phoenix-firestorm/indra/newview/pipeline.cpp

5323 lines
127 KiB
C++

/**
* @file pipeline.cpp
* @brief Rendering pipeline.
*
* $LicenseInfo:firstyear=2005&license=viewergpl$
*
* Copyright (c) 2005-2007, Linden Research, Inc.
*
* Second Life Viewer Source Code
* The source code in this file ("Source Code") is provided by Linden Lab
* to you under the terms of the GNU General Public License, version 2.0
* ("GPL"), unless you have obtained a separate licensing agreement
* ("Other License"), formally executed by you and Linden Lab. Terms of
* the GPL can be found in doc/GPL-license.txt in this distribution, or
* online at http://secondlife.com/developers/opensource/gplv2
*
* There are special exceptions to the terms and conditions of the GPL as
* it is applied to this Source Code. View the full text of the exception
* in the file doc/FLOSS-exception.txt in this software distribution, or
* online at http://secondlife.com/developers/opensource/flossexception
*
* By copying, modifying or distributing this software, you acknowledge
* that you have read and understood your obligations described above,
* and agree to abide by those obligations.
*
* ALL LINDEN LAB SOURCE CODE IS PROVIDED "AS IS." LINDEN LAB MAKES NO
* WARRANTIES, EXPRESS, IMPLIED OR OTHERWISE, REGARDING ITS ACCURACY,
* COMPLETENESS OR PERFORMANCE.
* $/LicenseInfo$
*/
#include "llviewerprecompiledheaders.h"
#include "pipeline.h"
// library includes
#include "audioengine.h" // For MAX_BUFFERS for debugging.
#include "imageids.h"
#include "llerror.h"
#include "llviewercontrol.h"
#include "llfasttimer.h"
#include "llfontgl.h"
#include "llmemory.h"
#include "llmemtype.h"
#include "llnamevalue.h"
#include "llprimitive.h"
#include "llvolume.h"
#include "material_codes.h"
#include "timing.h"
#include "v3color.h"
#include "llui.h"
#include "llglheaders.h"
#include "llrender.h"
// newview includes
#include "llagent.h"
#include "lldrawable.h"
#include "lldrawpoolalpha.h"
#include "lldrawpoolavatar.h"
#include "lldrawpoolground.h"
#include "lldrawpoolbump.h"
#include "lldrawpooltree.h"
#include "lldrawpoolwater.h"
#include "llface.h"
#include "llfeaturemanager.h"
#include "llfloatertelehub.h"
#include "llframestats.h"
#include "llgldbg.h"
#include "llhudmanager.h"
#include "lllightconstants.h"
#include "llresmgr.h"
#include "llselectmgr.h"
#include "llsky.h"
#include "lltracker.h"
#include "lltool.h"
#include "lltoolmgr.h"
#include "llviewercamera.h"
#include "llviewerimagelist.h"
#include "llviewerobject.h"
#include "llviewerobjectlist.h"
#include "llviewerparcelmgr.h"
#include "llviewerregion.h" // for audio debugging.
#include "llviewerwindow.h" // For getSpinAxis
#include "llvoavatar.h"
#include "llvoground.h"
#include "llvosky.h"
#include "llvotree.h"
#include "llvovolume.h"
#include "llvosurfacepatch.h"
#include "llvowater.h"
#include "llvotree.h"
#include "llvopartgroup.h"
#include "llworld.h"
#include "llcubemap.h"
#include "lldebugmessagebox.h"
#include "llviewershadermgr.h"
#include "llviewerjoystick.h"
#include "llviewerdisplay.h"
#include "llwlparammanager.h"
#include "llwaterparammanager.h"
#include "llspatialpartition.h"
#include "llmutelist.h"
#ifdef _DEBUG
// Debug indices is disabled for now for debug performance - djs 4/24/02
//#define DEBUG_INDICES
#else
//#define DEBUG_INDICES
#endif
const F32 BACKLIGHT_DAY_MAGNITUDE_AVATAR = 0.2f;
const F32 BACKLIGHT_NIGHT_MAGNITUDE_AVATAR = 0.1f;
const F32 BACKLIGHT_DAY_MAGNITUDE_OBJECT = 0.1f;
const F32 BACKLIGHT_NIGHT_MAGNITUDE_OBJECT = 0.08f;
const S32 MAX_ACTIVE_OBJECT_QUIET_FRAMES = 40;
const S32 MAX_OFFSCREEN_GEOMETRY_CHANGES_PER_FRAME = 10;
const U32 REFLECTION_MAP_RES = 128;
// Max number of occluders to search for. JC
const S32 MAX_OCCLUDER_COUNT = 2;
extern S32 gBoxFrame;
extern BOOL gRenderLightGlows;
extern BOOL gHideSelectedObjects;
extern BOOL gDisplaySwapBuffers;
extern BOOL gDebugGL;
// hack counter for rendering a fixed number of frames after toggling
// fullscreen to work around DEV-5361
static S32 sDelayedVBOEnable = 0;
BOOL gAvatarBacklight = FALSE;
BOOL gRenderForSelect = FALSE;
BOOL gDebugPipeline = FALSE;
LLPipeline gPipeline;
const LLMatrix4* gGLLastMatrix = NULL;
//----------------------------------------
std::string gPoolNames[] =
{
// Correspond to LLDrawpool enum render type
"NONE",
"POOL_SIMPLE",
"POOL_TERRAIN",
"POOL_TREE",
"POOL_SKY",
"POOL_WL_SKY",
"POOL_GROUND",
"POOL_BUMP",
"POOL_INVISIBLE",
"POOL_AVATAR",
"POOL_WATER",
"POOL_GLOW",
"POOL_ALPHA",
};
U32 nhpo2(U32 v)
{
U32 r = 1;
while (r < v) {
r *= 2;
}
return r;
}
glh::matrix4f glh_copy_matrix(GLdouble* src)
{
glh::matrix4f ret;
for (U32 i = 0; i < 16; i++)
{
ret.m[i] = (F32) src[i];
}
return ret;
}
glh::matrix4f glh_get_current_modelview()
{
return glh_copy_matrix(gGLModelView);
}
glh::matrix4f glh_get_current_projection()
{
return glh_copy_matrix(gGLProjection);
}
void glh_copy_matrix(const glh::matrix4f& src, GLdouble* dst)
{
for (U32 i = 0; i < 16; i++)
{
dst[i] = src.m[i];
}
}
void glh_set_current_modelview(const glh::matrix4f& mat)
{
glh_copy_matrix(mat, gGLModelView);
}
void glh_set_current_projection(glh::matrix4f& mat)
{
glh_copy_matrix(mat, gGLProjection);
}
glh::matrix4f gl_ortho(GLfloat left, GLfloat right, GLfloat bottom, GLfloat top, GLfloat znear, GLfloat zfar)
{
glh::matrix4f ret(
2.f/(right-left), 0.f, 0.f, -(right+left)/(right-left),
0.f, 2.f/(top-bottom), 0.f, -(top+bottom)/(top-bottom),
0.f, 0.f, -2.f/(zfar-znear), -(zfar+znear)/(zfar-znear),
0.f, 0.f, 0.f, 1.f);
return ret;
}
void display_update_camera();
//----------------------------------------
S32 LLPipeline::sCompiles = 0;
BOOL LLPipeline::sDynamicLOD = TRUE;
BOOL LLPipeline::sShowHUDAttachments = TRUE;
BOOL LLPipeline::sRenderPhysicalBeacons = TRUE;
