU1 x){return WaveReadLaneAt(v,WaveGetLaneIndex()^x);}
|
|
AU4 AWaveXorU1(AU4 v,AU1 x){return WaveReadLaneAt(v,WaveGetLaneIndex()^x);}
|
|
#endif
|
|
//==============================================================================================================================
|
|
#endif
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
//_____________________________________________________________/\_______________________________________________________________
|
|
//==============================================================================================================================
|
|
//
|
|
//
|
|
// GPU COMMON
|
|
//
|
|
//
|
|
//==============================================================================================================================
|
|
#ifdef A_GPU
|
|
// Negative and positive infinity.
|
|
#define A_INFP_F AF1_AU1(0x7f800000u)
|
|
#define A_INFN_F AF1_AU1(0xff800000u)
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
// Copy sign from 's' to positive 'd'.
|
|
AF1 ACpySgnF1(AF1 d,AF1 s){return AF1_AU1(AU1_AF1(d)|(AU1_AF1(s)&AU1_(0x80000000u)));}
|
|
AF2 ACpySgnF2(AF2 d,AF2 s){return AF2_AU2(AU2_AF2(d)|(AU2_AF2(s)&AU2_(0x80000000u)));}
|
|
AF3 ACpySgnF3(AF3 d,AF3 s){return AF3_AU3(AU3_AF3(d)|(AU3_AF3(s)&AU3_(0x80000000u)));}
|
|
AF4 ACpySgnF4(AF4 d,AF4 s){return AF4_AU4(AU4_AF4(d)|(AU4_AF4(s)&AU4_(0x80000000u)));}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
// Single operation to return (useful to create a mask to use in lerp for branch free logic),
|
|
// m=NaN := 0
|
|
// m>=0 := 0
|
|
// m<0 := 1
|
|
// Uses the following useful floating point logic,
|
|
// saturate(+a*(-INF)==-INF) := 0
|
|
// saturate( 0*(-INF)== NaN) := 0
|
|
// saturate(-a*(-INF)==+INF) := 1
|
|
AF1 ASignedF1(AF1 m){return ASatF1(m*AF1_(A_INFN_F));}
|
|
AF2 ASignedF2(AF2 m){return ASatF2(m*AF2_(A_INFN_F));}
|
|
AF3 ASignedF3(AF3 m){return ASatF3(m*AF3_(A_INFN_F));}
|
|
AF4 ASignedF4(AF4 m){return ASatF4(m*AF4_(A_INFN_F));}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
// #2744 avoid constant overflow AF1 AGtZeroF1(AF1 m){return ASatF1(m*AF1_(A_INFP_F));}
|
|
AF2 AGtZeroF2(AF2 m){return ASatF2(m*AF2_(A_INFP_F));}
|
|
AF3 AGtZeroF3(AF3 m){return ASatF3(m*AF3_(A_INFP_F));}
|
|
AF4 AGtZeroF4(AF4 m){return ASatF4(m*AF4_(A_INFP_F));}
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
//_____________________________________________________________/\_______________________________________________________________
|
|
//==============================================================================================================================
|
|
// [FIS] FLOAT INTEGER SORTABLE
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
// Float to integer sortable.
|
|
// - If sign bit=0, flip the sign bit (positives).
|
|
// - If sign bit=1, flip all bits (negatives).
|
|
// Integer sortable to float.
|
|
// - If sign bit=1, flip the sign bit (positives).
|
|
// - If sign bit=0, flip all bits (negatives).
|
|
// Has nice side effects.
|
|
// - Larger integers are more positive values.
|
|
// - Float zero is mapped to center of integers (so clear to integer zero is a nice default for atomic max usage).
|
|
// Burns 3 ops for conversion {shift,or,xor}.
|
|
//==============================================================================================================================
|
|
AU1 AFisToU1(AU1 x){return x^(( AShrSU1(x,AU1_(31)))|AU1_(0x80000000));}
|
|
AU1 AFisFromU1(AU1 x){return x^((~AShrSU1(x,AU1_(31)))|AU1_(0x80000000));}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
// Just adjust high 16-bit value (useful when upper part of 32-bit word is a 16-bit float value).
|
|
AU1 AFisToHiU1(AU1 x){return x^(( AShrSU1(x,AU1_(15)))|AU1_(0x80000000));}
|
|
AU1 AFisFromHiU1(AU1 x){return x^((~AShrSU1(x,AU1_(15)))|AU1_(0x80000000));}
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
//_____________________________________________________________/\_______________________________________________________________
|
|
//==============================================================================================================================
|
|
// [BUC] BYTE UNSIGNED CONVERSION
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
// Designed to use the optimal conversion, enables the scaling to possibly be factored into other computation.
|
|
// Works on a range of {0 to A_BUC_<32,16>}, for <32-bit, and 16-bit> respectively.
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
// OPCODE NOTES
|
|
// ============
|
|
// GCN does not do UNORM or SNORM for bytes in opcodes.
|
|
// - V_CVT_F32_UBYTE{0,1,2,3} - Unsigned byte to float.
|
|
// - V_CVT_PKACC_U8_F32 - Float to unsigned byte (does bit-field insert into 32-bit integer).
|
|
// V_PERM_B32 does byte packing with ability to zero fill bytes as well.
|
|
// - Can pull out byte values from two sources, and zero fill upper 8-bits of packed hi and lo.
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
// BYTE : FLOAT - ABuc{0,1,2,3}{To,From}U1() - Designed for V_CVT_F32_UBYTE* and V_CVT_PKACCUM_U8_F32 ops.
|
|
// ==== =====
|
|
// 0 : 0
|
|
// 1 : 1
|
|
// ...
|
|
// 255 : 255
|
|
// : 256 (just outside the encoding range)
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
// BYTE : FLOAT - ABuc{0,1,2,3}{To,From}U2() - Designed for 16-bit denormal tricks and V_PERM_B32.
|
|
// ==== =====
|
|
// 0 : 0
|
|
// 1 : 1/512
|
|
// 2 : 1/256
|
|
// ...
|
|
// 64 : 1/8
|
|
// 128 : 1/4
|
|
// 255 : 255/512
|
|
// : 1/2 (just outside the encoding range)
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
// OPTIMAL IMPLEMENTATIONS ON AMD ARCHITECTURES
|
|
// ============================================
|
|
// r=ABuc0FromU1(i)
|
|
// V_CVT_F32_UBYTE0 r,i
|
|
// --------------------------------------------
|
|
// r=ABuc0ToU1(d,i)
|
|
// V_CVT_PKACCUM_U8_F32 r,i,0,d
|
|
// --------------------------------------------
|
|
// d=ABuc0FromU2(i)
|
|
// Where 'k0' is an SGPR with 0x0E0A
|
|
// Where 'k1' is an SGPR with {32768.0} packed into the lower 16-bits
|
|
// V_PERM_B32 d,i.x,i.y,k0
|
|
// V_PK_FMA_F16 d,d,k1.x,0
|
|
// --------------------------------------------
|
|
// r=ABuc0ToU2(d,i)
|
|
// Where 'k0' is an SGPR with {1.0/32768.0} packed into the lower 16-bits
|
|
// Where 'k1' is an SGPR with 0x????
|
|
// Where 'k2' is an SGPR with 0x????
|
|
// V_PK_FMA_F16 i,i,k0.x,0
|
|
// V_PERM_B32 r.x,i,i,k1
|
|
// V_PERM_B32 r.y,i,i,k2
|
|
//==============================================================================================================================
|
|
// Peak range for 32-bit and 16-bit operations.
|
|
#define A_BUC_32 (255.0)
|
|
#define A_BUC_16 (255.0/512.0)
|
|
//==============================================================================================================================
|
|
#if 1
|
|
// Designed to be one V_CVT_PKACCUM_U8_F32.
|
|
// The extra min is required to pattern match to V_CVT_PKACCUM_U8_F32.
|
|
AU1 ABuc0ToU1(AU1 d,AF1 i){return (d&0xffffff00u)|((min(AU1(i),255u) )&(0x000000ffu));}
|
|
AU1 ABuc1ToU1(AU1 d,AF1 i){return (d&0xffff00ffu)|((min(AU1(i),255u)<< 8)&(0x0000ff00u));}
|
|
AU1 ABuc2ToU1(AU1 d,AF1 i){return (d&0xff00ffffu)|((min(AU1(i),255u)<<16)&(0x00ff0000u));}
|
|
AU1 ABuc3ToU1(AU1 d,AF1 i){return (d&0x00ffffffu)|((min(AU1(i),255u)<<24)&(0xff000000u));}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
// Designed to be one V_CVT_F32_UBYTE*.
|
|
AF1 ABuc0FromU1(AU1 i){return AF1((i )&255u);}
|
|
AF1 ABuc1FromU1(AU1 i){return AF1((i>> 8)&255u);}
|
|
AF1 ABuc2FromU1(AU1 i){return AF1((i>>16)&255u);}
|
|
AF1 ABuc3FromU1(AU1 i){return AF1((i>>24)&255u);}
|
|
#endif
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
//_____________________________________________________________/\_______________________________________________________________
|
|
//==============================================================================================================================
|
|
// [BSC] BYTE SIGNED CONVERSION
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
// Similar to [BUC].
|
|
// Works on a range of {-/+ A_BSC_<32,16>}, for <32-bit, and 16-bit> respectively.
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
// ENCODING (without zero-based encoding)
|
|
// ========
|
|
// 0 = unused (can be used to mean something else)
|
|
// 1 = lowest value
|
|
// 128 = exact zero center (zero based encoding
|
|
// 255 = highest value
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
// Zero-based [Zb] flips the MSB bit of the byte (making 128 "exact zero" actually zero).
|
|
// This is useful if there is a desire for cleared values to decode as zero.
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
// BYTE : FLOAT - ABsc{0,1,2,3}{To,From}U2() - Designed for 16-bit denormal tricks and V_PERM_B32.
|
|
// ==== =====
|
|
// 0 : -127/512 (unused)
|
|
// 1 : -126/512
|
|
// 2 : -125/512
|
|
// ...
|
|
// 128 : 0
|
|
// ...
|
|
// 255 : 127/512
|
|
// : 1/4 (just outside the encoding range)
|
|
//==============================================================================================================================
|
|
// Peak range for 32-bit and 16-bit operations.
|
|
#define A_BSC_32 (127.0)
|
|
#define A_BSC_16 (127.0/512.0)
|
|
//==============================================================================================================================
|
|
#if 1
|
|
AU1 ABsc0ToU1(AU1 d,AF1 i){return (d&0xffffff00u)|((min(AU1(i+128.0),255u) )&(0x000000ffu));}
|
|
AU1 ABsc1ToU1(AU1 d,AF1 i){return (d&0xffff00ffu)|((min(AU1(i+128.0),255u)<< 8)&(0x0000ff00u));}
|
|
AU1 ABsc2ToU1(AU1 d,AF1 i){return (d&0xff00ffffu)|((min(AU1(i+128.0),255u)<<16)&(0x00ff0000u));}
|
|
AU1 ABsc3ToU1(AU1 d,AF1 i){return (d&0x00ffffffu)|((min(AU1(i+128.0),255u)<<24)&(0xff000000u));}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AU1 ABsc0ToZbU1(AU1 d,AF1 i){return ((d&0xffffff00u)|((min(AU1(trunc(i)+128.0),255u) )&(0x000000ffu)))^0x00000080u;}
|
|
AU1 ABsc1ToZbU1(AU1 d,AF1 i){return ((d&0xffff00ffu)|((min(AU1(trunc(i)+128.0),255u)<< 8)&(0x0000ff00u)))^0x00008000u;}
|
|
AU1 ABsc2ToZbU1(AU1 d,AF1 i){return ((d&0xff00ffffu)|((min(AU1(trunc(i)+128.0),255u)<<16)&(0x00ff0000u)))^0x00800000u;}
|
|
AU1 ABsc3ToZbU1(AU1 d,AF1 i){return ((d&0x00ffffffu)|((min(AU1(trunc(i)+128.0),255u)<<24)&(0xff000000u)))^0x80000000u;}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AF1 ABsc0FromU1(AU1 i){return AF1((i )&255u)-128.0;}
|
|
AF1 ABsc1FromU1(AU1 i){return AF1((i>> 8)&255u)-128.0;}
|
|
AF1 ABsc2FromU1(AU1 i){return AF1((i>>16)&255u)-128.0;}
|
|
AF1 ABsc3FromU1(AU1 i){return AF1((i>>24)&255u)-128.0;}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AF1 ABsc0FromZbU1(AU1 i){return AF1(((i )&255u)^0x80u)-128.0;}
|
|
AF1 ABsc1FromZbU1(AU1 i){return AF1(((i>> 8)&255u)^0x80u)-128.0;}
|
|
AF1 ABsc2FromZbU1(AU1 i){return AF1(((i>>16)&255u)^0x80u)-128.0;}
|
|
AF1 ABsc3FromZbU1(AU1 i){return AF1(((i>>24)&255u)^0x80u)-128.0;}
|
|
#endif
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
//_____________________________________________________________/\_______________________________________________________________
|
|
//==============================================================================================================================
|
|
// FLOAT APPROXIMATIONS
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
// Michal Drobot has an excellent presentation on these: "Low Level Optimizations For GCN",
|
|
// - Idea dates back to SGI, then to Quake 3, etc.
