phoenix-firestorm/indra/llcommon/tests/lleventcoro_test.cpp

337 lines
12 KiB
C++

/**
* @file coroutine_test.cpp
* @author Nat Goodspeed
* @date 2009-04-22
* @brief Test for coroutine.
*
* $LicenseInfo:firstyear=2009&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2010, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
#define BOOST_RESULT_OF_USE_TR1 1
#include <boost/bind.hpp>
#include <boost/range.hpp>
#include <boost/utility.hpp>
#include "linden_common.h"
#include <iostream>
#include <string>
#include <typeinfo>
#include "../test/lltut.h"
#include "../test/lltestapp.h"
#include "llsd.h"
#include "llsdutil.h"
#include "llevents.h"
#include "llcoros.h"
#include "lleventfilter.h"
#include "lleventcoro.h"
#include "../test/debug.h"
#include "../test/sync.h"
using namespace llcoro;
/*****************************************************************************
* Test helpers
*****************************************************************************/
/// Simulate an event API whose response is immediate: sent on receipt of the
/// initial request, rather than after some delay. This is the case that
/// distinguishes postAndSuspend() from calling post(), then calling
/// suspendUntilEventOn().
class ImmediateAPI
{
public:
ImmediateAPI(Sync& sync):
mPump("immediate", true),
mSync(sync)
{
mPump.listen("API", boost::bind(&ImmediateAPI::operator(), this, _1));
}
LLEventPump& getPump() { return mPump; }
// Invoke this with an LLSD map containing:
// ["value"]: Integer value. We will reply with ["value"] + 1.
// ["reply"]: Name of LLEventPump on which to send response.
bool operator()(const LLSD& event) const
{
mSync.bump();
LLSD::Integer value(event["value"]);
LLEventPumps::instance().obtain(event["reply"]).post(value + 1);
return false;
}
private:
LLEventStream mPump;
Sync& mSync;
};
/*****************************************************************************
* TUT
*****************************************************************************/
namespace tut
{
struct test_data
{
Sync mSync;
ImmediateAPI immediateAPI{mSync};
std::string replyName, errorName, threw, stringdata;
LLSD result, errordata;
int which;
LLTestApp testApp;
void explicit_wait(std::shared_ptr<LLCoros::Promise<std::string>>& cbp);
void waitForEventOn1();
void coroPump();
void postAndWait1();
void coroPumpPost();
};
typedef test_group<test_data> coroutine_group;
typedef coroutine_group::object object;
coroutine_group coroutinegrp("coroutine");
void test_data::explicit_wait(std::shared_ptr<LLCoros::Promise<std::string>>& cbp)
{
BEGIN
{
mSync.bump();
// The point of this test is to verify / illustrate suspending a
// coroutine for something other than an LLEventPump. In other
// words, this shows how to adapt to any async operation that
// provides a callback-style notification (and prove that it
// works).
// Perhaps we would send a request to a remote server and arrange
// for cbp->set_value() to be called on response.
// For test purposes, instead of handing 'callback' (or an
// adapter) off to some I/O subsystem, we'll just pass it back to
// our caller.
cbp = std::make_shared<LLCoros::Promise<std::string>>();
LLCoros::Future<std::string> future = LLCoros::getFuture(*cbp);
// calling get() on the future causes us to suspend
debug("about to suspend");
stringdata = future.get();
mSync.bump();
ensure_equals("Got it", stringdata, "received");
}
END
}
template<> template<>
void object::test<1>()
{
set_test_name("explicit_wait");
DEBUG;
// Construct the coroutine instance that will run explicit_wait.
std::shared_ptr<LLCoros::Promise<std::string>> respond;
LLCoros::instance().launch("test<1>",
[this, &respond](){ explicit_wait(respond); });
mSync.bump();
// When the coroutine waits for the future, it returns here.
debug("about to respond");
// Now we're the I/O subsystem delivering a result. This should make
// the coroutine ready.