BOOL LLPipeline::sRenderScriptedBeacons = FALSE;
BOOL LLPipeline::sRenderScriptedTouchBeacons = TRUE;
BOOL LLPipeline::sRenderParticleBeacons = FALSE;
BOOL LLPipeline::sRenderSoundBeacons = FALSE;
BOOL LLPipeline::sRenderBeacons = FALSE;
BOOL LLPipeline::sRenderHighlight = TRUE;
S32 LLPipeline::sUseOcclusion = 0;
BOOL LLPipeline::sFastAlpha = TRUE;
BOOL LLPipeline::sDisableShaders = FALSE;
BOOL LLPipeline::sRenderBump = TRUE;
BOOL LLPipeline::sUseFarClip = TRUE;
BOOL LLPipeline::sSkipUpdate = FALSE;
BOOL LLPipeline::sWaterReflections = FALSE;
BOOL LLPipeline::sRenderGlow = FALSE;
BOOL LLPipeline::sReflectionRender = FALSE;
BOOL LLPipeline::sImpostorRender = FALSE;
BOOL LLPipeline::sUnderWaterRender = FALSE;
BOOL LLPipeline::sTextureBindTest = FALSE;
BOOL LLPipeline::sRenderFrameTest = FALSE;
BOOL LLPipeline::sRenderAttachedLights = TRUE;
BOOL LLPipeline::sRenderAttachedParticles = TRUE;
static LLCullResult* sCull = NULL;
static const U32 gl_cube_face[] =
{
GL_TEXTURE_CUBE_MAP_POSITIVE_X_ARB,
GL_TEXTURE_CUBE_MAP_NEGATIVE_X_ARB,
GL_TEXTURE_CUBE_MAP_POSITIVE_Y_ARB,
GL_TEXTURE_CUBE_MAP_NEGATIVE_Y_ARB,
GL_TEXTURE_CUBE_MAP_POSITIVE_Z_ARB,
GL_TEXTURE_CUBE_MAP_NEGATIVE_Z_ARB,
};
void validate_framebuffer_object();
LLPipeline::LLPipeline() :
mBackfaceCull(FALSE),
mBatchCount(0),
mMatrixOpCount(0),
mTextureMatrixOps(0),
mMaxBatchSize(0),
mMinBatchSize(0),
mMeanBatchSize(0),
mTrianglesDrawn(0),
mNumVisibleNodes(0),
mVerticesRelit(0),
mLightingChanges(0),
mGeometryChanges(0),
mNumVisibleFaces(0),
mCubeBuffer(NULL),
mCubeFrameBuffer(0),
mCubeDepth(0),
mInitialized(FALSE),
mVertexShadersEnabled(FALSE),
mVertexShadersLoaded(0),
mRenderTypeMask(0),
mRenderDebugFeatureMask(0),
mRenderDebugMask(0),
mOldRenderDebugMask(0),
mLastRebuildPool(NULL),
mAlphaPool(NULL),
mSkyPool(NULL),
mTerrainPool(NULL),
mWaterPool(NULL),
mGroundPool(NULL),
mSimplePool(NULL),
mInvisiblePool(NULL),
mGlowPool(NULL),
mBumpPool(NULL),
mWLSkyPool(NULL),
mLightMask(0),
mLightMovingMask(0),
mLightingDetail(0)
{
mBlurCubeBuffer[0] = mBlurCubeBuffer[1] = mBlurCubeBuffer[2] = 0;
mBlurCubeTexture[0] = mBlurCubeTexture[1] = mBlurCubeTexture[2] = 0;
}
void LLPipeline::init()
{
LLMemType mt(LLMemType::MTYPE_PIPELINE);
sDynamicLOD = gSavedSettings.getBOOL("RenderDynamicLOD");
sRenderBump = gSavedSettings.getBOOL("RenderObjectBump");
sRenderAttachedLights = gSavedSettings.getBOOL("RenderAttachedLights");
sRenderAttachedParticles = gSavedSettings.getBOOL("RenderAttachedParticles");
mInitialized = TRUE;
stop_glerror();
//create render pass pools
getPool(LLDrawPool::POOL_ALPHA);
getPool(LLDrawPool::POOL_SIMPLE);
getPool(LLDrawPool::POOL_INVISIBLE);
getPool(LLDrawPool::POOL_BUMP);
getPool(LLDrawPool::POOL_GLOW);
mTrianglesDrawnStat.reset();
resetFrameStats();
mRenderTypeMask = 0xffffffff; // All render types start on
mRenderDebugFeatureMask = 0xffffffff; // All debugging features on
mRenderDebugMask = 0; // All debug starts off
mOldRenderDebugMask = mRenderDebugMask;
mBackfaceCull = TRUE;
stop_glerror();
// Enable features
LLViewerShaderMgr::instance()->setShaders();
stop_glerror();
}
LLPipeline::~LLPipeline()
{
}
void LLPipeline::cleanup()
{
assertInitialized();
for(pool_set_t::iterator iter = mPools.begin();
iter != mPools.end(); )
{
pool_set_t::iterator curiter = iter++;
LLDrawPool* poolp = *curiter;
if (poolp->isFacePool())
{
LLFacePool* face_pool = (LLFacePool*) poolp;
if (face_pool->mReferences.empty())
{
mPools.erase(curiter);
removeFromQuickLookup( poolp );
delete poolp;
}
}
else
{
mPools.erase(curiter);
removeFromQuickLookup( poolp );
delete poolp;
}
}
if (!mTerrainPools.empty())
{
llwarns << "Terrain Pools not cleaned up" << llendl;
}
if (!mTreePools.empty())
{
llwarns << "Tree Pools not cleaned up" << llendl;
}
delete mAlphaPool;
mAlphaPool = NULL;
delete mSkyPool;
mSkyPool = NULL;
delete mTerrainPool;
mTerrainPool = NULL;
delete mWaterPool;
mWaterPool = NULL;
delete mGroundPool;
mGroundPool = NULL;
delete mSimplePool;
mSimplePool = NULL;
delete mInvisiblePool;
mInvisiblePool = NULL;
delete mGlowPool;
mGlowPool = NULL;
delete mBumpPool;
mBumpPool = NULL;
// don't delete wl sky pool it was handled above in the for loop
//delete mWLSkyPool;
mWLSkyPool = NULL;
releaseGLBuffers();
mBloomImagep = NULL;
mBloomImage2p = NULL;
mFaceSelectImagep = NULL;
mMovedBridge.clear();
mInitialized = FALSE;
}
//============================================================================
void LLPipeline::destroyGL()
{
stop_glerror();
unloadShaders();
mHighlightFaces.clear();
resetDrawOrders();
resetVertexBuffers();
releaseGLBuffers();
if (LLVertexBuffer::sEnableVBOs)
{
// render 30 frames after switching to work around DEV-5361
sDelayedVBOEnable = 30;
LLVertexBuffer::sEnableVBOs = FALSE;
}
}
void LLPipeline::resizeScreenTexture()
{
if (gPipeline.canUseVertexShaders() && assertInitialized())
{
GLuint resX = gViewerWindow->getWindowDisplayWidth();
GLuint resY = gViewerWindow->getWindowDisplayHeight();
U32 res_mod = gSavedSettings.getU32("RenderResolutionDivisor");
if (res_mod > 1)
{
resX /= res_mod;
resY /= res_mod;
}
mScreen.release();
mScreen.allocate(resX, resY, GL_RGBA, TRUE, GL_TEXTURE_RECTANGLE_ARB);
llinfos << "RESIZED SCREEN TEXTURE: " << resX << "x" << resY << llendl;
}
}
void LLPipeline::releaseGLBuffers()
{
assertInitialized();
if (mCubeBuffer)
{
mCubeBuffer = NULL;
}
if (mCubeFrameBuffer)
{
glDeleteFramebuffersEXT(1, &mCubeFrameBuffer);
glDeleteRenderbuffersEXT(1, &mCubeDepth);
mCubeDepth = mCubeFrameBuffer = 0;
}
if (mBlurCubeBuffer[0])
{
glDeleteFramebuffersEXT(3, mBlurCubeBuffer);
mBlurCubeBuffer[0] = mBlurCubeBuffer[1] = mBlurCubeBuffer[2] = 0;
}
if (mBlurCubeTexture[0])
{
glDeleteTextures(3, mBlurCubeTexture);