|
|
// - https://michaldrobot.files.wordpress.com/2014/05/gcn_alu_opt_digitaldragons2014.pdf
|
|
// - sqrt(x)=rsqrt(x)*x
|
|
// - rcp(x)=rsqrt(x)*rsqrt(x) for positive x
|
|
// - https://github.com/michaldrobot/ShaderFastLibs/blob/master/ShaderFastMathLib.h
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
// These below are from perhaps less complete searching for optimal.
|
|
// Used FP16 normal range for testing with +4096 32-bit step size for sampling error.
|
|
// So these match up well with the half approximations.
|
|
//==============================================================================================================================
|
|
AF1 APrxLoSqrtF1(AF1 a){return AF1_AU1((AU1_AF1(a)>>AU1_(1))+AU1_(0x1fbc4639));}
|
|
AF1 APrxLoRcpF1(AF1 a){return AF1_AU1(AU1_(0x7ef07ebb)-AU1_AF1(a));}
|
|
AF1 APrxMedRcpF1(AF1 a){AF1 b=AF1_AU1(AU1_(0x7ef19fff)-AU1_AF1(a));return b*(-b*a+AF1_(2.0));}
|
|
AF1 APrxLoRsqF1(AF1 a){return AF1_AU1(AU1_(0x5f347d74)-(AU1_AF1(a)>>AU1_(1)));}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AF2 APrxLoSqrtF2(AF2 a){return AF2_AU2((AU2_AF2(a)>>AU2_(1))+AU2_(0x1fbc4639));}
|
|
AF2 APrxLoRcpF2(AF2 a){return AF2_AU2(AU2_(0x7ef07ebb)-AU2_AF2(a));}
|
|
AF2 APrxMedRcpF2(AF2 a){AF2 b=AF2_AU2(AU2_(0x7ef19fff)-AU2_AF2(a));return b*(-b*a+AF2_(2.0));}
|
|
AF2 APrxLoRsqF2(AF2 a){return AF2_AU2(AU2_(0x5f347d74)-(AU2_AF2(a)>>AU2_(1)));}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AF3 APrxLoSqrtF3(AF3 a){return AF3_AU3((AU3_AF3(a)>>AU3_(1))+AU3_(0x1fbc4639));}
|
|
AF3 APrxLoRcpF3(AF3 a){return AF3_AU3(AU3_(0x7ef07ebb)-AU3_AF3(a));}
|
|
AF3 APrxMedRcpF3(AF3 a){AF3 b=AF3_AU3(AU3_(0x7ef19fff)-AU3_AF3(a));return b*(-b*a+AF3_(2.0));}
|
|
AF3 APrxLoRsqF3(AF3 a){return AF3_AU3(AU3_(0x5f347d74)-(AU3_AF3(a)>>AU3_(1)));}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AF4 APrxLoSqrtF4(AF4 a){return AF4_AU4((AU4_AF4(a)>>AU4_(1))+AU4_(0x1fbc4639));}
|
|
AF4 APrxLoRcpF4(AF4 a){return AF4_AU4(AU4_(0x7ef07ebb)-AU4_AF4(a));}
|
|
AF4 APrxMedRcpF4(AF4 a){AF4 b=AF4_AU4(AU4_(0x7ef19fff)-AU4_AF4(a));return b*(-b*a+AF4_(2.0));}
|
|
AF4 APrxLoRsqF4(AF4 a){return AF4_AU4(AU4_(0x5f347d74)-(AU4_AF4(a)>>AU4_(1)));}
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
//_____________________________________________________________/\_______________________________________________________________
|
|
//==============================================================================================================================
|
|
// PQ APPROXIMATIONS
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
// PQ is very close to x^(1/8). The functions below Use the fast float approximation method to do
|
|
// PQ<~>Gamma2 (4th power and fast 4th root) and PQ<~>Linear (8th power and fast 8th root). Maximum error is ~0.2%.
|
|
//==============================================================================================================================
|
|
// Helpers
|
|
AF1 Quart(AF1 a) { a = a * a; return a * a;}
|
|
AF1 Oct(AF1 a) { a = a * a; a = a * a; return a * a; }
|
|
AF2 Quart(AF2 a) { a = a * a; return a * a; }
|
|
AF2 Oct(AF2 a) { a = a * a; a = a * a; return a * a; }
|
|
AF3 Quart(AF3 a) { a = a * a; return a * a; }
|
|
AF3 Oct(AF3 a) { a = a * a; a = a * a; return a * a; }
|
|
AF4 Quart(AF4 a) { a = a * a; return a * a; }
|
|
AF4 Oct(AF4 a) { a = a * a; a = a * a; return a * a; }
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AF1 APrxPQToGamma2(AF1 a) { return Quart(a); }
|
|
AF1 APrxPQToLinear(AF1 a) { return Oct(a); }
|
|
AF1 APrxLoGamma2ToPQ(AF1 a) { return AF1_AU1((AU1_AF1(a) >> AU1_(2)) + AU1_(0x2F9A4E46)); }
|
|
AF1 APrxMedGamma2ToPQ(AF1 a) { AF1 b = AF1_AU1((AU1_AF1(a) >> AU1_(2)) + AU1_(0x2F9A4E46)); AF1 b4 = Quart(b); return b - b * (b4 - a) / (AF1_(4.0) * b4); }
|
|
AF1 APrxHighGamma2ToPQ(AF1 a) { return sqrt(sqrt(a)); }
|
|
AF1 APrxLoLinearToPQ(AF1 a) { return AF1_AU1((AU1_AF1(a) >> AU1_(3)) + AU1_(0x378D8723)); }
|
|
AF1 APrxMedLinearToPQ(AF1 a) { AF1 b = AF1_AU1((AU1_AF1(a) >> AU1_(3)) + AU1_(0x378D8723)); AF1 b8 = Oct(b); return b - b * (b8 - a) / (AF1_(8.0) * b8); }
|
|
AF1 APrxHighLinearToPQ(AF1 a) { return sqrt(sqrt(sqrt(a))); }
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AF2 APrxPQToGamma2(AF2 a) { return Quart(a); }
|
|
AF2 APrxPQToLinear(AF2 a) { return Oct(a); }
|
|
AF2 APrxLoGamma2ToPQ(AF2 a) { return AF2_AU2((AU2_AF2(a) >> AU2_(2)) + AU2_(0x2F9A4E46)); }
|
|
AF2 APrxMedGamma2ToPQ(AF2 a) { AF2 b = AF2_AU2((AU2_AF2(a) >> AU2_(2)) + AU2_(0x2F9A4E46)); AF2 b4 = Quart(b); return b - b * (b4 - a) / (AF1_(4.0) * b4); }
|
|
AF2 APrxHighGamma2ToPQ(AF2 a) { return sqrt(sqrt(a)); }
|
|
AF2 APrxLoLinearToPQ(AF2 a) { return AF2_AU2((AU2_AF2(a) >> AU2_(3)) + AU2_(0x378D8723)); }
|
|
AF2 APrxMedLinearToPQ(AF2 a) { AF2 b = AF2_AU2((AU2_AF2(a) >> AU2_(3)) + AU2_(0x378D8723)); AF2 b8 = Oct(b); return b - b * (b8 - a) / (AF1_(8.0) * b8); }
|
|
AF2 APrxHighLinearToPQ(AF2 a) { return sqrt(sqrt(sqrt(a))); }
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AF3 APrxPQToGamma2(AF3 a) { return Quart(a); }
|
|
AF3 APrxPQToLinear(AF3 a) { return Oct(a); }
|
|
AF3 APrxLoGamma2ToPQ(AF3 a) { return AF3_AU3((AU3_AF3(a) >> AU3_(2)) + AU3_(0x2F9A4E46)); }
|
|
AF3 APrxMedGamma2ToPQ(AF3 a) { AF3 b = AF3_AU3((AU3_AF3(a) >> AU3_(2)) + AU3_(0x2F9A4E46)); AF3 b4 = Quart(b); return b - b * (b4 - a) / (AF1_(4.0) * b4); }
|
|
AF3 APrxHighGamma2ToPQ(AF3 a) { return sqrt(sqrt(a)); }
|
|
AF3 APrxLoLinearToPQ(AF3 a) { return AF3_AU3((AU3_AF3(a) >> AU3_(3)) + AU3_(0x378D8723)); }
|
|
AF3 APrxMedLinearToPQ(AF3 a) { AF3 b = AF3_AU3((AU3_AF3(a) >> AU3_(3)) + AU3_(0x378D8723)); AF3 b8 = Oct(b); return b - b * (b8 - a) / (AF1_(8.0) * b8); }
|
|
AF3 APrxHighLinearToPQ(AF3 a) { return sqrt(sqrt(sqrt(a))); }
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AF4 APrxPQToGamma2(AF4 a) { return Quart(a); }
|
|
AF4 APrxPQToLinear(AF4 a) { return Oct(a); }
|
|
AF4 APrxLoGamma2ToPQ(AF4 a) { return AF4_AU4((AU4_AF4(a) >> AU4_(2)) + AU4_(0x2F9A4E46)); }
|
|
AF4 APrxMedGamma2ToPQ(AF4 a) { AF4 b = AF4_AU4((AU4_AF4(a) >> AU4_(2)) + AU4_(0x2F9A4E46)); AF4 b4 = Quart(b); return b - b * (b4 - a) / (AF1_(4.0) * b4); }
|
|
AF4 APrxHighGamma2ToPQ(AF4 a) { return sqrt(sqrt(a)); }
|
|
AF4 APrxLoLinearToPQ(AF4 a) { return AF4_AU4((AU4_AF4(a) >> AU4_(3)) + AU4_(0x378D8723)); }
|
|
AF4 APrxMedLinearToPQ(AF4 a) { AF4 b = AF4_AU4((AU4_AF4(a) >> AU4_(3)) + AU4_(0x378D8723)); AF4 b8 = Oct(b); return b - b * (b8 - a) / (AF1_(8.0) * b8); }
|
|
AF4 APrxHighLinearToPQ(AF4 a) { return sqrt(sqrt(sqrt(a))); }
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
//_____________________________________________________________/\_______________________________________________________________
|
|
//==============================================================================================================================
|
|
// PARABOLIC SIN & COS
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
// Approximate answers to transcendental questions.
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
//==============================================================================================================================
|
|
#if 1
|
|
// Valid input range is {-1 to 1} representing {0 to 2 pi}.
|
|
// Output range is {-1/4 to 1/4} representing {-1 to 1}.
|
|
AF1 APSinF1(AF1 x){return x*abs(x)-x;} // MAD.
|
|
AF2 APSinF2(AF2 x){return x*abs(x)-x;}
|
|
AF1 APCosF1(AF1 x){x=AFractF1(x*AF1_(0.5)+AF1_(0.75));x=x*AF1_(2.0)-AF1_(1.0);return APSinF1(x);} // 3x MAD, FRACT
|
|
AF2 APCosF2(AF2 x){x=AFractF2(x*AF2_(0.5)+AF2_(0.75));x=x*AF2_(2.0)-AF2_(1.0);return APSinF2(x);}
|
|
AF2 APSinCosF1(AF1 x){AF1 y=AFractF1(x*AF1_(0.5)+AF1_(0.75));y=y*AF1_(2.0)-AF1_(1.0);return APSinF2(AF2(x,y));}
|
|
#endif
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
//_____________________________________________________________/\_______________________________________________________________
|
|
//==============================================================================================================================
|
|
// [ZOL] ZERO ONE LOGIC
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
// Conditional free logic designed for easy 16-bit packing, and backwards porting to 32-bit.
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
// 0 := false
|
|
// 1 := true
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
// AndNot(x,y) -> !(x&y) .... One op.
|
|
// AndOr(x,y,z) -> (x&y)|z ... One op.
|
|
// GtZero(x) -> x>0.0 ..... One op.
|
|
// Sel(x,y,z) -> x?y:z ..... Two ops, has no precision loss.
|
|
// Signed(x) -> x<0.0 ..... One op.
|
|
// ZeroPass(x,y) -> x?0:y ..... Two ops, 'y' is a pass through safe for aliasing as integer.