respond->set_value("received");
// but give it a chance to wake up
mSync.yield();
// ensure the coroutine ran and woke up again with the intended result
ensure_equals(stringdata, "received");
}
void test_data::waitForEventOn1()
{
BEGIN
{
mSync.bump();
result = suspendUntilEventOn("source");
mSync.bump();
}
END
}
template<> template<>
void object::test<2>()
{
set_test_name("waitForEventOn1");
DEBUG;
LLCoros::instance().launch("test<2>", [this](){ waitForEventOn1(); });
mSync.bump();
debug("about to send");
LLEventPumps::instance().obtain("source").post("received");
// give waitForEventOn1() a chance to run
mSync.yield();
debug("back from send");
ensure_equals(result.asString(), "received");
}
void test_data::coroPump()
{
BEGIN
{
mSync.bump();
LLCoroEventPump waiter;
replyName = waiter.getName();
result = waiter.suspend();
mSync.bump();
}
END
}
template<> template<>
void object::test<3>()
{
set_test_name("coroPump");
DEBUG;
LLCoros::instance().launch("test<3>", [this](){ coroPump(); });
mSync.bump();
debug("about to send");
LLEventPumps::instance().obtain(replyName).post("received");
// give coroPump() a chance to run
mSync.yield();
debug("back from send");
ensure_equals(result.asString(), "received");
}
void test_data::postAndWait1()
{
BEGIN
{
mSync.bump();
result = postAndSuspend(LLSDMap("value", 17), // request event
immediateAPI.getPump(), // requestPump
"reply1", // replyPump
"reply"); // request["reply"] = name
mSync.bump();
}
END
}
template<> template<>
void object::test<4>()
{
set_test_name("postAndWait1");
DEBUG;
LLCoros::instance().launch("test<4>", [this](){ postAndWait1(); });
ensure_equals(result.asInteger(), 18);
}
void test_data::coroPumpPost()
{
BEGIN
{
mSync.bump();
LLCoroEventPump waiter;
result = waiter.postAndSuspend(LLSDMap("value", 17),
immediateAPI.getPump(), "reply");
mSync.bump();
}
END
}
template<> template<>
void object::test<5>()
{
set_test_name("coroPumpPost");
DEBUG;
LLCoros::instance().launch("test<5>", [this](){ coroPumpPost(); });
ensure_equals(result.asInteger(), 18);
}
template <class PUMP>
void test()
{
PUMP pump(typeid(PUMP).name());
bool running{false};
LLSD data{LLSD::emptyArray()};
// start things off by posting once before even starting the listener
// coro
LL_DEBUGS() << "test() posting first" << LL_ENDL;
LLSD first{LLSDMap("desc", "first")("value", 0)};
bool consumed = pump.post(first);
ensure("should not have consumed first", ! consumed);
// now launch the coro
LL_DEBUGS() << "test() launching listener coro" << LL_ENDL;
running = true;
LLCoros::instance().launch(
"listener",
[&pump, &running, &data](){
// important for this test that we consume posted values
LLCoros::instance().set_consuming(true);
// should immediately retrieve 'first' without waiting
LL_DEBUGS() << "listener coro waiting for first" << LL_ENDL;
data.append(llcoro::suspendUntilEventOnWithTimeout(pump, 0.1, LLSD()));
// Don't use ensure() from within the coro -- ensure() failure
// throws tut::fail, which won't propagate out to the main
// test driver, which will result in an odd failure.
// Wait for 'second' because it's not already pending.
LL_DEBUGS() << "listener coro waiting for second" << LL_ENDL;
data.append(llcoro::suspendUntilEventOnWithTimeout(pump, 0.1, LLSD()));
// and wait for 'third', which should involve no further waiting
LL_DEBUGS() << "listener coro waiting for third" << LL_ENDL;
data.append(llcoro::suspendUntilEventOnWithTimeout(pump, 0.1, LLSD()));
LL_DEBUGS() << "listener coro done" << LL_ENDL;
running = false;
});
// back from coro at the point where it's waiting for 'second'
LL_DEBUGS() << "test() posting second" << LL_ENDL;
LLSD second{llsd::map("desc", "second", "value", 1)};
consumed = pump.post(second);
ensure("should have consumed second", consumed);
// This is a key point: even though we've post()ed the value for which
// the coroutine is waiting, it's actually still suspended until we
// pause for some other reason. The coroutine will only pick up one
// value at a time from our 'pump'. It's important to exercise the
// case when we post() two values before it picks up either.
LL_DEBUGS() << "test() posting third" << LL_ENDL;
LLSD third{llsd::map("desc", "third", "value", 2)};
consumed = pump.post(third);
ensure("should NOT yet have consumed third", ! consumed);
// now just wait for coro to finish -- which it eventually will, given
// that all its suspend calls have short timeouts.
while (running)
{
LL_DEBUGS() << "test() waiting for coro done" << LL_ENDL;
llcoro::suspendUntilTimeout(0.1);
}
// okay, verify expected results
ensure_equals("should have received three values", data,
llsd::array(first, second, third));
LL_DEBUGS() << "test() done" << LL_ENDL;
}
template<> template<>
void object::test<6>()
{
set_test_name("LLEventMailDrop");
tut::test<LLEventMailDrop>();
}
template<> template<>
void object::test<7>()
{
set_test_name("LLEventLogProxyFor<LLEventMailDrop>");
tut::test< LLEventLogProxyFor<LLEventMailDrop> >();
}
}