mBlurCubeTexture[0] = mBlurCubeTexture[1] = mBlurCubeTexture[2] = 0;
}
mWaterRef.release();
mWaterDis.release();
mScreen.release();
for (U32 i = 0; i < 3; i++)
{
mGlow[i].release();
}
LLVOAvatar::resetImpostors();
}
void LLPipeline::createGLBuffers()
{
assertInitialized();
if (LLPipeline::sWaterReflections)
{ //water reflection texture
U32 res = (U32) gSavedSettings.getS32("RenderWaterRefResolution");
mWaterRef.allocate(res,res,GL_RGBA,TRUE);
mWaterDis.allocate(res,res,GL_RGBA,TRUE);
#if 0 //cube map buffers (keep for future work)
{
//reflection map generation buffers
if (mCubeFrameBuffer == 0)
{
glGenFramebuffersEXT(1, &mCubeFrameBuffer);
glGenRenderbuffersEXT(1, &mCubeDepth);
U32 res = REFLECTION_MAP_RES;
glBindRenderbufferEXT(GL_RENDERBUFFER_EXT, mCubeDepth);
glRenderbufferStorageEXT(GL_RENDERBUFFER_EXT,GL_DEPTH_COMPONENT,res,res);
glBindRenderbufferEXT(GL_RENDERBUFFER_EXT, 0);
}
if (mCubeBuffer.isNull())
{
res = 128;
mCubeBuffer = new LLCubeMap();
mCubeBuffer->initGL();
mCubeBuffer->setReflection();
for (U32 i = 0; i < 6; i++)
{
glTexImage2D(gl_cube_face[i], 0, GL_RGBA, res, res, 0, GL_RGBA, GL_FLOAT, NULL);
}
}
if (mBlurCubeBuffer[0] == 0)
{
glGenFramebuffersEXT(3, mBlurCubeBuffer);
}
if (mBlurCubeTexture[0] == 0)
{
glGenTextures(3, mBlurCubeTexture);
}
res = (U32) gSavedSettings.getS32("RenderReflectionRes");
for (U32 j = 0; j < 3; j++)
{
glBindTexture(GL_TEXTURE_CUBE_MAP_ARB, mBlurCubeTexture[j]);
glTexParameteri(GL_TEXTURE_CUBE_MAP_ARB, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_CUBE_MAP_ARB, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_CUBE_MAP_ARB, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_CUBE_MAP_ARB, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
for (U32 i = 0; i < 6; i++)
{
glTexImage2D(gl_cube_face[i], 0, GL_RGBA, res, res, 0, GL_RGBA, GL_FLOAT, NULL);
}
}
}
#endif
}
stop_glerror();
if (LLPipeline::sRenderGlow)
{ //screen space glow buffers
const U32 glow_res = llmax(1,
llmin(512, 1 << gSavedSettings.getS32("RenderGlowResolutionPow")));
for (U32 i = 0; i < 3; i++)
{
mGlow[i].allocate(512,glow_res,GL_RGBA,FALSE);
}
GLuint resX = gViewerWindow->getWindowDisplayWidth();
GLuint resY = gViewerWindow->getWindowDisplayHeight();
mScreen.allocate(resX, resY, GL_RGBA, TRUE, GL_TEXTURE_RECTANGLE_ARB);
}
}
void LLPipeline::restoreGL()
{
assertInitialized();
if (mVertexShadersEnabled)
{
LLViewerShaderMgr::instance()->setShaders();
}
for (LLWorld::region_list_t::iterator iter = LLWorld::getInstance()->getRegionList().begin();
iter != LLWorld::getInstance()->getRegionList().end(); ++iter)
{
LLViewerRegion* region = *iter;
for (U32 i = 0; i < LLViewerRegion::NUM_PARTITIONS; i++)
{
LLSpatialPartition* part = region->getSpatialPartition(i);
if (part)
{
part->restoreGL();
}
}
}
}
BOOL LLPipeline::canUseVertexShaders()
{
if (!gGLManager.mHasVertexShader ||
!gGLManager.mHasFragmentShader ||
!LLFeatureManager::getInstance()->isFeatureAvailable("VertexShaderEnable") ||
(assertInitialized() && mVertexShadersLoaded != 1) )
{
return FALSE;
}
else
{
return TRUE;
}
}
BOOL LLPipeline::canUseWindLightShaders() const
{
return (!LLPipeline::sDisableShaders &&
gWLSkyProgram.mProgramObject != 0 &&
LLViewerShaderMgr::instance()->getVertexShaderLevel(LLViewerShaderMgr::SHADER_WINDLIGHT) > 1);
}
BOOL LLPipeline::canUseWindLightShadersOnObjects() const
{
return (canUseWindLightShaders()
&& LLViewerShaderMgr::instance()->getVertexShaderLevel(LLViewerShaderMgr::SHADER_OBJECT) > 0);
}
void LLPipeline::unloadShaders()
{
LLViewerShaderMgr::instance()->unloadShaders();
mVertexShadersLoaded = 0;
}
void LLPipeline::assertInitializedDoError()
{
llerrs << "LLPipeline used when uninitialized." << llendl;
}
//============================================================================
void LLPipeline::enableShadows(const BOOL enable_shadows)
{
//should probably do something here to wrangle shadows....
}
S32 LLPipeline::getMaxLightingDetail() const
{
/*if (mVertexShaderLevel[SHADER_OBJECT] >= LLDrawPoolSimple::SHADER_LEVEL_LOCAL_LIGHTS)
{
return 3;
}
else*/
{
return 1;
}
}
S32 LLPipeline::setLightingDetail(S32 level)
{
assertInitialized();
if (level < 0)
{
level = gSavedSettings.getS32("RenderLightingDetail");
}
level = llclamp(level, 0, getMaxLightingDetail());
if (level != mLightingDetail)
{
gSavedSettings.setS32("RenderLightingDetail", level);
mLightingDetail = level;
if (mVertexShadersLoaded == 1)
{
LLViewerShaderMgr::instance()->setShaders();
}
}
return mLightingDetail;
}
class LLOctreeDirtyTexture : public LLOctreeTraveler<LLDrawable>
{
public:
const std::set<LLViewerImage*>& mTextures;
LLOctreeDirtyTexture(const std::set<LLViewerImage*>& textures) : mTextures(textures) { }
virtual void visit(const LLOctreeNode<LLDrawable>* node)
{
LLSpatialGroup* group = (LLSpatialGroup*) node->getListener(0);
if (!group->isState(LLSpatialGroup::GEOM_DIRTY) && !group->getData().empty())
{
for (LLSpatialGroup::draw_map_t::iterator i = group->mDrawMap.begin(); i != group->mDrawMap.end(); ++i)
{
for (LLSpatialGroup::drawmap_elem_t::iterator j = i->second.begin(); j != i->second.end(); ++j)
{
LLDrawInfo* params = *j;
if (mTextures.find(params->mTexture) != mTextures.end())
{
group->setState(LLSpatialGroup::GEOM_DIRTY);
}
}
}
}
for (LLSpatialGroup::bridge_list_t::iterator i = group->mBridgeList.begin(); i != group->mBridgeList.end(); ++i)
{
LLSpatialBridge* bridge = *i;
traverse(bridge->mOctree);
}
}
};
// Called when a texture changes # of channels (causes faces to move to alpha pool)
void LLPipeline::dirtyPoolObjectTextures(const std::set<LLViewerImage*>& textures)
{
assertInitialized();
// *TODO: This is inefficient and causes frame spikes; need a better way to do this
// Most of the time is spent in dirty.traverse.