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
// OPTIMIZATION NOTES
|
|
// ==================
|
|
// - On Vega to use 2 constants in a packed op, pass in as one AW2 or one AH2 'k.xy' and use as 'k.xx' and 'k.yy'.
|
|
// For example 'a.xy*k.xx+k.yy'.
|
|
//==============================================================================================================================
|
|
#if 1
|
|
AU1 AZolAndU1(AU1 x,AU1 y){return min(x,y);}
|
|
AU2 AZolAndU2(AU2 x,AU2 y){return min(x,y);}
|
|
AU3 AZolAndU3(AU3 x,AU3 y){return min(x,y);}
|
|
AU4 AZolAndU4(AU4 x,AU4 y){return min(x,y);}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AU1 AZolNotU1(AU1 x){return x^AU1_(1);}
|
|
AU2 AZolNotU2(AU2 x){return x^AU2_(1);}
|
|
AU3 AZolNotU3(AU3 x){return x^AU3_(1);}
|
|
AU4 AZolNotU4(AU4 x){return x^AU4_(1);}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AU1 AZolOrU1(AU1 x,AU1 y){return max(x,y);}
|
|
AU2 AZolOrU2(AU2 x,AU2 y){return max(x,y);}
|
|
AU3 AZolOrU3(AU3 x,AU3 y){return max(x,y);}
|
|
AU4 AZolOrU4(AU4 x,AU4 y){return max(x,y);}
|
|
//==============================================================================================================================
|
|
AU1 AZolF1ToU1(AF1 x){return AU1(x);}
|
|
AU2 AZolF2ToU2(AF2 x){return AU2(x);}
|
|
AU3 AZolF3ToU3(AF3 x){return AU3(x);}
|
|
AU4 AZolF4ToU4(AF4 x){return AU4(x);}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
// 2 ops, denormals don't work in 32-bit on PC (and if they are enabled, OMOD is disabled).
|
|
AU1 AZolNotF1ToU1(AF1 x){return AU1(AF1_(1.0)-x);}
|
|
AU2 AZolNotF2ToU2(AF2 x){return AU2(AF2_(1.0)-x);}
|
|
AU3 AZolNotF3ToU3(AF3 x){return AU3(AF3_(1.0)-x);}
|
|
AU4 AZolNotF4ToU4(AF4 x){return AU4(AF4_(1.0)-x);}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AF1 AZolU1ToF1(AU1 x){return AF1(x);}
|
|
AF2 AZolU2ToF2(AU2 x){return AF2(x);}
|
|
AF3 AZolU3ToF3(AU3 x){return AF3(x);}
|
|
AF4 AZolU4ToF4(AU4 x){return AF4(x);}
|
|
//==============================================================================================================================
|
|
AF1 AZolAndF1(AF1 x,AF1 y){return min(x,y);}
|
|
AF2 AZolAndF2(AF2 x,AF2 y){return min(x,y);}
|
|
AF3 AZolAndF3(AF3 x,AF3 y){return min(x,y);}
|
|
AF4 AZolAndF4(AF4 x,AF4 y){return min(x,y);}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AF1 ASolAndNotF1(AF1 x,AF1 y){return (-x)*y+AF1_(1.0);}
|
|
AF2 ASolAndNotF2(AF2 x,AF2 y){return (-x)*y+AF2_(1.0);}
|
|
AF3 ASolAndNotF3(AF3 x,AF3 y){return (-x)*y+AF3_(1.0);}
|
|
AF4 ASolAndNotF4(AF4 x,AF4 y){return (-x)*y+AF4_(1.0);}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AF1 AZolAndOrF1(AF1 x,AF1 y,AF1 z){return ASatF1(x*y+z);}
|
|
AF2 AZolAndOrF2(AF2 x,AF2 y,AF2 z){return ASatF2(x*y+z);}
|
|
AF3 AZolAndOrF3(AF3 x,AF3 y,AF3 z){return ASatF3(x*y+z);}
|
|
AF4 AZolAndOrF4(AF4 x,AF4 y,AF4 z){return ASatF4(x*y+z);}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AF1 AZolGtZeroF1(AF1 x){return ASatF1(x*AF1_(A_INFP_F));}
|
|
AF2 AZolGtZeroF2(AF2 x){return ASatF2(x*AF2_(A_INFP_F));}
|
|
AF3 AZolGtZeroF3(AF3 x){return ASatF3(x*AF3_(A_INFP_F));}
|
|
AF4 AZolGtZeroF4(AF4 x){return ASatF4(x*AF4_(A_INFP_F));}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AF1 AZolNotF1(AF1 x){return AF1_(1.0)-x;}
|
|
AF2 AZolNotF2(AF2 x){return AF2_(1.0)-x;}
|
|
AF3 AZolNotF3(AF3 x){return AF3_(1.0)-x;}
|
|
AF4 AZolNotF4(AF4 x){return AF4_(1.0)-x;}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AF1 AZolOrF1(AF1 x,AF1 y){return max(x,y);}
|
|
AF2 AZolOrF2(AF2 x,AF2 y){return max(x,y);}
|
|
AF3 AZolOrF3(AF3 x,AF3 y){return max(x,y);}
|
|
AF4 AZolOrF4(AF4 x,AF4 y){return max(x,y);}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AF1 AZolSelF1(AF1 x,AF1 y,AF1 z){AF1 r=(-x)*z+z;return x*y+r;}
|
|
AF2 AZolSelF2(AF2 x,AF2 y,AF2 z){AF2 r=(-x)*z+z;return x*y+r;}
|
|
AF3 AZolSelF3(AF3 x,AF3 y,AF3 z){AF3 r=(-x)*z+z;return x*y+r;}
|
|
AF4 AZolSelF4(AF4 x,AF4 y,AF4 z){AF4 r=(-x)*z+z;return x*y+r;}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AF1 AZolSignedF1(AF1 x){return ASatF1(x*AF1_(A_INFN_F));}
|
|
AF2 AZolSignedF2(AF2 x){return ASatF2(x*AF2_(A_INFN_F));}
|
|
AF3 AZolSignedF3(AF3 x){return ASatF3(x*AF3_(A_INFN_F));}
|
|
AF4 AZolSignedF4(AF4 x){return ASatF4(x*AF4_(A_INFN_F));}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AF1 AZolZeroPassF1(AF1 x,AF1 y){return AF1_AU1((AU1_AF1(x)!=AU1_(0))?AU1_(0):AU1_AF1(y));}
|
|
AF2 AZolZeroPassF2(AF2 x,AF2 y){return AF2_AU2((AU2_AF2(x)!=AU2_(0))?AU2_(0):AU2_AF2(y));}
|
|
AF3 AZolZeroPassF3(AF3 x,AF3 y){return AF3_AU3((AU3_AF3(x)!=AU3_(0))?AU3_(0):AU3_AF3(y));}
|
|
AF4 AZolZeroPassF4(AF4 x,AF4 y){return AF4_AU4((AU4_AF4(x)!=AU4_(0))?AU4_(0):AU4_AF4(y));}
|
|
#endif
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
//_____________________________________________________________/\_______________________________________________________________
|
|
//==============================================================================================================================
|
|
// COLOR CONVERSIONS
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
// These are all linear to/from some other space (where 'linear' has been shortened out of the function name).
|
|
// So 'ToGamma' is 'LinearToGamma', and 'FromGamma' is 'LinearFromGamma'.
|
|
// These are branch free implementations.
|
|
// The AToSrgbF1() function is useful for stores for compute shaders for GPUs without hardware linear->sRGB store conversion.
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
// TRANSFER FUNCTIONS
|
|
// ==================
|
|
// 709 ..... Rec709 used for some HDTVs
|
|
// Gamma ... Typically 2.2 for some PC displays, or 2.4-2.5 for CRTs, or 2.2 FreeSync2 native
|
|
// Pq ...... PQ native for HDR10
|
|
// Srgb .... The sRGB output, typical of PC displays, useful for 10-bit output, or storing to 8-bit UNORM without SRGB type
|
|
// Two ..... Gamma 2.0, fastest conversion (useful for intermediate pass approximations)
|
|
// Three ... Gamma 3.0, less fast, but good for HDR.
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
// KEEPING TO SPEC
|
|
// ===============
|
|
// Both Rec.709 and sRGB have a linear segment which as spec'ed would intersect the curved segment 2 times.
|
|
// (a.) For 8-bit sRGB, steps {0 to 10.3} are in the linear region (4% of the encoding range).
|
|
// (b.) For 8-bit 709, steps {0 to 20.7} are in the linear region (8% of the encoding range).
|
|
// Also there is a slight step in the transition regions.
|
|
// Precision of the coefficients in the spec being the likely cause.
|
|
// Main usage case of the sRGB code is to do the linear->sRGB converstion in a compute shader before store.
|
|
// This is to work around lack of hardware (typically only ROP does the conversion for free).
|
|
// To "correct" the linear segment, would be to introduce error, because hardware decode of sRGB->linear is fixed (and free).
|
|
// So this header keeps with the spec.
|
|
// For linear->sRGB transforms, the linear segment in some respects reduces error, because rounding in that region is linear.
|
|
// Rounding in the curved region in hardware (and fast software code) introduces error due to rounding in non-linear.
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
// FOR PQ
|
|
// ======
|
|
// Both input and output is {0.0-1.0}, and where output 1.0 represents 10000.0 cd/m^2.
|
|
// All constants are only specified to FP32 precision.
|
|
// External PQ source reference,
|
|
// - https://github.com/ampas/aces-dev/blob/master/transforms/ctl/utilities/ACESlib.Utilities_Color.a1.0.1.ctl
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
// PACKED VERSIONS
|
|
// ===============
|
|
// These are the A*H2() functions.
|
|
// There is no PQ functions as FP16 seemed to not have enough precision for the conversion.
|
|
// The remaining functions are "good enough" for 8-bit, and maybe 10-bit if not concerned about a few 1-bit errors.
|
|
// Precision is lowest in the 709 conversion, higher in sRGB, higher still in Two and Gamma (when using 2.2 at least).
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
// NOTES
|
|
// =====
|
|
// Could be faster for PQ conversions to be in ALU or a texture lookup depending on usage case.
|
|
//==============================================================================================================================
|
|
#if 1
|
|
AF1 ATo709F1(AF1 c){AF3 j=AF3(0.018*4.5,4.5,0.45);AF2 k=AF2(1.099,-0.099);
|
|
return clamp(j.x ,c*j.y ,pow(c,j.z )*k.x +k.y );}
|
|
AF2 ATo709F2(AF2 c){AF3 j=AF3(0.018*4.5,4.5,0.45);AF2 k=AF2(1.099,-0.099);
|
|
return clamp(j.xx ,c*j.yy ,pow(c,j.zz )*k.xx +k.yy );}
|
|
AF3 ATo709F3(AF3 c){AF3 j=AF3(0.018*4.5,4.5,0.45);AF2 k=AF2(1.099,-0.099);
|
|
return clamp(j.xxx,c*j.yyy,pow(c,j.zzz)*k.xxx+k.yyy);}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
// Note 'rcpX' is '1/x', where the 'x' is what would be used in AFromGamma().
|
|
AF1 AToGammaF1(AF1 c,AF1 rcpX){return pow(c,AF1_(rcpX));}
|
|
AF2 AToGammaF2(AF2 c,AF1 rcpX){return pow(c,AF2_(rcpX));}
|
|
AF3 AToGammaF3(AF3 c,AF1 rcpX){return pow(c,AF3_(rcpX));}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AF1 AToPqF1(AF1 x){AF1 p=pow(x,AF1_(0.159302));
|
|
return pow((AF1_(0.835938)+AF1_(18.8516)*p)/(AF1_(1.0)+AF1_(18.6875)*p),AF1_(78.8438));}
|
|
AF2 AToPqF1(AF2 x){AF2 p=pow(x,AF2_(0.159302));
|
|
return pow((AF2_(0.835938)+AF2_(18.8516)*p)/(AF2_(1.0)+AF2_(18.6875)*p),AF2_(78.8438));}
|
|
AF3 AToPqF1(AF3 x){AF3 p=pow(x,AF3_(0.159302));
|
|
return pow((AF3_(0.835938)+AF3_(18.8516)*p)/(AF3_(1.0)+AF3_(18.6875)*p),AF3_(78.8438));}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AF1 AToSrgbF1(AF1 c){AF3 j=AF3(0.0031308*12.92,12.92,1.0/2.4);AF2 k=AF2(1.055,-0.055);
|
|
return clamp(j.x ,c*j.y ,pow(c,j.z )*k.x +k.y );}
|
|
AF2 AToSrgbF2(AF2 c){AF3 j=AF3(0.0031308*12.92,12.92,1.0/2.4);AF2 k=AF2(1.055,-0.055);
|
|
return clamp(j.xx ,c*j.yy ,pow(c,j.zz )*k.xx +k.yy );}
|
|
AF3 AToSrgbF3(AF3 c){AF3 j=AF3(0.0031308*12.92,12.92,1.0/2.4);AF2 k=AF2(1.055,-0.055);
|
|
return clamp(j.xxx,c*j.yyy,pow(c,j.zzz)*k.xxx+k.yyy);}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AF1 AToTwoF1(AF1 c){return sqrt(c);}
|
|
AF2 AToTwoF2(AF2 c){return sqrt(c);}
|
|
AF3 AToTwoF3(AF3 c){return sqrt(c);}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AF1 AToThreeF1(AF1 c){return pow(c,AF1_(1.0/3.0));}
|
|
AF2 AToThreeF2(AF2 c){return pow(c,AF2_(1.0/3.0));}
|
|
AF3 AToThreeF3(AF3 c){return pow(c,AF3_(1.0/3.0));}
|
|
#endif
|
|
//==============================================================================================================================
|
|
#if 1
|
|
// Unfortunately median won't work here.