for (pool_set_t::iterator iter = mPools.begin(); iter != mPools.end(); ++iter)
{
LLDrawPool *poolp = *iter;
if (poolp->isFacePool())
{
((LLFacePool*) poolp)->dirtyTextures(textures);
}
}
LLOctreeDirtyTexture dirty(textures);
for (LLWorld::region_list_t::iterator iter = LLWorld::getInstance()->getRegionList().begin();
iter != LLWorld::getInstance()->getRegionList().end(); ++iter)
{
LLViewerRegion* region = *iter;
for (U32 i = 0; i < LLViewerRegion::NUM_PARTITIONS; i++)
{
LLSpatialPartition* part = region->getSpatialPartition(i);
if (part)
{
dirty.traverse(part->mOctree);
}
}
}
}
LLDrawPool *LLPipeline::findPool(const U32 type, LLViewerImage *tex0)
{
assertInitialized();
LLDrawPool *poolp = NULL;
switch( type )
{
case LLDrawPool::POOL_SIMPLE:
poolp = mSimplePool;
break;
case LLDrawPool::POOL_INVISIBLE:
poolp = mInvisiblePool;
break;
case LLDrawPool::POOL_GLOW:
poolp = mGlowPool;
break;
case LLDrawPool::POOL_TREE:
poolp = get_if_there(mTreePools, (uintptr_t)tex0, (LLDrawPool*)0 );
break;
case LLDrawPool::POOL_TERRAIN:
poolp = get_if_there(mTerrainPools, (uintptr_t)tex0, (LLDrawPool*)0 );
break;
case LLDrawPool::POOL_BUMP:
poolp = mBumpPool;
break;
case LLDrawPool::POOL_ALPHA:
poolp = mAlphaPool;
break;
case LLDrawPool::POOL_AVATAR:
break; // Do nothing
case LLDrawPool::POOL_SKY:
poolp = mSkyPool;
break;
case LLDrawPool::POOL_WATER:
poolp = mWaterPool;
break;
case LLDrawPool::POOL_GROUND:
poolp = mGroundPool;
break;
case LLDrawPool::POOL_WL_SKY:
poolp = mWLSkyPool;
break;
default:
llassert(0);
llerrs << "Invalid Pool Type in LLPipeline::findPool() type=" << type << llendl;
break;
}
return poolp;
}
LLDrawPool *LLPipeline::getPool(const U32 type, LLViewerImage *tex0)
{
LLMemType mt(LLMemType::MTYPE_PIPELINE);
LLDrawPool *poolp = findPool(type, tex0);
if (poolp)
{
return poolp;
}
LLDrawPool *new_poolp = LLDrawPool::createPool(type, tex0);
addPool( new_poolp );
return new_poolp;
}
// static
LLDrawPool* LLPipeline::getPoolFromTE(const LLTextureEntry* te, LLViewerImage* imagep)
{
LLMemType mt(LLMemType::MTYPE_PIPELINE);
U32 type = getPoolTypeFromTE(te, imagep);
return gPipeline.getPool(type, imagep);
}
//static
U32 LLPipeline::getPoolTypeFromTE(const LLTextureEntry* te, LLViewerImage* imagep)
{
LLMemType mt(LLMemType::MTYPE_PIPELINE);
if (!te || !imagep)
{
return 0;
}
bool alpha = te->getColor().mV[3] < 0.999f;
if (imagep)
{
alpha = alpha || (imagep->getComponents() == 4 && ! imagep->mIsMediaTexture) || (imagep->getComponents() == 2);
}
if (alpha)
{
return LLDrawPool::POOL_ALPHA;
}
else if ((te->getBumpmap() || te->getShiny()))
{
return LLDrawPool::POOL_BUMP;
}
else
{
return LLDrawPool::POOL_SIMPLE;
}
}
void LLPipeline::addPool(LLDrawPool *new_poolp)
{
LLMemType mt(LLMemType::MTYPE_PIPELINE);
assertInitialized();
mPools.insert(new_poolp);
addToQuickLookup( new_poolp );
}
void LLPipeline::allocDrawable(LLViewerObject *vobj)
{
LLMemType mt(LLMemType::MTYPE_DRAWABLE);
LLDrawable *drawable = new LLDrawable();
vobj->mDrawable = drawable;
drawable->mVObjp = vobj;
//encompass completely sheared objects by taking
//the most extreme point possible (<1,1,0.5>)
drawable->setRadius(LLVector3(1,1,0.5f).scaleVec(vobj->getScale()).length());
if (vobj->isOrphaned())
{
drawable->setState(LLDrawable::FORCE_INVISIBLE);
}
drawable->updateXform(TRUE);
}
void LLPipeline::unlinkDrawable(LLDrawable *drawable)
{
LLFastTimer t(LLFastTimer::FTM_PIPELINE);
assertInitialized();
LLPointer<LLDrawable> drawablep = drawable; // make sure this doesn't get deleted before we are done
// Based on flags, remove the drawable from the queues that it's on.
if (drawablep->isState(LLDrawable::ON_MOVE_LIST))
{
LLDrawable::drawable_vector_t::iterator iter = std::find(mMovedList.begin(), mMovedList.end(), drawablep);
if (iter != mMovedList.end())
{
mMovedList.erase(iter);
}
}
if (drawablep->getSpatialGroup())
{
if (!drawablep->getSpatialGroup()->mSpatialPartition->remove(drawablep, drawablep->getSpatialGroup()))
{
#ifdef LL_RELEASE_FOR_DOWNLOAD
llwarns << "Couldn't remove object from spatial group!" << llendl;
#else
llerrs << "Couldn't remove object from spatial group!" << llendl;
#endif
}
}
mLights.erase(drawablep);
for (light_set_t::iterator iter = mNearbyLights.begin();
iter != mNearbyLights.end(); iter++)
{
if (iter->drawable == drawablep)
{
mNearbyLights.erase(iter);
break;
}
}
}
U32 LLPipeline::addObject(LLViewerObject *vobj)
{
LLMemType mt(LLMemType::MTYPE_DRAWABLE);
if (gNoRender)
{
return 0;
}
LLDrawable* drawablep = vobj->mDrawable;
if (!drawablep)
{
drawablep = vobj->createDrawable(this);
}
llassert(drawablep);
if (vobj->getParent())
{
vobj->setDrawableParent(((LLViewerObject*)vobj->getParent())->mDrawable); // LLPipeline::addObject 1
}
else
{
vobj->setDrawableParent(NULL); // LLPipeline::addObject 2
}
markRebuild(drawablep, LLDrawable::REBUILD_ALL, TRUE);
return 1;
}
void LLPipeline::resetFrameStats()
{
assertInitialized();
mTrianglesDrawnStat.addValue(mTrianglesDrawn/1000.f);
if (mBatchCount > 0)
{
mMeanBatchSize = gPipeline.mTrianglesDrawn/gPipeline.mBatchCount;
}
mTrianglesDrawn = 0;
sCompiles = 0;
mVerticesRelit = 0;
mLightingChanges = 0;
mGeometryChanges = 0;
mNumVisibleFaces = 0;
if (mOldRenderDebugMask != mRenderDebugMask)
{
gObjectList.clearDebugText();
mOldRenderDebugMask = mRenderDebugMask;
}
}
//external functions for asynchronous updating
void LLPipeline::updateMoveDampedAsync(LLDrawable* drawablep)
{
if (gSavedSettings.getBOOL("FreezeTime"))
{
return;
}
if (!drawablep)
{
llerrs << "updateMove called with NULL drawablep" << llendl;
return;
}
if (drawablep->isState(LLDrawable::EARLY_MOVE))
{
return;
}
assertInitialized();
// update drawable now
drawablep->clearState(LLDrawable::MOVE_UNDAMPED); // force to DAMPED
drawablep->updateMove(); // returns done
drawablep->setState(LLDrawable::EARLY_MOVE); // flag says we already did an undamped move this frame
// Put on move list so that EARLY_MOVE gets cleared
if (!drawablep->isState(LLDrawable::ON_MOVE_LIST))
{
mMovedList.push_back(drawablep);
drawablep->setState(LLDrawable::ON_MOVE_LIST);
}
}
void LLPipeline::updateMoveNormalAsync(LLDrawable* drawablep)
{
if (gSavedSettings.getBOOL("FreezeTime"))
{
return;
}
if (!drawablep)
{
llerrs << "updateMove called with NULL drawablep" << llendl;
}
if (drawablep->isState(LLDrawable::EARLY_MOVE))
{
return;
}
assertInitialized();
// update drawable now
drawablep->setState(LLDrawable::MOVE_UNDAMPED); // force to UNDAMPED
drawablep->updateMove();
drawablep->setState(LLDrawable::EARLY_MOVE); // flag says we already did an undamped move this frame
// Put on move list so that EARLY_MOVE gets cleared
if (!drawablep->isState(LLDrawable::ON_MOVE_LIST))
{
mMovedList.push_back(drawablep);
drawablep->setState(LLDrawable::ON_MOVE_LIST);
}
}
void LLPipeline::updateMovedList(LLDrawable::drawable_vector_t& moved_list)
{
for (LLDrawable::drawable_vector_t::iterator iter = moved_list.begin();
iter != moved_list.end(); )
{
LLDrawable::drawable_vector_t::iterator curiter = iter++;
LLDrawable *drawablep = *curiter;
BOOL done = TRUE;
if (!drawablep->isDead() && (!drawablep->isState(LLDrawable::EARLY_MOVE)))
{
done = drawablep->updateMove();
}
drawablep->clearState(LLDrawable::EARLY_MOVE | LLDrawable::MOVE_UNDAMPED);
if (done)
{
drawablep->clearState(LLDrawable::ON_MOVE_LIST);
iter = moved_list.erase(curiter);
}
}
}
void LLPipeline::updateMove()
{
LLFastTimer t(LLFastTimer::FTM_UPDATE_MOVE);
LLMemType mt(LLMemType::MTYPE_PIPELINE);
if (gSavedSettings.getBOOL("FreezeTime"))
{
return;
}
assertInitialized();
for (LLDrawable::drawable_set_t::iterator iter = mRetexturedList.begin();
iter != mRetexturedList.end(); ++iter)
{
LLDrawable* drawablep = *iter;
if (drawablep && !drawablep->isDead())
{
drawablep->updateTexture();
}
}
mRetexturedList.clear();
updateMovedList(mMovedList);
for (LLDrawable::drawable_set_t::iterator iter = mActiveQ.begin();
iter != mActiveQ.end(); )
{
LLDrawable::drawable_set_t::iterator curiter = iter++;
LLDrawable* drawablep = *curiter;
if (drawablep && !drawablep->isDead())
{
if (drawablep->isRoot() &&
drawablep->mQuietCount++ > MAX_ACTIVE_OBJECT_QUIET_FRAMES &&
(!drawablep->getParent() || !drawablep->getParent()->isActive()))
{
drawablep->makeStatic(); // removes drawable and its children from mActiveQ
iter = mActiveQ.upper_bound(drawablep); // next valid entry
}
}
else
{
mActiveQ.erase(curiter);
}
}
//balance octrees
{
LLFastTimer ot(LLFastTimer::FTM_OCTREE_BALANCE);
for (LLWorld::region_list_t::iterator iter = LLWorld::getInstance()->getRegionList().begin();
iter != LLWorld::getInstance()->getRegionList().end(); ++iter)
{
LLViewerRegion* region = *iter;
for (U32 i = 0; i < LLViewerRegion::NUM_PARTITIONS; i++)
{
LLSpatialPartition* part = region->getSpatialPartition(i);
if (part)
{
part->mOctree->balance();
}
}
}
}
}
/////////////////////////////////////////////////////////////////////////////
// Culling and occlusion testing
/////////////////////////////////////////////////////////////////////////////
//static
F32 LLPipeline::calcPixelArea(LLVector3 center, LLVector3 size, LLCamera &camera)
{
LLVector3 lookAt = center - camera.getOrigin();
F32 dist = lookAt.length();
//ramp down distance for nearby objects
if (dist < 16.f)
{
dist /= 16.f;
dist *= dist;
dist *= 16.f;
}
//get area of circle around node
F32 app_angle = atanf(size.length()/dist);
F32 radius = app_angle*LLDrawable::sCurPixelAngle;
return radius*radius * 3.14159f;
}
void LLPipeline::grabReferences(LLCullResult& result)
{
sCull = &result;
}
void LLPipeline::updateCull(LLCamera& camera, LLCullResult& result, S32 water_clip)
{
LLFastTimer t(LLFastTimer::FTM_CULL);
LLMemType mt(LLMemType::MTYPE_PIPELINE);
grabReferences(result);
sCull->clear();
BOOL to_texture = LLPipeline::sUseOcclusion > 1 &&
!hasRenderType(LLPipeline::RENDER_TYPE_HUD) &&
!sReflectionRender &&
gPipeline.canUseVertexShaders() &&
sRenderGlow;
if (to_texture)
{
mScreen.bindTarget();
}
glPushMatrix();
gGLLastMatrix = NULL;
glLoadMatrixd(gGLLastModelView);
LLVertexBuffer::unbind();
LLGLDisable blend(GL_BLEND);
LLGLDisable test(GL_ALPHA_TEST);
LLViewerImage::unbindTexture(0, GL_TEXTURE_2D);
gGL.setColorMask(false, false);
LLGLDepthTest depth(GL_TRUE, GL_FALSE);
for (LLWorld::region_list_t::iterator iter = LLWorld::getInstance()->getRegionList().begin();
iter != LLWorld::getInstance()->getRegionList().end(); ++iter)
{
LLViewerRegion* region = *iter;
if (water_clip != 0)
{
LLPlane plane(LLVector3(0,0, (F32) -water_clip), (F32) water_clip*region->getWaterHeight());
camera.setUserClipPlane(plane);
}
else
{
camera.disableUserClipPlane();
}
for (U32 i = 0; i < LLViewerRegion::NUM_PARTITIONS; i++)
{
LLSpatialPartition* part = region->getSpatialPartition(i);
if (part)
{
if (hasRenderType(part->mDrawableType))
{
part->cull(camera);
}
}
}
}
camera.disableUserClipPlane();
if (gSky.mVOSkyp.notNull() && gSky.mVOSkyp->mDrawable.notNull())
{
// Hack for sky - always visible.
if (hasRenderType(LLPipeline::RENDER_TYPE_SKY))
{
gSky.mVOSkyp->mDrawable->setVisible(camera);
sCull->pushDrawable(gSky.mVOSkyp->mDrawable);
gSky.updateCull();
stop_glerror();
}
}
else
{
llinfos << "No sky drawable!" << llendl;
}
if (hasRenderType(LLPipeline::RENDER_TYPE_GROUND) &&
!gPipeline.canUseWindLightShaders() &&
gSky.mVOGroundp.notNull() &&
gSky.mVOGroundp->mDrawable.notNull() &&
!LLPipeline::sWaterReflections)
{
gSky.mVOGroundp->mDrawable->setVisible(camera);
sCull->pushDrawable(gSky.mVOGroundp->mDrawable);
}
gGL.setColorMask(true, false);
glPopMatrix();
if (to_texture)
{
mScreen.flush();
LLRenderTarget::unbindTarget();
}
else if (LLPipeline::sUseOcclusion > 1)
{
glFlush();
}
}
void LLPipeline::markNotCulled(LLSpatialGroup* group, LLCamera& camera)
{
if (group->getData().empty())
{
return;
}
group->setVisible();
if (!sSkipUpdate)
{
group->updateDistance(camera);
}
const F32 MINIMUM_PIXEL_AREA = 16.f;
if (group->mPixelArea < MINIMUM_PIXEL_AREA)
{
return;
}
assertInitialized();
if (!group->mSpatialPartition->mRenderByGroup)
{ //render by drawable
sCull->pushDrawableGroup(group);
}
else
{ //render by group
sCull->pushVisibleGroup(group);
}
mNumVisibleNodes++;
}
void LLPipeline::markOccluder(LLSpatialGroup* group)
{
if (sUseOcclusion > 1 && group && !group->isState(LLSpatialGroup::ACTIVE_OCCLUSION))
{
LLSpatialGroup* parent = group->getParent();
if (!parent || !parent->isState(LLSpatialGroup::OCCLUDED))
{ //only mark top most occluders as active occlusion
sCull->pushOcclusionGroup(group);
group->setState(LLSpatialGroup::ACTIVE_OCCLUSION);
if (parent &&
!parent->isState(LLSpatialGroup::ACTIVE_OCCLUSION) &&
parent->getElementCount() == 0 &&
parent->needsUpdate())
{
sCull->pushOcclusionGroup(group);
parent->setState(LLSpatialGroup::ACTIVE_OCCLUSION);
}
}
}
}
void LLPipeline::doOcclusion(LLCamera& camera)
{
LLVertexBuffer::unbind();
if (hasRenderDebugMask(LLPipeline::RENDER_DEBUG_OCCLUSION))
{
gGL.setColorMask(true, false, false, false);
}
else
{
gGL.setColorMask(false, false);
}
LLGLDisable blend(GL_BLEND);
LLGLDisable test(GL_ALPHA_TEST);
LLViewerImage::unbindTexture(0, GL_TEXTURE_2D);
LLGLDepthTest depth(GL_TRUE, GL_FALSE);
if (LLPipeline::sUseOcclusion > 1)
{
for (LLCullResult::sg_list_t::iterator iter = sCull->beginOcclusionGroups(); iter != sCull->endOcclusionGroups(); ++iter)
{
LLSpatialGroup* group = *iter;
group->doOcclusion(&camera);
group->clearState(LLSpatialGroup::ACTIVE_OCCLUSION);
}
}
gGL.setColorMask(true, false);
glFlush();
}
BOOL LLPipeline::updateDrawableGeom(LLDrawable* drawablep, BOOL priority)
{
BOOL update_complete = drawablep->updateGeometry(priority);
if (update_complete && assertInitialized())
{
drawablep->setState(LLDrawable::BUILT);
mGeometryChanges++;
}
return update_complete;
}
void LLPipeline::updateGeom(F32 max_dtime)
{
LLTimer update_timer;
LLMemType mt(LLMemType::MTYPE_PIPELINE);
LLPointer<LLDrawable> drawablep;
LLFastTimer t(LLFastTimer::FTM_GEO_UPDATE);
assertInitialized();
if (sDelayedVBOEnable > 0)
{
if (--sDelayedVBOEnable <= 0)
{
resetVertexBuffers();
LLVertexBuffer::sEnableVBOs = TRUE;
}
}
// notify various object types to reset internal cost metrics, etc.