|
|
AF1 AFrom709F1(AF1 c){AF3 j=AF3(0.081/4.5,1.0/4.5,1.0/0.45);AF2 k=AF2(1.0/1.099,0.099/1.099);
|
|
return AZolSelF1(AZolSignedF1(c-j.x ),c*j.y ,pow(c*k.x +k.y ,j.z ));}
|
|
AF2 AFrom709F2(AF2 c){AF3 j=AF3(0.081/4.5,1.0/4.5,1.0/0.45);AF2 k=AF2(1.0/1.099,0.099/1.099);
|
|
return AZolSelF2(AZolSignedF2(c-j.xx ),c*j.yy ,pow(c*k.xx +k.yy ,j.zz ));}
|
|
AF3 AFrom709F3(AF3 c){AF3 j=AF3(0.081/4.5,1.0/4.5,1.0/0.45);AF2 k=AF2(1.0/1.099,0.099/1.099);
|
|
return AZolSelF3(AZolSignedF3(c-j.xxx),c*j.yyy,pow(c*k.xxx+k.yyy,j.zzz));}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AF1 AFromGammaF1(AF1 c,AF1 x){return pow(c,AF1_(x));}
|
|
AF2 AFromGammaF2(AF2 c,AF1 x){return pow(c,AF2_(x));}
|
|
AF3 AFromGammaF3(AF3 c,AF1 x){return pow(c,AF3_(x));}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AF1 AFromPqF1(AF1 x){AF1 p=pow(x,AF1_(0.0126833));
|
|
return pow(ASatF1(p-AF1_(0.835938))/(AF1_(18.8516)-AF1_(18.6875)*p),AF1_(6.27739));}
|
|
AF2 AFromPqF1(AF2 x){AF2 p=pow(x,AF2_(0.0126833));
|
|
return pow(ASatF2(p-AF2_(0.835938))/(AF2_(18.8516)-AF2_(18.6875)*p),AF2_(6.27739));}
|
|
AF3 AFromPqF1(AF3 x){AF3 p=pow(x,AF3_(0.0126833));
|
|
return pow(ASatF3(p-AF3_(0.835938))/(AF3_(18.8516)-AF3_(18.6875)*p),AF3_(6.27739));}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
// Unfortunately median won't work here.
|
|
AF1 AFromSrgbF1(AF1 c){AF3 j=AF3(0.04045/12.92,1.0/12.92,2.4);AF2 k=AF2(1.0/1.055,0.055/1.055);
|
|
return AZolSelF1(AZolSignedF1(c-j.x ),c*j.y ,pow(c*k.x +k.y ,j.z ));}
|
|
AF2 AFromSrgbF2(AF2 c){AF3 j=AF3(0.04045/12.92,1.0/12.92,2.4);AF2 k=AF2(1.0/1.055,0.055/1.055);
|
|
return AZolSelF2(AZolSignedF2(c-j.xx ),c*j.yy ,pow(c*k.xx +k.yy ,j.zz ));}
|
|
AF3 AFromSrgbF3(AF3 c){AF3 j=AF3(0.04045/12.92,1.0/12.92,2.4);AF2 k=AF2(1.0/1.055,0.055/1.055);
|
|
return AZolSelF3(AZolSignedF3(c-j.xxx),c*j.yyy,pow(c*k.xxx+k.yyy,j.zzz));}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AF1 AFromTwoF1(AF1 c){return c*c;}
|
|
AF2 AFromTwoF2(AF2 c){return c*c;}
|
|
AF3 AFromTwoF3(AF3 c){return c*c;}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AF1 AFromThreeF1(AF1 c){return c*c*c;}
|
|
AF2 AFromThreeF2(AF2 c){return c*c*c;}
|
|
AF3 AFromThreeF3(AF3 c){return c*c*c;}
|
|
#endif
|
|
//==============================================================================================================================
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
//_____________________________________________________________/\_______________________________________________________________
|
|
//==============================================================================================================================
|
|
// CS REMAP
|
|
//==============================================================================================================================
|
|
// Simple remap 64x1 to 8x8 with rotated 2x2 pixel quads in quad linear.
|
|
// 543210
|
|
// ======
|
|
// ..xxx.
|
|
// yy...y
|
|
AU2 ARmp8x8(AU1 a){return AU2(ABfe(a,1u,3u),ABfiM(ABfe(a,3u,3u),a,1u));}
|
|
//==============================================================================================================================
|
|
// More complex remap 64x1 to 8x8 which is necessary for 2D wave reductions.
|
|
// 543210
|
|
// ======
|
|
// .xx..x
|
|
// y..yy.
|
|
// Details,
|
|
// LANE TO 8x8 MAPPING
|
|
// ===================
|
|
// 00 01 08 09 10 11 18 19
|
|
// 02 03 0a 0b 12 13 1a 1b
|
|
// 04 05 0c 0d 14 15 1c 1d
|
|
// 06 07 0e 0f 16 17 1e 1f
|
|
// 20 21 28 29 30 31 38 39
|
|
// 22 23 2a 2b 32 33 3a 3b
|
|
// 24 25 2c 2d 34 35 3c 3d
|
|
// 26 27 2e 2f 36 37 3e 3f
|
|
AU2 ARmpRed8x8(AU1 a){return AU2(ABfiM(ABfe(a,2u,3u),a,1u),ABfiM(ABfe(a,3u,3u),ABfe(a,1u,2u),2u));}
|
|
//==============================================================================================================================
|
|
#endif
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
//_____________________________________________________________/\_______________________________________________________________
|
|
//==============================================================================================================================
|
|
//
|
|
// REFERENCE
|
|
//
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
// IEEE FLOAT RULES
|
|
// ================
|
|
// - saturate(NaN)=0, saturate(-INF)=0, saturate(+INF)=1
|
|
// - {+/-}0 * {+/-}INF = NaN
|
|
// - -INF + (+INF) = NaN
|
|
// - {+/-}0 / {+/-}0 = NaN
|
|
// - {+/-}INF / {+/-}INF = NaN
|
|
// - a<(-0) := sqrt(a) = NaN (a=-0.0 won't NaN)
|
|
// - 0 == -0
|
|
// - 4/0 = +INF
|
|
// - 4/-0 = -INF
|
|
// - 4+INF = +INF
|
|
// - 4-INF = -INF
|
|
// - 4*(+INF) = +INF
|
|
// - 4*(-INF) = -INF
|
|
// - -4*(+INF) = -INF
|
|
// - sqrt(+INF) = +INF
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
// FP16 ENCODING
|
|
// =============
|
|
// fedcba9876543210
|
|
// ----------------
|
|
// ......mmmmmmmmmm 10-bit mantissa (encodes 11-bit 0.5 to 1.0 except for denormals)
|
|
// .eeeee.......... 5-bit exponent
|
|
// .00000.......... denormals
|
|
// .00001.......... -14 exponent
|
|
// .11110.......... 15 exponent
|
|
// .111110000000000 infinity
|
|
// .11111nnnnnnnnnn NaN with n!=0
|
|
// s............... sign
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
// FP16/INT16 ALIASING DENORMAL
|
|
// ============================
|
|
// 11-bit unsigned integers alias with half float denormal/normal values,
|
|
// 1 = 2^(-24) = 1/16777216 ....................... first denormal value
|
|
// 2 = 2^(-23)
|
|
// ...
|
|
// 1023 = 2^(-14)*(1-2^(-10)) = 2^(-14)*(1-1/1024) ... last denormal value
|
|
// 1024 = 2^(-14) = 1/16384 .......................... first normal value that still maps to integers
|
|
// 2047 .............................................. last normal value that still maps to integers
|
|
// Scaling limits,
|
|
// 2^15 = 32768 ...................................... largest power of 2 scaling
|
|
// Largest pow2 conversion mapping is at *32768,
|
|
// 1 : 2^(-9) = 1/512
|
|
// 2 : 1/256
|
|
// 4 : 1/128
|
|
// 8 : 1/64
|
|
// 16 : 1/32
|
|
// 32 : 1/16
|
|
// 64 : 1/8
|
|
// 128 : 1/4
|
|
// 256 : 1/2
|
|
// 512 : 1
|
|
// 1024 : 2
|
|
// 2047 : a little less than 4
|
|
//==============================================================================================================================
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
//_____________________________________________________________/\_______________________________________________________________
|
|
//==============================================================================================================================
|
|
//
|
|
//
|
|
// GPU/CPU PORTABILITY
|
|
//
|
|
//
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
// This is the GPU implementation.
|
|
// See the CPU implementation for docs.