// for now, only LLVOVolume does this to throttle LOD changes
LLVOVolume::preUpdateGeom();
// Iterate through all drawables on the priority build queue,
for (LLDrawable::drawable_list_t::iterator iter = mBuildQ1.begin();
iter != mBuildQ1.end();)
{
LLDrawable::drawable_list_t::iterator curiter = iter++;
LLDrawable* drawablep = *curiter;
if (drawablep && !drawablep->isDead())
{
if (drawablep->isState(LLDrawable::IN_REBUILD_Q2))
{
drawablep->clearState(LLDrawable::IN_REBUILD_Q2);
LLDrawable::drawable_list_t::iterator find = std::find(mBuildQ2.begin(), mBuildQ2.end(), drawablep);
if (find != mBuildQ2.end())
{
mBuildQ2.erase(find);
}
}
if (updateDrawableGeom(drawablep, TRUE))
{
drawablep->clearState(LLDrawable::IN_REBUILD_Q1);
mBuildQ1.erase(curiter);
}
}
else
{
mBuildQ1.erase(curiter);
}
}
// Iterate through some drawables on the non-priority build queue
S32 min_count = 16;
S32 size = (S32) mBuildQ2.size();
if (size > 1024)
{
min_count = llclamp((S32) (size * (F32) size/4096), 16, size);
}
S32 count = 0;
max_dtime = llmax(update_timer.getElapsedTimeF32()+0.001f, max_dtime);
LLSpatialGroup* last_group = NULL;
LLSpatialBridge* last_bridge = NULL;
for (LLDrawable::drawable_list_t::iterator iter = mBuildQ2.begin();
iter != mBuildQ2.end(); )
{
LLDrawable::drawable_list_t::iterator curiter = iter++;
LLDrawable* drawablep = *curiter;
LLSpatialBridge* bridge = drawablep->isRoot() ? drawablep->getSpatialBridge() :
drawablep->getParent()->getSpatialBridge();
if (drawablep->getSpatialGroup() != last_group &&
(!last_bridge || bridge != last_bridge) &&
(update_timer.getElapsedTimeF32() >= max_dtime) && count > min_count)
{
break;
}
//make sure updates don't stop in the middle of a spatial group
//to avoid thrashing (objects are enqueued by group)
last_group = drawablep->getSpatialGroup();
last_bridge = bridge;
BOOL update_complete = TRUE;
if (!drawablep->isDead())
{
update_complete = updateDrawableGeom(drawablep, FALSE);
count++;
}
if (update_complete)
{
drawablep->clearState(LLDrawable::IN_REBUILD_Q2);
mBuildQ2.erase(curiter);
}
}
updateMovedList(mMovedBridge);
}
void LLPipeline::markVisible(LLDrawable *drawablep, LLCamera& camera)
{
LLMemType mt(LLMemType::MTYPE_PIPELINE);
if(!drawablep || drawablep->isDead())
{
return;
}
if (drawablep->isSpatialBridge())
{
sCull->pushBridge((LLSpatialBridge*) drawablep);
}
else
{
sCull->pushDrawable(drawablep);
}
drawablep->setVisible(camera);
}
void LLPipeline::markMoved(LLDrawable *drawablep, BOOL damped_motion)
{
LLMemType mt(LLMemType::MTYPE_PIPELINE);
if (!drawablep)
{
llerrs << "Sending null drawable to moved list!" << llendl;
return;
}
if (drawablep->isDead())
{
llwarns << "Marking NULL or dead drawable moved!" << llendl;
return;
}
if (drawablep->getParent())
{
//ensure that parent drawables are moved first
markMoved(drawablep->getParent(), damped_motion);
}
assertInitialized();
if (!drawablep->isState(LLDrawable::ON_MOVE_LIST))
{
if (drawablep->isSpatialBridge())
{
mMovedBridge.push_back(drawablep);
}
else
{
mMovedList.push_back(drawablep);
}
drawablep->setState(LLDrawable::ON_MOVE_LIST);
}
if (damped_motion == FALSE)
{
drawablep->setState(LLDrawable::MOVE_UNDAMPED); // UNDAMPED trumps DAMPED
}
else if (drawablep->isState(LLDrawable::MOVE_UNDAMPED))
{
drawablep->clearState(LLDrawable::MOVE_UNDAMPED);
}
}
void LLPipeline::markShift(LLDrawable *drawablep)
{
LLMemType mt(LLMemType::MTYPE_PIPELINE);
if (!drawablep || drawablep->isDead())
{
return;
}
assertInitialized();
if (!drawablep->isState(LLDrawable::ON_SHIFT_LIST))
{
drawablep->getVObj()->setChanged(LLXform::SHIFTED | LLXform::SILHOUETTE);
if (drawablep->getParent())
{
markShift(drawablep->getParent());
}
mShiftList.push_back(drawablep);
drawablep->setState(LLDrawable::ON_SHIFT_LIST);
}
}
void LLPipeline::shiftObjects(const LLVector3 &offset)
{
LLMemType mt(LLMemType::MTYPE_PIPELINE);
assertInitialized();
glClear(GL_DEPTH_BUFFER_BIT);
gDepthDirty = FALSE;
for (LLDrawable::drawable_vector_t::iterator iter = mShiftList.begin();
iter != mShiftList.end(); iter++)
{
LLDrawable *drawablep = *iter;
if (drawablep->isDead())
{
continue;
}
drawablep->shiftPos(offset);
drawablep->clearState(LLDrawable::ON_SHIFT_LIST);
}
mShiftList.resize(0);
for (LLWorld::region_list_t::iterator iter = LLWorld::getInstance()->getRegionList().begin();
iter != LLWorld::getInstance()->getRegionList().end(); ++iter)
{
LLViewerRegion* region = *iter;
for (U32 i = 0; i < LLViewerRegion::NUM_PARTITIONS; i++)
{
LLSpatialPartition* part = region->getSpatialPartition(i);
if (part)
{
part->shift(offset);
}
}
}
LLHUDText::shiftAll(offset);
display_update_camera();
}
void LLPipeline::markTextured(LLDrawable *drawablep)
{
LLMemType mt(LLMemType::MTYPE_PIPELINE);
if (drawablep && !drawablep->isDead() && assertInitialized())
{
mRetexturedList.insert(drawablep);
}
}
void LLPipeline::markRebuild(LLDrawable *drawablep, LLDrawable::EDrawableFlags flag, BOOL priority)
{
LLMemType mt(LLMemType::MTYPE_PIPELINE);
if (drawablep && !drawablep->isDead() && assertInitialized())
{
if (!drawablep->isState(LLDrawable::BUILT))
{
priority = TRUE;
}
if (priority)
{
if (!drawablep->isState(LLDrawable::IN_REBUILD_Q1))
{
mBuildQ1.push_back(drawablep);
drawablep->setState(LLDrawable::IN_REBUILD_Q1); // mark drawable as being in priority queue
}
}
else if (!drawablep->isState(LLDrawable::IN_REBUILD_Q2))
{
mBuildQ2.push_back(drawablep);
drawablep->setState(LLDrawable::IN_REBUILD_Q2); // need flag here because it is just a list
}
if (flag & (LLDrawable::REBUILD_VOLUME | LLDrawable::REBUILD_POSITION))
{
drawablep->getVObj()->setChanged(LLXform::SILHOUETTE);
}
drawablep->setState(flag);
}
}
void LLPipeline::stateSort(LLCamera& camera, LLCullResult &result)
{
const U32 face_mask = (1 << LLPipeline::RENDER_TYPE_AVATAR) |
(1 << LLPipeline::RENDER_TYPE_GROUND) |
(1 << LLPipeline::RENDER_TYPE_TERRAIN) |
(1 << LLPipeline::RENDER_TYPE_TREE) |
(1 << LLPipeline::RENDER_TYPE_SKY) |
(1 << LLPipeline::RENDER_TYPE_WATER);
if (mRenderTypeMask & face_mask)
{
//clear faces from face pools
LLFastTimer t(LLFastTimer::FTM_RESET_DRAWORDER);
gPipeline.resetDrawOrders();
}
LLFastTimer ftm(LLFastTimer::FTM_STATESORT);
LLMemType mt(LLMemType::MTYPE_PIPELINE);
//LLVertexBuffer::unbind();
grabReferences(result);
{
for (LLCullResult::sg_list_t::iterator iter = sCull->beginDrawableGroups(); iter != sCull->endDrawableGroups(); ++iter)
{
LLSpatialGroup* group = *iter;
group->checkOcclusion();
if (sUseOcclusion && group->isState(LLSpatialGroup::OCCLUDED))
{
markOccluder(group);
}
else
{
group->setVisible();
for (LLSpatialGroup::element_iter i = group->getData().begin(); i != group->getData().end(); ++i)
{
markVisible(*i, camera);
}
}
}
for (LLCullResult::sg_list_t::iterator iter = sCull->beginVisibleGroups(); iter != sCull->endVisibleGroups(); ++iter)
{
LLSpatialGroup* group = *iter;
group->checkOcclusion();
if (sUseOcclusion && group->isState(LLSpatialGroup::OCCLUDED))
{
markOccluder(group);
}
else
{
group->setVisible();
stateSort(group, camera);
}
}
}
{
for (LLCullResult::bridge_list_t::iterator i = sCull->beginVisibleBridge(); i != sCull->endVisibleBridge(); ++i)
{
LLCullResult::bridge_list_t::iterator cur_iter = i;
LLSpatialBridge* bridge = *cur_iter;
LLSpatialGroup* group = bridge->getSpatialGroup();
if (!bridge->isDead() && group && !group->isState(LLSpatialGroup::OCCLUDED))
{
stateSort(bridge, camera);
}
}
}
{
LLFastTimer ftm(LLFastTimer::FTM_STATESORT_DRAWABLE);
for (LLCullResult::drawable_list_t::iterator iter = sCull->beginVisibleList();
iter != sCull->endVisibleList(); ++iter)
{
LLDrawable *drawablep = *iter;
if (!drawablep->isDead())
{
stateSort(drawablep, camera);
}
}
}
{
LLFastTimer ftm(LLFastTimer::FTM_CLIENT_COPY);
LLVertexBuffer::clientCopy();
}
postSort(camera);
}
void LLPipeline::stateSort(LLSpatialGroup* group, LLCamera& camera)
{
LLMemType mt(LLMemType::MTYPE_PIPELINE);
if (!sSkipUpdate && group->changeLOD())
{
for (LLSpatialGroup::element_iter i = group->getData().begin(); i != group->getData().end(); ++i)
{
LLDrawable* drawablep = *i;
stateSort(drawablep, camera);
}
}
}
void LLPipeline::stateSort(LLSpatialBridge* bridge, LLCamera& camera)
{
LLMemType mt(LLMemType::MTYPE_PIPELINE);
if (!sSkipUpdate && bridge->getSpatialGroup()->changeLOD())
{
bridge->updateDistance(camera);
}
}
void LLPipeline::stateSort(LLDrawable* drawablep, LLCamera& camera)
{
LLMemType mt(LLMemType::MTYPE_PIPELINE);
if (!drawablep
|| drawablep->isDead()
|| !hasRenderType(drawablep->getRenderType()))
{
return;
}
if (gHideSelectedObjects)
{
if (drawablep->getVObj().notNull() &&
drawablep->getVObj()->isSelected())
{
return;
}
}
if (drawablep->isAvatar())
{ //don't draw avatars beyond render distance or if we don't have a spatial group.
if ((drawablep->getSpatialGroup() == NULL) ||
(drawablep->getSpatialGroup()->mDistance > LLVOAvatar::sRenderDistance))
{
return;
}
LLVOAvatar* avatarp = (LLVOAvatar*) drawablep->getVObj().get();
if (!avatarp->isVisible())
{
return;
}
}
assertInitialized();
if (hasRenderType(drawablep->mRenderType))
{
if (!drawablep->isState(LLDrawable::INVISIBLE|LLDrawable::FORCE_INVISIBLE))
{
drawablep->setVisible(camera, NULL, FALSE);
}
else if (drawablep->isState(LLDrawable::CLEAR_INVISIBLE))
{
// clear invisible flag here to avoid single frame glitch
drawablep->clearState(LLDrawable::FORCE_INVISIBLE|LLDrawable::CLEAR_INVISIBLE);
}
}
LLSpatialGroup* group = drawablep->getSpatialGroup();
if (!group || group->changeLOD())
{
if (drawablep->isVisible() && !sSkipUpdate)
{
if (!drawablep->isActive())
{
drawablep->updateDistance(camera);
}
else if (drawablep->isAvatar())
{
drawablep->updateDistance(camera); // calls vobj->updateLOD() which calls LLVOAvatar::updateVisibility()
}
}
}
for (LLDrawable::face_list_t::iterator iter = drawablep->mFaces.begin();
iter != drawablep->mFaces.end(); iter++)
{
LLFace* facep = *iter;
if (facep->hasGeometry())
{
if (facep->getPool())
{
facep->getPool()->enqueue(facep);
}
else
{
break;
}
}
}
mNumVisibleFaces += drawablep->getNumFaces();
}
void forAllDrawables(LLCullResult::sg_list_t::iterator begin,
LLCullResult::sg_list_t::iterator end,
void (*func)(LLDrawable*))
{
for (LLCullResult::sg_list_t::iterator i = begin; i != end; ++i)
{
for (LLSpatialGroup::element_iter j = (*i)->getData().begin(); j != (*i)->getData().end(); ++j)
{
func(*j);
}
}
}
void LLPipeline::forAllVisibleDrawables(void (*func)(LLDrawable*))
{
forAllDrawables(sCull->beginDrawableGroups(), sCull->endDrawableGroups(), func);
forAllDrawables(sCull->beginVisibleGroups(), sCull->endVisibleGroups(), func);
}
//function for creating scripted beacons
void renderScriptedBeacons(LLDrawable* drawablep)
{
LLViewerObject *vobj = drawablep->getVObj();
if (vobj
&& !vobj->isAvatar()
&& !vobj->getParent()
&& vobj->flagScripted())
{
if (gPipeline.sRenderBeacons)
{
gObjectList.addDebugBeacon(vobj->getPositionAgent(), "", LLColor4(1.f, 0.f, 0.f, 0.5f), LLColor4(1.f, 1.f, 1.f, 0.5f), gSavedSettings.getS32("DebugBeaconLineWidth"));
}
if (gPipeline.sRenderHighlight)
{
S32 face_id;
S32 count = drawablep->getNumFaces();
for (face_id = 0; face_id < count; face_id++)
{
gPipeline.mHighlightFaces.push_back(drawablep->getFace(face_id) );
}
}
}
}
void renderScriptedTouchBeacons(LLDrawable* drawablep)
{
LLViewerObject *vobj = drawablep->getVObj();
if (vobj
&& !vobj->isAvatar()
&& !vobj->getParent()
&& vobj->flagScripted()
&& vobj->flagHandleTouch())
{
if (gPipeline.sRenderBeacons)
{
gObjectList.addDebugBeacon(vobj->getPositionAgent(), "", LLColor4(1.f, 0.f, 0.f, 0.5f), LLColor4(1.f, 1.f, 1.f, 0.5f), gSavedSettings.getS32("DebugBeaconLineWidth"));
}
if (gPipeline.sRenderHighlight)
{
S32 face_id;
S32 count = drawablep->getNumFaces();
for (face_id = 0; face_id < count; face_id++)
{
gPipeline.mHighlightFaces.push_back(drawablep->getFace(face_id) );
}
}
}
}
void renderPhysicalBeacons(LLDrawable* drawablep)
{
LLViewerObject *vobj = drawablep->getVObj();
if (vobj
&& !vobj->isAvatar()
//&& !vobj->getParent()
&& vobj->usePhysics())
{
if (gPipeline.sRenderBeacons)
{
gObjectList.addDebugBeacon(vobj->getPositionAgent(), "", LLColor4(0.f, 1.f, 0.f, 0.5f), LLColor4(1.f, 1.f, 1.f, 0.5f), gSavedSettings.getS32("DebugBeaconLineWidth"));
}
if (gPipeline.sRenderHighlight)
{
S32 face_id;
S32 count = drawablep->getNumFaces();
for (face_id = 0; face_id < count; face_id++)
{
gPipeline.mHighlightFaces.push_back(drawablep->getFace(face_id) );
}
}
}
}
void renderParticleBeacons(LLDrawable* drawablep)
{
// Look for attachments, objects, etc.
LLViewerObject *vobj = drawablep->getVObj();
if (vobj
&& vobj->isParticleSource())
{
if (gPipeline.sRenderBeacons)
{
LLColor4 light_blue(0.5f, 0.5f, 1.f, 0.5f);
gObjectList.addDebugBeacon(vobj->getPositionAgent(), "", light_blue, LLColor4(1.f, 1.f, 1.f, 0.5f), gSavedSettings.getS32("DebugBeaconLineWidth"));
}
if (gPipeline.sRenderHighlight)
{
S32 face_id;
S32 count = drawablep->getNumFaces();
for (face_id = 0; face_id < count; face_id++)
{
gPipeline.mHighlightFaces.push_back(drawablep->getFace(face_id) );
}
}
}
}
void renderSoundHighlights(LLDrawable* drawablep)
{
// Look for attachments, objects, etc.