|
|
//==============================================================================================================================
|
|
#ifdef A_GPU
|
|
#define A_TRUE true
|
|
#define A_FALSE false
|
|
#define A_STATIC
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
//_____________________________________________________________/\_______________________________________________________________
|
|
//==============================================================================================================================
|
|
// VECTOR ARGUMENT/RETURN/INITIALIZATION PORTABILITY
|
|
//==============================================================================================================================
|
|
#define retAD2 AD2
|
|
#define retAD3 AD3
|
|
#define retAD4 AD4
|
|
#define retAF2 AF2
|
|
#define retAF3 AF3
|
|
#define retAF4 AF4
|
|
#define retAL2 AL2
|
|
#define retAL3 AL3
|
|
#define retAL4 AL4
|
|
#define retAU2 AU2
|
|
#define retAU3 AU3
|
|
#define retAU4 AU4
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
#define inAD2 in AD2
|
|
#define inAD3 in AD3
|
|
#define inAD4 in AD4
|
|
#define inAF2 in AF2
|
|
#define inAF3 in AF3
|
|
#define inAF4 in AF4
|
|
#define inAL2 in AL2
|
|
#define inAL3 in AL3
|
|
#define inAL4 in AL4
|
|
#define inAU2 in AU2
|
|
#define inAU3 in AU3
|
|
#define inAU4 in AU4
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
#define inoutAD2 inout AD2
|
|
#define inoutAD3 inout AD3
|
|
#define inoutAD4 inout AD4
|
|
#define inoutAF2 inout AF2
|
|
#define inoutAF3 inout AF3
|
|
#define inoutAF4 inout AF4
|
|
#define inoutAL2 inout AL2
|
|
#define inoutAL3 inout AL3
|
|
#define inoutAL4 inout AL4
|
|
#define inoutAU2 inout AU2
|
|
#define inoutAU3 inout AU3
|
|
#define inoutAU4 inout AU4
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
#define outAD2 out AD2
|
|
#define outAD3 out AD3
|
|
#define outAD4 out AD4
|
|
#define outAF2 out AF2
|
|
#define outAF3 out AF3
|
|
#define outAF4 out AF4
|
|
#define outAL2 out AL2
|
|
#define outAL3 out AL3
|
|
#define outAL4 out AL4
|
|
#define outAU2 out AU2
|
|
#define outAU3 out AU3
|
|
#define outAU4 out AU4
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
#define varAD2(x) AD2 x
|
|
#define varAD3(x) AD3 x
|
|
#define varAD4(x) AD4 x
|
|
#define varAF2(x) AF2 x
|
|
#define varAF3(x) AF3 x
|
|
#define varAF4(x) AF4 x
|
|
#define varAL2(x) AL2 x
|
|
#define varAL3(x) AL3 x
|
|
#define varAL4(x) AL4 x
|
|
#define varAU2(x) AU2 x
|
|
#define varAU3(x) AU3 x
|
|
#define varAU4(x) AU4 x
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
#define initAD2(x,y) AD2(x,y)
|
|
#define initAD3(x,y,z) AD3(x,y,z)
|
|
#define initAD4(x,y,z,w) AD4(x,y,z,w)
|
|
#define initAF2(x,y) AF2(x,y)
|
|
#define initAF3(x,y,z) AF3(x,y,z)
|
|
#define initAF4(x,y,z,w) AF4(x,y,z,w)
|
|
#define initAL2(x,y) AL2(x,y)
|
|
#define initAL3(x,y,z) AL3(x,y,z)
|
|
#define initAL4(x,y,z,w) AL4(x,y,z,w)
|
|
#define initAU2(x,y) AU2(x,y)
|
|
#define initAU3(x,y,z) AU3(x,y,z)
|
|
#define initAU4(x,y,z,w) AU4(x,y,z,w)
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
//_____________________________________________________________/\_______________________________________________________________
|
|
//==============================================================================================================================
|
|
// SCALAR RETURN OPS
|
|
//==============================================================================================================================
|
|
#define AAbsD1(a) abs(AD1(a))
|
|
#define AAbsF1(a) abs(AF1(a))
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
#define ACosD1(a) cos(AD1(a))
|
|
#define ACosF1(a) cos(AF1(a))
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
#define ADotD2(a,b) dot(AD2(a),AD2(b))
|
|
#define ADotD3(a,b) dot(AD3(a),AD3(b))
|
|
#define ADotD4(a,b) dot(AD4(a),AD4(b))
|
|
#define ADotF2(a,b) dot(AF2(a),AF2(b))
|
|
#define ADotF3(a,b) dot(AF3(a),AF3(b))
|
|
#define ADotF4(a,b) dot(AF4(a),AF4(b))
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
#define AExp2D1(a) exp2(AD1(a))
|
|
#define AExp2F1(a) exp2(AF1(a))
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
#define AFloorD1(a) floor(AD1(a))
|
|
#define AFloorF1(a) floor(AF1(a))
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
#define ALog2D1(a) log2(AD1(a))
|
|
#define ALog2F1(a) log2(AF1(a))
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
#define AMaxD1(a,b) max(a,b)
|
|
#define AMaxF1(a,b) max(a,b)
|
|
#define AMaxL1(a,b) max(a,b)
|
|
#define AMaxU1(a,b) max(a,b)
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
#define AMinD1(a,b) min(a,b)
|
|
#define AMinF1(a,b) min(a,b)
|
|
#define AMinL1(a,b) min(a,b)
|
|
#define AMinU1(a,b) min(a,b)
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
#define ASinD1(a) sin(AD1(a))
|
|
#define ASinF1(a) sin(AF1(a))
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
#define ASqrtD1(a) sqrt(AD1(a))
|
|
#define ASqrtF1(a) sqrt(AF1(a))
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
//_____________________________________________________________/\_______________________________________________________________
|
|
//==============================================================================================================================
|
|
// SCALAR RETURN OPS - DEPENDENT
|
|
//==============================================================================================================================
|
|
#define APowD1(a,b) pow(AD1(a),AF1(b))
|
|
#define APowF1(a,b) pow(AF1(a),AF1(b))
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
//_____________________________________________________________/\_______________________________________________________________
|
|
//==============================================================================================================================
|
|
// VECTOR OPS
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
// These are added as needed for production or prototyping, so not necessarily a complete set.
|
|
// They follow a convention of taking in a destination and also returning the destination value to increase utility.
|
|
//==============================================================================================================================
|
|
#ifdef A_DUBL
|
|
AD2 opAAbsD2(outAD2 d,inAD2 a){d=abs(a);return d;}
|
|
AD3 opAAbsD3(outAD3 d,inAD3 a){d=abs(a);return d;}
|
|
AD4 opAAbsD4(outAD4 d,inAD4 a){d=abs(a);return d;}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AD2 opAAddD2(outAD2 d,inAD2 a,inAD2 b){d=a+b;return d;}
|
|
AD3 opAAddD3(outAD3 d,inAD3 a,inAD3 b){d=a+b;return d;}
|
|
AD4 opAAddD4(outAD4 d,inAD4 a,inAD4 b){d=a+b;return d;}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AD2 opAAddOneD2(outAD2 d,inAD2 a,AD1 b){d=a+AD2_(b);return d;}
|
|
AD3 opAAddOneD3(outAD3 d,inAD3 a,AD1 b){d=a+AD3_(b);return d;}
|
|
AD4 opAAddOneD4(outAD4 d,inAD4 a,AD1 b){d=a+AD4_(b);return d;}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AD2 opACpyD2(outAD2 d,inAD2 a){d=a;return d;}
|
|
AD3 opACpyD3(outAD3 d,inAD3 a){d=a;return d;}
|
|
AD4 opACpyD4(outAD4 d,inAD4 a){d=a;return d;}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AD2 opALerpD2(outAD2 d,inAD2 a,inAD2 b,inAD2 c){d=ALerpD2(a,b,c);return d;}
|
|
AD3 opALerpD3(outAD3 d,inAD3 a,inAD3 b,inAD3 c){d=ALerpD3(a,b,c);return d;}
|
|
AD4 opALerpD4(outAD4 d,inAD4 a,inAD4 b,inAD4 c){d=ALerpD4(a,b,c);return d;}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AD2 opALerpOneD2(outAD2 d,inAD2 a,inAD2 b,AD1 c){d=ALerpD2(a,b,AD2_(c));return d;}
|
|
AD3 opALerpOneD3(outAD3 d,inAD3 a,inAD3 b,AD1 c){d=ALerpD3(a,b,AD3_(c));return d;}
|
|
AD4 opALerpOneD4(outAD4 d,inAD4 a,inAD4 b,AD1 c){d=ALerpD4(a,b,AD4_(c));return d;}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AD2 opAMaxD2(outAD2 d,inAD2 a,inAD2 b){d=max(a,b);return d;}
|
|
AD3 opAMaxD3(outAD3 d,inAD3 a,inAD3 b){d=max(a,b);return d;}
|
|
AD4 opAMaxD4(outAD4 d,inAD4 a,inAD4 b){d=max(a,b);return d;}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AD2 opAMinD2(outAD2 d,inAD2 a,inAD2 b){d=min(a,b);return d;}
|
|
AD3 opAMinD3(outAD3 d,inAD3 a,inAD3 b){d=min(a,b);return d;}
|
|
AD4 opAMinD4(outAD4 d,inAD4 a,inAD4 b){d=min(a,b);return d;}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AD2 opAMulD2(outAD2 d,inAD2 a,inAD2 b){d=a*b;return d;}
|
|
AD3 opAMulD3(outAD3 d,inAD3 a,inAD3 b){d=a*b;return d;}
|
|
AD4 opAMulD4(outAD4 d,inAD4 a,inAD4 b){d=a*b;return d;}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AD2 opAMulOneD2(outAD2 d,inAD2 a,AD1 b){d=a*AD2_(b);return d;}
|
|
AD3 opAMulOneD3(outAD3 d,inAD3 a,AD1 b){d=a*AD3_(b);return d;}
|
|
AD4 opAMulOneD4(outAD4 d,inAD4 a,AD1 b){d=a*AD4_(b);return d;}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AD2 opANegD2(outAD2 d,inAD2 a){d=-a;return d;}
|
|
AD3 opANegD3(outAD3 d,inAD3 a){d=-a;return d;}
|
|
AD4 opANegD4(outAD4 d,inAD4 a){d=-a;return d;}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AD2 opARcpD2(outAD2 d,inAD2 a){d=ARcpD2(a);return d;}
|
|
AD3 opARcpD3(outAD3 d,inAD3 a){d=ARcpD3(a);return d;}
|
|
AD4 opARcpD4(outAD4 d,inAD4 a){d=ARcpD4(a);return d;}
|
|
#endif
|
|
//==============================================================================================================================
|
|
AF2 opAAbsF2(outAF2 d,inAF2 a){d=abs(a);return d;}
|
|
AF3 opAAbsF3(outAF3 d,inAF3 a){d=abs(a);return d;}
|
|
AF4 opAAbsF4(outAF4 d,inAF4 a){d=abs(a);return d;}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AF2 opAAddF2(outAF2 d,inAF2 a,inAF2 b){d=a+b;return d;}
|
|
AF3 opAAddF3(outAF3 d,inAF3 a,inAF3 b){d=a+b;return d;}
|
|
AF4 opAAddF4(outAF4 d,inAF4 a,inAF4 b){d=a+b;return d;}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AF2 opAAddOneF2(outAF2 d,inAF2 a,AF1 b){d=a+AF2_(b);return d;}
|
|
AF3 opAAddOneF3(outAF3 d,inAF3 a,AF1 b){d=a+AF3_(b);return d;}
|
|
AF4 opAAddOneF4(outAF4 d,inAF4 a,AF1 b){d=a+AF4_(b);return d;}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AF2 opACpyF2(outAF2 d,inAF2 a){d=a;return d;}
|
|
AF3 opACpyF3(outAF3 d,inAF3 a){d=a;return d;}
|
|
AF4 opACpyF4(outAF4 d,inAF4 a){d=a;return d;}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AF2 opALerpF2(outAF2 d,inAF2 a,inAF2 b,inAF2 c){d=ALerpF2(a,b,c);return d;}
|
|
AF3 opALerpF3(outAF3 d,inAF3 a,inAF3 b,inAF3 c){d=ALerpF3(a,b,c);return d;}
|
|
AF4 opALerpF4(outAF4 d,inAF4 a,inAF4 b,inAF4 c){d=ALerpF4(a,b,c);return d;}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AF2 opALerpOneF2(outAF2 d,inAF2 a,inAF2 b,AF1 c){d=ALerpF2(a,b,AF2_(c));return d;}
|
|
AF3 opALerpOneF3(outAF3 d,inAF3 a,inAF3 b,AF1 c){d=ALerpF3(a,b,AF3_(c));return d;}
|
|
AF4 opALerpOneF4(outAF4 d,inAF4 a,inAF4 b,AF1 c){d=ALerpF4(a,b,AF4_(c));return d;}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AF2 opAMaxF2(outAF2 d,inAF2 a,inAF2 b){d=max(a,b);return d;}
|
|
AF3 opAMaxF3(outAF3 d,inAF3 a,inAF3 b){d=max(a,b);return d;}
|
|
AF4 opAMaxF4(outAF4 d,inAF4 a,inAF4 b){d=max(a,b);return d;}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AF2 opAMinF2(outAF2 d,inAF2 a,inAF2 b){d=min(a,b);return d;}
|
|
AF3 opAMinF3(outAF3 d,inAF3 a,inAF3 b){d=min(a,b);return d;}
|
|
AF4 opAMinF4(outAF4 d,inAF4 a,inAF4 b){d=min(a,b);return d;}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AF2 opAMulF2(outAF2 d,inAF2 a,inAF2 b){d=a*b;return d;}
|
|
AF3 opAMulF3(outAF3 d,inAF3 a,inAF3 b){d=a*b;return d;}
|
|
AF4 opAMulF4(outAF4 d,inAF4 a,inAF4 b){d=a*b;return d;}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AF2 opAMulOneF2(outAF2 d,inAF2 a,AF1 b){d=a*AF2_(b);return d;}
|
|
AF3 opAMulOneF3(outAF3 d,inAF3 a,AF1 b){d=a*AF3_(b);return d;}
|
|
AF4 opAMulOneF4(outAF4 d,inAF4 a,AF1 b){d=a*AF4_(b);return d;}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AF2 opANegF2(outAF2 d,inAF2 a){d=-a;return d;}
|
|
AF3 opANegF3(outAF3 d,inAF3 a){d=-a;return d;}
|
|
AF4 opANegF4(outAF4 d,inAF4 a){d=-a;return d;}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
AF2 opARcpF2(outAF2 d,inAF2 a){d=ARcpF2(a);return d;}
|
|
AF3 opARcpF3(outAF3 d,inAF3 a){d=ARcpF3(a);return d;}
|
|
AF4 opARcpF4(outAF4 d,inAF4 a){d=ARcpF4(a);return d;}
|
|
#endif
|
|
|
|
#endif
|
|
|
|
//_____________________________________________________________/\_______________________________________________________________
|
|
//==============================================================================================================================
|
|
//
|
|
// [CAS] FIDELITY FX - CONSTRAST ADAPTIVE SHARPENING 1.20190610
|
|
//
|
|
//==============================================================================================================================
|
|
// LICENSE
|
|
// =======
|
|
// Copyright (c) 2017-2019 Advanced Micro Devices, Inc. All rights reserved.
|
|
// -------
|
|
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation
|
|
// files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy,
|
|
// modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
|
|
// Software is furnished to do so, subject to the following conditions:
|
|
// -------
|
|
// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
|
|
// Software.
|
|
// -------
|
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
|
|
// WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
|
|
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
|
// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
#define CAS_AREA_LIMIT 4.0
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
// Pass in output and input resolution in pixels.
|
|
// This returns true if CAS supports scaling in the given configuration.
|
|
AP1 CasSupportScaling(AF1 outX,AF1 outY,AF1 inX,AF1 inY){return ((outX*outY)*ARcpF1(inX*inY))<=CAS_AREA_LIMIT;}
|
|
//==============================================================================================================================
|
|
// Call to setup required constant values (works on CPU or GPU).
|
|
#ifndef A_GPU
|
|
A_STATIC void CasSetup(
|
|
outAU4 const0,
|
|
outAU4 const1,
|
|
AF1 sharpness, // 0 := default (lower ringing), 1 := maximum (higest ringing)
|
|
AF1 inputSizeInPixelsX,
|
|
AF1 inputSizeInPixelsY,
|
|
AF1 outputSizeInPixelsX,
|
|
AF1 outputSizeInPixelsY){
|
|
// Scaling terms.
|
|
const0[0]=AU1_AF1(inputSizeInPixelsX*ARcpF1(outputSizeInPixelsX));
|
|
const0[1]=AU1_AF1(inputSizeInPixelsY*ARcpF1(outputSizeInPixelsY));
|
|
const0[2]=AU1_AF1(AF1_(0.5)*inputSizeInPixelsX*ARcpF1(outputSizeInPixelsX)-AF1_(0.5));
|
|
const0[3]=AU1_AF1(AF1_(0.5)*inputSizeInPixelsY*ARcpF1(outputSizeInPixelsY)-AF1_(0.5));
|
|
// Sharpness value.
|
|
AF1 sharp=-ARcpF1(ALerpF1(8.0,5.0,ASatF1(sharpness)));
|
|
varAF2(hSharp)=initAF2(sharp,0.0);
|
|
const1[0]=AU1_AF1(sharp);
|
|
const1[1]=AU1_AH2_AF2(hSharp);
|
|
const1[2]=AU1_AF1(AF1_(8.0)*inputSizeInPixelsX*ARcpF1(outputSizeInPixelsX));
|
|
const1[3]=0;}
|
|
#endif
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
//_____________________________________________________________/\_______________________________________________________________
|
|
//==============================================================================================================================
|
|
// NON-PACKED VERSION
|
|
//==============================================================================================================================
|
|
#ifdef A_GPU
|
|
AF3 CasLoad(ASU2 p) { return texelFetch(diffuseRect, p, 0).rgb; }
|
|
void CasInput(inout AF1 r,inout AF1 g,inout AF1 b)
|
|
{
|
|
}
|
|
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
void CasFilter(
|
|
out AF1 pixR, // Output values, non-vector so port between CasFilter() and CasFilterH() is easy.
|
|
out AF1 pixG,
|
|
out AF1 pixB,
|
|
AU2 ip, // Integer pixel position in output.
|
|
AU4 const0, // Constants generated by CasSetup().
|
|
AU4 const1,
|
|
AP1 noScaling){ // Must be a compile-time literal value, true = sharpen only (no resize).
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
// Debug a checker pattern of on/off tiles for visual inspection.
|
|
#ifdef CAS_DEBUG_CHECKER
|
|
if((((ip.x^ip.y)>>8u)&1u)==0u){AF3 pix0=CasLoad(ASU2(ip));
|
|
pixR=pix0.r;pixG=pix0.g;pixB=pix0.b;CasInput(pixR,pixG,pixB);return;}
|
|
#endif
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
// No scaling algorithm uses minimal 3x3 pixel neighborhood.
|
|
if(noScaling){
|
|
// a b c
|
|
// d e f
|
|
// g h i
|
|
ASU2 sp=ASU2(ip);
|
|
AF3 a=CasLoad(sp+ASU2(-1,-1));
|
|
AF3 b=CasLoad(sp+ASU2( 0,-1));
|
|
AF3 c=CasLoad(sp+ASU2( 1,-1));
|
|
AF3 d=CasLoad(sp+ASU2(-1, 0));
|
|
AF3 e=CasLoad(sp);
|
|
AF3 f=CasLoad(sp+ASU2( 1, 0));
|
|
AF3 g=CasLoad(sp+ASU2(-1, 1));
|
|
AF3 h=CasLoad(sp+ASU2( 0, 1));
|
|
AF3 i=CasLoad(sp+ASU2( 1, 1));
|
|
// Run optional input transform.
|
|
CasInput(a.r,a.g,a.b);
|
|
CasInput(b.r,b.g,b.b);
|
|
CasInput(c.r,c.g,c.b);
|
|
CasInput(d.r,d.g,d.b);
|
|
CasInput(e.r,e.g,e.b);
|
|
CasInput(f.r,f.g,f.b);
|
|
CasInput(g.r,g.g,g.b);
|
|
CasInput(h.r,h.g,h.b);
|
|
CasInput(i.r,i.g,i.b);
|
|
// Soft min and max.
|
|
// a b c b
|
|
// d e f * 0.5 + d e f * 0.5
|
|
// g h i h
|
|
// These are 2.0x bigger (factored out the extra multiply).
|
|
AF1 mnR=AMin3F1(AMin3F1(d.r,e.r,f.r),b.r,h.r);
|
|
AF1 mnG=AMin3F1(AMin3F1(d.g,e.g,f.g),b.g,h.g);
|
|
AF1 mnB=AMin3F1(AMin3F1(d.b,e.b,f.b),b.b,h.b);
|
|
#ifdef CAS_BETTER_DIAGONALS
|
|
AF1 mnR2=AMin3F1(AMin3F1(mnR,a.r,c.r),g.r,i.r);
|
|
AF1 mnG2=AMin3F1(AMin3F1(mnG,a.g,c.g),g.g,i.g);
|
|
AF1 mnB2=AMin3F1(AMin3F1(mnB,a.b,c.b),g.b,i.b);
|
|
mnR=mnR+mnR2;
|
|
mnG=mnG+mnG2;
|
|
mnB=mnB+mnB2;
|
|
#endif
|
|
AF1 mxR=AMax3F1(AMax3F1(d.r,e.r,f.r),b.r,h.r);
|
|
AF1 mxG=AMax3F1(AMax3F1(d.g,e.g,f.g),b.g,h.g);
|
|
AF1 mxB=AMax3F1(AMax3F1(d.b,e.b,f.b),b.b,h.b);
|
|
#ifdef CAS_BETTER_DIAGONALS
|
|
AF1 mxR2=AMax3F1(AMax3F1(mxR,a.r,c.r),g.r,i.r);
|
|
AF1 mxG2=AMax3F1(AMax3F1(mxG,a.g,c.g),g.g,i.g);
|
|
AF1 mxB2=AMax3F1(AMax3F1(mxB,a.b,c.b),g.b,i.b);
|
|
mxR=mxR+mxR2;
|
|
mxG=mxG+mxG2;
|
|
mxB=mxB+mxB2;
|
|
#endif
|
|
// Smooth minimum distance to signal limit divided by smooth max.
|
|
#ifdef CAS_GO_SLOWER
|
|
AF1 rcpMR=ARcpF1(mxR);
|
|
AF1 rcpMG=ARcpF1(mxG);
|
|
AF1 rcpMB=ARcpF1(mxB);
|
|
#else
|
|
AF1 rcpMR=APrxLoRcpF1(mxR);
|
|
AF1 rcpMG=APrxLoRcpF1(mxG);
|
|
AF1 rcpMB=APrxLoRcpF1(mxB);
|
|
#endif
|
|
#ifdef CAS_BETTER_DIAGONALS
|
|
AF1 ampR=ASatF1(min(mnR,AF1_(2.0)-mxR)*rcpMR);
|
|
AF1 ampG=ASatF1(min(mnG,AF1_(2.0)-mxG)*rcpMG);
|
|
AF1 ampB=ASatF1(min(mnB,AF1_(2.0)-mxB)*rcpMB);
|
|
#else
|
|
AF1 ampR=ASatF1(min(mnR,AF1_(1.0)-mxR)*rcpMR);
|
|
AF1 ampG=ASatF1(min(mnG,AF1_(1.0)-mxG)*rcpMG);
|
|
AF1 ampB=ASatF1(min(mnB,AF1_(1.0)-mxB)*rcpMB);
|
|
#endif
|
|
// Shaping amount of sharpening.
|
|
#ifdef CAS_GO_SLOWER
|
|
ampR=sqrt(ampR);
|
|
ampG=sqrt(ampG);
|
|
ampB=sqrt(ampB);
|
|
#else
|
|
ampR=APrxLoSqrtF1(ampR);
|
|
ampG=APrxLoSqrtF1(ampG);
|
|
ampB=APrxLoSqrtF1(ampB);
|
|
#endif
|
|
// Filter shape.
|
|
// 0 w 0
|
|
// w 1 w
|
|
// 0 w 0
|
|
AF1 peak=AF1_AU1(const1.x);
|
|
AF1 wR=ampR*peak;
|
|
AF1 wG=ampG*peak;
|
|
AF1 wB=ampB*peak;
|
|
// Filter.
|
|
#ifndef CAS_SLOW
|
|
// Using green coef only, depending on dead code removal to strip out the extra overhead.
|
|
#ifdef CAS_GO_SLOWER
|
|
AF1 rcpWeight=ARcpF1(AF1_(1.0)+AF1_(4.0)*wG);
|
|
#else
|
|
AF1 rcpWeight=APrxMedRcpF1(AF1_(1.0)+AF1_(4.0)*wG);
|
|
#endif
|
|
pixR=ASatF1((b.r*wG+d.r*wG+f.r*wG+h.r*wG+e.r)*rcpWeight);
|
|
pixG=ASatF1((b.g*wG+d.g*wG+f.g*wG+h.g*wG+e.g)*rcpWeight);
|
|
pixB=ASatF1((b.b*wG+d.b*wG+f.b*wG+h.b*wG+e.b)*rcpWeight);
|
|
#else
|
|
#ifdef CAS_GO_SLOWER
|
|
AF1 rcpWeightR=ARcpF1(AF1_(1.0)+AF1_(4.0)*wR);
|
|
AF1 rcpWeightG=ARcpF1(AF1_(1.0)+AF1_(4.0)*wG);
|
|
AF1 rcpWeightB=ARcpF1(AF1_(1.0)+AF1_(4.0)*wB);
|
|
#else
|
|
AF1 rcpWeightR=APrxMedRcpF1(AF1_(1.0)+AF1_(4.0)*wR);
|
|
AF1 rcpWeightG=APrxMedRcpF1(AF1_(1.0)+AF1_(4.0)*wG);
|
|
AF1 rcpWeightB=APrxMedRcpF1(AF1_(1.0)+AF1_(4.0)*wB);
|
|
#endif
|
|
pixR=ASatF1((b.r*wR+d.r*wR+f.r*wR+h.r*wR+e.r)*rcpWeightR);
|
|
pixG=ASatF1((b.g*wG+d.g*wG+f.g*wG+h.g*wG+e.g)*rcpWeightG);
|
|
pixB=ASatF1((b.b*wB+d.b*wB+f.b*wB+h.b*wB+e.b)*rcpWeightB);
|
|
#endif
|
|
return;}
|
|
//------------------------------------------------------------------------------------------------------------------------------
|
|
// Scaling algorithm adaptively interpolates between nearest 4 results of the non-scaling algorithm.
|
|
// a b c d
|
|
// e f g h
|
|
// i j k l
|
|
// m n o p
|
|
// Working these 4 results.
|
|
// +-----+-----+
|
|
// | | |
|
|
// | f..|..g |
|
|
// | . | . |
|
|
// +-----+-----+
|
|
// | . | . |
|
|
// | j..|..k |
|
|
// | | |
|
|
// +-----+-----+
|
|
AF2 pp=AF2(ip)*AF2_AU2(const0.xy)+AF2_AU2(const0.zw);
|
|
AF2 fp=floor(pp);
|
|
pp-=fp;
|
|
ASU2 sp=ASU2(fp);
|
|
AF3 a=CasLoad(sp+ASU2(-1,-1));
|
|
AF3 b=CasLoad(sp+ASU2( 0,-1));
|
|
AF3 e=CasLoad(sp+ASU2(-1, 0));
|
|
AF3 f=CasLoad(sp);
|
|
AF3 c=CasLoad(sp+ASU2( 1,-1));
|
|
AF3 d=CasLoad(sp+ASU2( 2,-1));
|
|
AF3 g=CasLoad(sp+ASU2( 1, 0));
|
|
AF3 h=CasLoad(sp+ASU2( 2, 0));
|
|
AF3 i=CasLoad(sp+ASU2(-1, 1));
|
|
AF3 j=CasLoad(sp+ASU2( 0, 1));
|
|
AF3 m=CasLoad(sp+ASU2(-1, 2));
|
|
AF3 n=CasLoad(sp+ASU2( 0, 2));
|
|
AF3 k=CasLoad(sp+ASU2( 1, 1));
|
|
AF3 l=CasLoad(sp+ASU2( 2, 1));
|
|
AF3 o=CasLoad(sp+ASU2( 1, 2));
|
|
AF3 p=CasLoad(sp+ASU2( 2, 2));
|
|
// Run optional input transform.
|
|
CasInput(a.r,a.g,a.b);
|
|
CasInput(b.r,b.g,b.b);
|
|
CasInput(c.r,c.g,c.b);
|
|
CasInput(d.r,d.g,d.b);
|
|
CasInput(e.r,e.g,e.b);
|
|
CasInput(f.r,f.g,f.b);
|
|
CasInput(g.r,g.g,g.b);
|
|
CasInput(h.r,h.g,h.b);
|
|
CasInput(i.r,i.g,i.b);
|
|
CasInput(j.r,j.g,j.b);
|
|
CasInput(k.r,k.g,k.b);
|
|
CasInput(l.r,l.g,l.b);
|
|
CasInput(m.r,m.g,m.b);
|
|
CasInput(n.r,n.g,n.b);
|
|
CasInput(o.r,o.g,o.b);
|
|
CasInput(p.r,p.g,p.b);
|
|
// Soft min and max.
|
|
// These are 2.0x bigger (factored out the extra multiply).
|
|
// a b c b
|
|
// e f g * 0.5 + e f g * 0.5 [F]
|
|
// i j k j
|
|
AF1 mnfR=AMin3F1(AMin3F1(b.r,e.r,f.r),g.r,j.r);
|
|
AF1 mnfG=AMin3F1(AMin3F1(b.g,e.g,f.g),g.g,j.g);
|
|
AF1 mnfB=AMin3F1(AMin3F1(b.b,e.b,f.b),g.b,j.b);
|
|
#ifdef CAS_BETTER_DIAGONALS
|
|
AF1 mnfR2=AMin3F1(AMin3F1(mnfR,a.r,c.r),i.r,k.r);
|
|
AF1 mnfG2=AMin3F1(AMin3F1(mnfG,a.g,c.g),i.g,k.g);
|
|
AF1 mnfB2=AMin3F1(AMin3F1(mnfB,a.b,c.b),i.b,k.b);
|
|
mnfR=mnfR+mnfR2;
|
|
mnfG=mnfG+mnfG2;
|
|
mnfB=mnfB+mnfB2;
|
|
#endif
|
|
AF1 mxfR=AMax3F1(AMax3F1(b.r,e.r,f.r),g.r,j.r);
|
|
AF1 mxfG=AMax3F1(AMax3F1(b.g,e.g,f.g),g.g,j.g);
|
|
AF1 mxfB=AMax3F1(AMax3F1(b.b,e.b,f.b),g.b,j.b);
|
|
#ifdef CAS_BETTER_DIAGONALS
|
|
AF1 mxfR2=AMax3F1(AMax3F1(mxfR,a.r,c.r),i.r,k.r);
|
|
AF1 mxfG2=AMax3F1(AMax3F1(mxfG,a.g,c.g),i.g,k.g);
|
|
AF1 mxfB2=AMax3F1(AMax3F1(mxfB,a.b,c.b),i.b,k.b);
|
|
mxfR=mxfR+mxfR2;
|
|
mxfG=mxfG+mxfG2;
|
|
mxfB=mxfB+mxfB2;
|
|
#endif
|
|
// b c d c
|
|
// f g h * 0.5 + f g h * 0.5 [G]
|
|
// j k l k
|
|
AF1 mngR=AMin3F1(AMin3F1(c.r,f.r,g.r),h.r,k.r);
|
|
AF1 mngG=AMin3F1(AMin3F1(c.g,f.g,g.g),h.g,k.g);
|
|
AF1 mngB=AMin3F1(AMin3F1(c.b,f.b,g.b),h.b,k.b);
|
|
#ifdef CAS_BETTER_DIAGONALS
|
|
AF1 mngR2=AMin3F1(AMin3F1(mngR,b.r,d.r),j.r,l.r);
|
|
AF1 mngG2=AMin3F1(AMin3F1(mngG,b.g,d.g),j.g,l.g);
|
|
AF1 mngB2=AMin3F1(AMin3F1(mngB,b.b,d.b),j.b,l.b);
|
|
mngR=mngR+mngR2;
|
|
mngG=mngG+mngG2;
|
|
mngB=mngB+mngB2;
|
|
#endif
|
|
AF1 mxgR=AMax3F1(AMax3F1(c.r,f.r,g.r),h.r,k.r);
|
|
AF1 mxgG=AMax3F1(AMax3F1(c.g,f.g,g.g),h.g,k.g);
|
|
AF1 mxgB=AMax3F1(AMax3F1(c.b,f.b,g.b),h.b,k.b);
|
|
#ifdef CAS_BETTER_DIAGONALS
|
|
AF1 mxgR2=AMax3F1(AMax3F1(mxgR,b.r,d.r),j.r,l.r);
|
|
AF1 mxgG2=AMax3F1(AMax3F1(mxgG,b.g,d.g),j.g,l.g);
|
|
AF1 mxgB2=AMax3F1(AMax3F1(mxgB,b.b,d.b),j.b,l.b);
|
|
mxgR=mxgR+mxgR2;
|
|
mxgG=mxgG+mxgG2;
|
|
mxgB=mxgB+mxgB2;
|
|
#endif
|
|
// e f g f
|
|
// i j k * 0.5 + i j k * 0.5 [J]
|
|
// m n o n
|
|
AF1 mnjR=AMin3F1(AMin3F1(f.r,i.r,j.r),k.r,n.r);
|
|
AF1 mnjG=AMin3F1(AMin3F1(f.g,i.g,j.g),k.g,n.g);
|
|
AF1 mnjB=AMin3F1(AMin3F1(f.b,i.b,j.b),k.b,n.b);
|
|
#ifdef CAS_BETTER_DIAGONALS
|
|
AF1 mnjR2=AMin3F1(AMin3F1(mnjR,e.r,g.r),m.r,o.r);
|
|
AF1 mnjG2=AMin3F1(AMin3F1(mnjG,e.g,g.g),m.g,o.g);
|
|
AF1 mnjB2=AMin3F1(AMin3F1(mnjB,e.b,g.b),m.b,o.b);
|
|
mnjR=mnjR+mnjR2;
|
|
mnjG=mnjG+mnjG2;
|
|
mnjB=mnjB+mnjB2;
|
|
#endif
|
|
AF1 mxjR=AMax3F1(AMax3F1(f.r,i.r,j.r),k.r,n.r);
|
|
AF1 mxjG=AMax3F1(AMax3F1(f.g,i.g,j.g),k.g,n.g);
|
|
AF1 mxjB=AMax3F1(AMax3F1(f.b,i.b,j.b),k.b,n.b);
|
|
#ifdef CAS_BETTER_DIAGONALS
|
|
AF1 mxjR2=AMax3F1(AMax3F1(mxjR,e.r,g.r),m.r,o.r);
|
|
AF1 mxjG2=AMax3F1(AMax3F1(mxjG,e.g,g.g),m.g,o.g);
|
|
AF1 mxjB2=AMax3F1(AMax3F1(mxjB,e.b,g.b),m.b,o.b);
|
|
mxjR=mxjR+mxjR2;
|
|
mxjG=mxjG+mxjG2;
|
|
mxjB=mxjB+mxjB2;
|
|
#endif
|
|
// f g h g
|
|
// j k l * 0.5 + j k l * 0.5 [K]
|
|
// n o p o
|
|
AF1 mnkR=AMin3F1(AMin3F1(g.r,j.r,k.r),l.r,o.r);
|
|
AF1 mnkG=AMin3F1(AMin3F1(g.g,j.g,k.g),l.g,o.g);
|
|
AF1 mnkB=AMin3F1(AMin3F1(g.b,j.b,k.b),l.b,o.b);
|
|
#ifdef CAS_BETTER_DIAGONALS
|
|
AF1 mnkR2=AMin3F1(AMin3F1(mnkR,f.r,h.r),n.r,p.r);
|
|
AF1 mnkG2=AMin3F1(AMin3F1(mnkG,f.g,h.g),n.g,p.g);
|
|
AF1 mnkB2=AMin3F1(AMin3F1(mnkB,f.b,h.b),n.b,p.b);
|
|
mnkR=mnkR+mnkR2;
|
|
mnkG=mnkG+mnkG2;
|
|
mnkB=mnkB+mnkB2;
|
|
#endif
|
|
AF1 mxkR=AMax3F1(AMax3F1(g.r,j.r,k.r),l.r,o.r);
|
|
AF1 mxkG=AMax3F1(AMax3F1(g.g,j.g,k.g),l.g,o.g);
|
|
AF1 mxkB=AMax3F1(AMax3F1(g.b,j.b,k.b),l.b,o.b);
|
|
#ifdef CAS_BETTER_DIAGONALS
|
|
AF1 mxkR2=AMax3F1(AMax3F1(mxkR,f.r,h.r),n.r,p.r);
|
|
AF1 mxkG2=AMax3F1(AMax3F1(mxkG,f.g,h.g),n.g,p.g);
|
|
AF1 mxkB2=AMax3F1(AMax3F1(mxkB,f.b,h.b),n.b,p.b);
|
|
mxkR=mxkR+mxkR2;
|
|
mxkG=mxkG+mxkG2;
|
|
mxkB=mxkB+mxkB2;
|
|
#endif
|
|
// Smooth minimum distance to signal limit divided by smooth max.
|
|
#ifdef CAS_GO_SLOWER
|
|
AF1 rcpMfR=ARcpF1(mxfR);
|
|
AF1 rcpMfG=ARcpF1(mxfG);
|
|
AF1 rcpMfB=ARcpF1(mxfB);
|
|
AF1 rcpMgR=ARcpF1(mxgR);
|
|
AF1 rcpMgG=ARcpF1(mxgG);
|
|
AF1 rcpMgB=ARcpF1(mxgB);
|
|
AF1 rcpMjR=ARcpF1(mxjR);
|
|
AF1 rcpMjG=ARcpF1(mxjG);
|
|
AF1 rcpMjB=ARcpF1(mxjB);
|
|
AF1 rcpMkR=ARcpF1(mxkR);
|
|
AF1 rcpMkG=ARcpF1(mxkG);
|
|
AF1 rcpMkB=ARcpF1(mxkB);
|
|
#else
|
|
AF1 rcpMfR=APrxLoRcpF1(mxfR);
|
|
AF1 rcpMfG=APrxLoRcpF1(mxfG);
|
|
AF1 rcpMfB=APrxLoRcpF1(mxfB);
|
|
AF1 rcpMgR=APrxLoRcpF1(mxgR);
|
|
AF1 rcpMgG=APrxLoRcpF1(mxgG);
|
|
AF1 rcpMgB=APrxLoRcpF1(mxgB);
|
|
AF1 rcpMjR=APrxLoRcpF1(mxjR);
|
|
AF1 rcpMjG=APrxLoRcpF1(mxjG);
|
|
AF1 rcpMjB=APrxLoRcpF1(mxjB);
|
|
AF1 rcpMkR=APrxLoRcpF1(mxkR);
|
|
AF1 rcpMkG=APrxLoRcpF1(mxkG);
|
|
AF1 rcpMkB=APrxLoRcpF1(mxkB);
|
|
#endif
|
|
#ifdef CAS_BETTER_DIAGONALS
|
|
AF1 ampfR=ASatF1(min(mnfR,AF1_(2.0)-mxfR)*rcpMfR);
|
|
AF1 ampfG=ASatF1(min(mnfG,AF1_(2.0)-mxfG)*rcpMfG);
|
|
AF1 ampfB=ASatF1(min(mnfB,AF1_(2.0)-mxfB)*rcpMfB);
|
|
AF1 ampgR=ASatF1(min(mngR,AF1_(2.0)-mxgR)*rcpMgR);
|
|
AF1 ampgG=ASatF1(min(mngG,AF1_(2.0)-mxgG)*rcpMgG);
|
|
AF1 ampgB=ASatF1(min(mngB,AF1_(2.0)-mxgB)*rcpMgB);
|
|
AF1 ampjR=ASatF1(min(mnjR,AF1_(2.0)-mxjR)*rcpMjR);
|
|
AF1 ampjG=ASatF1(min(mnjG,AF1_(2.0)-mxjG)*rcpMjG);
|
|
AF1 ampjB=ASatF1(min(mnjB,AF1_(2.0)-mxjB)*rcpMjB);
|
|
AF1 ampkR=ASatF1(min(mnkR,AF1_(2.0)-mxkR)*rcpMkR);
|
|
AF1 ampkG=ASatF1(min(mnkG,AF1_(2.0)-mxkG)*rcpMkG);
|
|
AF1 ampkB=ASatF1(min(mnkB,AF1_(2.0)-mxkB)*rcpMkB);
|
|
#else
|
|
AF1 ampfR=ASatF1(min(mnfR,AF1_(1.0)-mxfR)*rcpMfR);
|
|
AF1 ampfG=ASatF1(min(mnfG,AF1_(1.0)-mxfG)*rcpMfG);
|
|
AF1 ampfB=ASatF1(min(mnfB,AF1_(1.0)-mxfB)*rcpMfB);
|
|
AF1 ampgR=ASatF1(min(mngR,AF1_(1.0)-mxgR)*rcpMgR);
|
|
AF1 ampgG=ASatF1(min(mngG,AF1_(1.0)-mxgG)*rcpMgG);
|
|
AF1 ampgB=ASatF1(min(mngB,AF1_(1.0)-mxgB)*rcpMgB);
|
|
AF1 ampjR=ASatF1(min(mnjR,AF1_(1.0)-mxjR)*rcpMjR);
|
|
AF1 ampjG=ASatF1(min(mnjG,AF1_(1.0)-mxjG)*rcpMjG);
|
|
AF1 ampjB=ASatF1(min(mnjB,AF1_(1.0)-mxjB)*rcpMjB);
|
|
AF1 ampkR=ASatF1(min(mnkR,AF1_(1.0)-mxkR)*rcpMkR);
|
|
AF1 ampkG=ASatF1(min(mnkG,AF1_(1.0)-mxkG)*rcpMkG);
|
|
AF1 ampkB=ASatF1(min(mnkB,AF1_(1.0)-mxkB)*rcpMkB);
|
|
#endif
|
|
// Shaping amount of sharpening.
|
|
#ifdef CAS_GO_SLOWER
|
|
ampfR=sqrt(ampfR);
|
|
ampfG=sqrt(ampfG);
|
|
ampfB=sqrt(ampfB);
|
|
ampgR=sqrt(ampgR);
|
|
ampgG=sqrt(ampgG);
|
|
ampgB=sqrt(ampgB);
|
|
ampjR=sqrt(ampjR);
|
|
ampjG=sqrt(ampjG);
|
|
ampjB=sqrt(ampjB);
|
|
ampkR=sqrt(ampkR);
|
|
ampkG=sqrt(ampkG);
|
|
ampkB=sqrt(ampkB);
|
|
#else
|
|
ampfR=APrxLoSqrtF1(ampfR);
|
|
ampfG=APrxLoSqrtF1(ampfG);
|
|
ampfB=APrxLoSqrtF1(ampfB);
|
|
ampgR=APrxLoSqrtF1(ampgR);
|
|
ampgG=APrxLoSqrtF1(ampgG);
|
|
ampgB=APrxLoSqrtF1(ampgB);
|
|
ampjR=APrxLoSqrtF1(ampjR);
|
|
ampjG=APrxLoSqrtF1(ampjG);
|
|
ampjB=APrxLoSqrtF1(ampjB);
|
|
ampkR=APrxLoSqrtF1(ampkR);
|
|
ampkG=APrxLoSqrtF1(ampkG);
|
|
ampkB=APrxLoSqrtF1(ampkB);
|
|
#endif
|
|
// Filter shape.
|
|
// 0 w 0
|
|
// w 1 w
|
|
// 0 w 0
|
|
AF1 peak=AF1_AU1(const1.x);
|
|
AF1 wfR=ampfR*peak;
|
|
AF1 wfG=ampfG*peak;
|
|
AF1 wfB=ampfB*peak;
|
|
AF1 wgR=ampgR*peak;
|
|
AF1 wgG=ampgG*peak;
|
|
AF1 wgB=ampgB*peak;
|
|
AF1 wjR=ampjR*peak;
|
|
AF1 wjG=ampjG*peak;
|
|
AF1 wjB=ampjB*peak;
|
|
AF1 wkR=ampkR*peak;
|
|
AF1 wkG=ampkG*peak;
|
|
AF1 wkB=ampkB*peak;
|
|
// Blend between 4 results.
|
|
// s t
|
|
// u v
|
|
AF1 s=(AF1_(1.0)-pp.x)*(AF1_(1.0)-pp.y);
|
|
AF1 t= pp.x *(AF1_(1.0)-pp.y);
|
|
AF1 u=(AF1_(1.0)-pp.x)* pp.y ;
|
|
AF1 v= pp.x * pp.y ;
|
|
// Thin edges to hide bilinear interpolation (helps diagonals).
|
|
AF1 thinB=1.0/32.0;
|
|
#ifdef CAS_GO_SLOWER
|
|
s*=ARcpF1(thinB+(mxfG-mnfG));
|
|
t*=ARcpF1(thinB+(mxgG-mngG));
|
|
u*=ARcpF1(thinB+(mxjG-mnjG));
|
|
v*=ARcpF1(thinB+(mxkG-mnkG));
|
|
#else
|
|
s*=APrxLoRcpF1(thinB+(mxfG-mnfG));
|
|
t*=APrxLoRcpF1(thinB+(mxgG-mngG));
|
|
u*=APrxLoRcpF1(thinB+(mxjG-mnjG));
|
|
v*=APrxLoRcpF1(thinB+(mxkG-mnkG));
|
|
#endif
|
|
// Final weighting.
|
|
// b c
|
|
// e f g h
|
|
// i j k l
|
|
// n o
|
|
// _____ _____ _____ _____
|
|
// fs gt
|
|
//
|
|
// _____ _____ _____ _____
|
|
// fs s gt fs t gt
|
|
// ju kv
|
|
// _____ _____ _____ _____
|
|
// fs gt
|
|
// ju u kv ju v kv
|
|
// _____ _____ _____ _____
|
|
//
|
|
// ju kv
|
|
AF1 qbeR=wfR*s;
|
|
AF1 qbeG=wfG*s;
|
|
AF1 qbeB=wfB*s;
|
|
AF1 qchR=wgR*t;
|
|
AF1 qchG=wgG*t;
|
|
AF1 qchB=wgB*t;
|
|
AF1 qfR=wgR*t+wjR*u+s;
|
|
AF1 qfG=wgG*t+wjG*u+s;
|
|
AF1 qfB=wgB*t+wjB*u+s;
|
|
AF1 qgR=wfR*s+wkR*v+t;
|
|
AF1 qgG=wfG*s+wkG*v+t;
|
|
AF1 qgB=wfB*s+wkB*v+t;
|
|
AF1 qjR=wfR*s+wkR*v+u;
|
|
AF1 qjG=wfG*s+wkG*v+u;
|
|
AF1 qjB=wfB*s+wkB*v+u;
|
|
AF1 qkR=wgR*t+wjR*u+v;
|
|
AF1 qkG=wgG*t+wjG*u+v;
|
|
AF1 qkB=wgB*t+wjB*u+v;
|
|
AF1 qinR=wjR*u;
|
|
AF1 qinG=wjG*u;
|
|
AF1 qinB=wjB*u;
|
|
AF1 qloR=wkR*v;
|
|
AF1 qloG=wkG*v;
|
|
AF1 qloB=wkB*v;
|
|
// Filter.
|
|
#ifndef CAS_SLOW
|
|
// Using green coef only, depending on dead code removal to strip out the extra overhead.
|
|
#ifdef CAS_GO_SLOWER
|
|
AF1 rcpWG=ARcpF1(AF1_(2.0)*qbeG+AF1_(2.0)*qchG+AF1_(2.0)*qinG+AF1_(2.0)*qloG+qfG+qgG+qjG+qkG);
|
|
#else
|
|
AF1 rcpWG=APrxMedRcpF1(AF1_(2.0)*qbeG+AF1_(2.0)*qchG+AF1_(2.0)*qinG+AF1_(2.0)*qloG+qfG+qgG+qjG+qkG);
|
|
#endif
|
|
pixR=ASatF1((b.r*qbeG+e.r*qbeG+c.r*qchG+h.r*qchG+i.r*qinG+n.r*qinG+l.r*qloG+o.r*qloG+f.r*qfG+g.r*qgG+j.r*qjG+k.r*qkG)*rcpWG);
|
|
pixG=ASatF1((b.g*qbeG+e.g*qbeG+c.g*qchG+h.g*qchG+i.g*qinG+n.g*qinG+l.g*qloG+o.g*qloG+f.g*qfG+g.g*qgG+j.g*qjG+k.g*qkG)*rcpWG);
|
|
pixB=ASatF1((b.b*qbeG+e.b*qbeG+c.b*qchG+h.b*qchG+i.b*qinG+n.b*qinG+l.b*qloG+o.b*qloG+f.b*qfG+g.b*qgG+j.b*qjG+k.b*qkG)*rcpWG);
|
|
#else
|
|
#ifdef CAS_GO_SLOWER
|
|
AF1 rcpWR=ARcpF1(AF1_(2.0)*qbeR+AF1_(2.0)*qchR+AF1_(2.0)*qinR+AF1_(2.0)*qloR+qfR+qgR+qjR+qkR);
|
|
AF1 rcpWG=ARcpF1(AF1_(2.0)*qbeG+AF1_(2.0)*qchG+AF1_(2.0)*qinG+AF1_(2.0)*qloG+qfG+qgG+qjG+qkG);
|
|
AF1 rcpWB=ARcpF1(AF1_(2.0)*qbeB+AF1_(2.0)*qchB+AF1_(2.0)*qinB+AF1_(2.0)*qloB+qfB+qgB+qjB+qkB);
|
|
#else
|
|
AF1 rcpWR=APrxMedRcpF1(AF1_(2.0)*qbeR+AF1_(2.0)*qchR+AF1_(2.0)*qinR+AF1_(2.0)*qloR+qfR+qgR+qjR+qkR);
|
|
AF1 rcpWG=APrxMedRcpF1(AF1_(2.0)*qbeG+AF1_(2.0)*qchG+AF1_(2.0)*qinG+AF1_(2.0)*qloG+qfG+qgG+qjG+qkG);
|
|
AF1 rcpWB=APrxMedRcpF1(AF1_(2.0)*qbeB+AF1_(2.0)*qchB+AF1_(2.0)*qinB+AF1_(2.0)*qloB+qfB+qgB+qjB+qkB);
|
|
#endif
|
|
pixR=ASatF1((b.r*qbeR+e.r*qbeR+c.r*qchR+h.r*qchR+i.r*qinR+n.r*qinR+l.r*qloR+o.r*qloR+f.r*qfR+g.r*qgR+j.r*qjR+k.r*qkR)*rcpWR);
|
|
pixG=ASatF1((b.g*qbeG+e.g*qbeG+c.g*qchG+h.g*qchG+i.g*qinG+n.g*qinG+l.g*qloG+o.g*qloG+f.g*qfG+g.g*qgG+j.g*qjG+k.g*qkG)*rcpWG);
|
|
pixB=ASatF1((b.b*qbeB+e.b*qbeB+c.b*qchB+h.b*qchB+i.b*qinB+n.b*qinB+l.b*qloB+o.b*qloB+f.b*qfB+g.b*qgB+j.b*qjB+k.b*qkB)*rcpWB);
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
#ifdef A_GPU
|
|
|
|
#ifdef LEGACY_GAMMA
|
|
uniform float gamma;
|
|
|
|
vec3 legacyGamma(vec3 color)
|
|
{
|
|
vec3 c = 1. - clamp(color, vec3(0.), vec3(1.));
|
|
c = 1. - pow(c, vec3(gamma)); // s/b inverted already CPU-side
|
|
|
|
return c;
|
|
}
|
|
#endif
|
|
|
|
void main()
|
|
{
|
|
vec4 diff = vec4(0.f);
|
|
uvec2 point = uvec2(vary_fragcoord * out_screen_res.xy);
|
|
CasFilter(diff.r, diff.g, diff.b, point, cas_param_0, cas_param_1, true);
|
|
diff.a = texture(diffuseRect, vary_fragcoord).a;
|
|
diff.rgb = linear_to_srgb(diff.rgb);
|
|
|
|
#ifdef LEGACY_GAMMA
|
|
diff.rgb = legacyGamma(diff.rgb);
|
|
#endif
|
|
|
|
frag_color = diff;
|
|
}
|
|
#endif
|