LLViewerObject *vobj = drawablep->getVObj();
if (vobj && vobj->isAudioSource())
{
if (gPipeline.sRenderHighlight)
{
S32 face_id;
S32 count = drawablep->getNumFaces();
for (face_id = 0; face_id < count; face_id++)
{
gPipeline.mHighlightFaces.push_back(drawablep->getFace(face_id) );
}
}
}
}
void LLPipeline::postSort(LLCamera& camera)
{
LLMemType mt(LLMemType::MTYPE_PIPELINE);
LLFastTimer ftm(LLFastTimer::FTM_STATESORT_POSTSORT);
assertInitialized();
//rebuild drawable geometry
for (LLCullResult::sg_list_t::iterator i = sCull->beginDrawableGroups(); i != sCull->endDrawableGroups(); ++i)
{
LLSpatialGroup* group = *i;
if (!sUseOcclusion ||
!group->isState(LLSpatialGroup::OCCLUDED))
{
group->rebuildGeom();
}
}
//rebuild groups
sCull->assertDrawMapsEmpty();
LLSpatialGroup::sNoDelete = FALSE;
for (LLCullResult::sg_list_t::iterator i = sCull->beginVisibleGroups(); i != sCull->endVisibleGroups(); ++i)
{
LLSpatialGroup* group = *i;
if (sUseOcclusion &&
group->isState(LLSpatialGroup::OCCLUDED))
{
continue;
}
group->rebuildGeom();
}
LLSpatialGroup::sNoDelete = TRUE;
//build render map
for (LLCullResult::sg_list_t::iterator i = sCull->beginVisibleGroups(); i != sCull->endVisibleGroups(); ++i)
{
LLSpatialGroup* group = *i;
if (sUseOcclusion &&
group->isState(LLSpatialGroup::OCCLUDED))
{
continue;
}
for (LLSpatialGroup::draw_map_t::iterator j = group->mDrawMap.begin(); j != group->mDrawMap.end(); ++j)
{
LLSpatialGroup::drawmap_elem_t& src_vec = j->second;
for (LLSpatialGroup::drawmap_elem_t::iterator k = src_vec.begin(); k != src_vec.end(); ++k)
{
sCull->pushDrawInfo(j->first, *k);
}
}
LLSpatialGroup::draw_map_t::iterator alpha = group->mDrawMap.find(LLRenderPass::PASS_ALPHA);
if (alpha != group->mDrawMap.end())
{ //store alpha groups for sorting
LLSpatialBridge* bridge = group->mSpatialPartition->asBridge();
if (!sSkipUpdate)
{
if (bridge)
{
LLCamera trans_camera = bridge->transformCamera(camera);
group->updateDistance(trans_camera);
}
else
{
group->updateDistance(camera);
}
}
if (hasRenderType(LLDrawPool::POOL_ALPHA))
{
sCull->pushAlphaGroup(group);
}
}
}
{
//sort by texture or bump map
for (U32 i = 0; i < LLRenderPass::NUM_RENDER_TYPES; ++i)
{
//if (!mRenderMap[i].empty())
{
if (i == LLRenderPass::PASS_BUMP)
{
std::sort(sCull->beginRenderMap(i), sCull->endRenderMap(i), LLDrawInfo::CompareBump());
}
else
{
std::sort(sCull->beginRenderMap(i), sCull->endRenderMap(i), LLDrawInfo::CompareTexturePtrMatrix());
}
}
}
std::sort(sCull->beginAlphaGroups(), sCull->endAlphaGroups(), LLSpatialGroup::CompareDepthGreater());
}
// only render if the flag is set. The flag is only set if we are in edit mode or the toggle is set in the menus
if (gSavedSettings.getBOOL("BeaconAlwaysOn"))
{
if (sRenderScriptedTouchBeacons)
{
// Only show the beacon on the root object.
forAllVisibleDrawables(renderScriptedTouchBeacons);
}
else
if (sRenderScriptedBeacons)
{
// Only show the beacon on the root object.
forAllVisibleDrawables(renderScriptedBeacons);
}
if (sRenderPhysicalBeacons)
{
// Only show the beacon on the root object.
forAllVisibleDrawables(renderPhysicalBeacons);
}
if (sRenderParticleBeacons)
{
forAllVisibleDrawables(renderParticleBeacons);
}
// If god mode, also show audio cues
if (sRenderSoundBeacons && gAudiop)
{
// Walk all sound sources and render out beacons for them. Note, this isn't done in the ForAllVisibleDrawables function, because some are not visible.
LLAudioEngine::source_map::iterator iter;
for (iter = gAudiop->mAllSources.begin(); iter != gAudiop->mAllSources.end(); ++iter)
{
LLAudioSource *sourcep = iter->second;
LLVector3d pos_global = sourcep->getPositionGlobal();
LLVector3 pos = gAgent.getPosAgentFromGlobal(pos_global);
if (gPipeline.sRenderBeacons)
{
//pos += LLVector3(0.f, 0.f, 0.2f);
gObjectList.addDebugBeacon(pos, "", LLColor4(1.f, 1.f, 0.f, 0.5f), LLColor4(1.f, 1.f, 1.f, 0.5f), gSavedSettings.getS32("DebugBeaconLineWidth"));
}
}
// now deal with highlights for all those seeable sound sources
forAllVisibleDrawables(renderSoundHighlights);
}
}
// If managing your telehub, draw beacons at telehub and currently selected spawnpoint.
if (LLFloaterTelehub::renderBeacons())
{
LLFloaterTelehub::addBeacons();
}
mSelectedFaces.clear();
// Draw face highlights for selected faces.
if (LLSelectMgr::getInstance()->getTEMode())
{
struct f : public LLSelectedTEFunctor
{
virtual bool apply(LLViewerObject* object, S32 te)
{
if (object->mDrawable)
{
gPipeline.mSelectedFaces.push_back(object->mDrawable->getFace(te));
}
return true;
}
} func;
LLSelectMgr::getInstance()->getSelection()->applyToTEs(&func);
}
LLSpatialGroup::sNoDelete = FALSE;
}
void render_hud_elements()
{
LLFastTimer t(LLFastTimer::FTM_RENDER_UI);
gPipeline.disableLights();
LLGLDisable fog(GL_FOG);
LLGLSUIDefault gls_ui;
LLGLEnable stencil(GL_STENCIL_TEST);
glStencilFunc(GL_ALWAYS, 255, 0xFFFFFFFF);
glStencilMask(0xFFFFFFFF);
glStencilOp(GL_KEEP, GL_KEEP, GL_REPLACE);
gGL.color4f(1,1,1,1);
if (!LLPipeline::sReflectionRender && gPipeline.hasRenderDebugFeatureMask(LLPipeline::RENDER_DEBUG_FEATURE_UI))
{
LLGLEnable multisample(GL_MULTISAMPLE_ARB);
gViewerWindow->renderSelections(FALSE, FALSE, FALSE); // For HUD version in render_ui_3d()
// Draw the tracking overlays
LLTracker::render3D();
// Show the property lines
LLWorld::getInstance()->renderPropertyLines();
LLViewerParcelMgr::getInstance()->render();
LLViewerParcelMgr::getInstance()->renderParcelCollision();
// Render debugging beacons.
//gObjectList.renderObjectBeacons();
//LLHUDObject::renderAll();
//gObjectList.resetObjectBeacons();
}
else if (gForceRenderLandFence)
{
// This is only set when not rendering the UI, for parcel snapshots
LLViewerParcelMgr::getInstance()->render();
}
else if (gPipeline.hasRenderType(LLPipeline::RENDER_TYPE_HUD))
{
LLHUDText::renderAllHUD();
}
gGL.flush();
}
void LLPipeline::renderHighlights()
{
LLMemType mt(LLMemType::MTYPE_PIPELINE);
assertInitialized();
// Draw 3D UI elements here (before we clear the Z buffer in POOL_HUD)
// Render highlighted faces.
LLGLSPipelineAlpha gls_pipeline_alpha;
LLColor4 color(1.f, 1.f, 1.f, 0.5f);
LLGLEnable color_mat(GL_COLOR_MATERIAL);
disableLights();
if ((LLViewerShaderMgr::instance()->getVertexShaderLevel(LLViewerShaderMgr::SHADER_INTERFACE) > 0))
{
gHighlightProgram.bind();
gHighlightProgram.vertexAttrib4f(LLViewerShaderMgr::MATERIAL_COLOR,1,1,1,0.5f);
}
if (hasRenderDebugFeatureMask(RENDER_DEBUG_FEATURE_SELECTED))
{
// Make sure the selection image gets downloaded and decoded
if (!mFaceSelectImagep)
{
mFaceSelectImagep = gImageList.getImage(IMG_FACE_SELECT);
}
mFaceSelectImagep->addTextureStats((F32)MAX_IMAGE_AREA);
U32 count = mSelectedFaces.size();
for (U32 i = 0; i < count; i++)
{
LLFace *facep = mSelectedFaces[i];
if (!facep || facep->getDrawable()->isDead())
{
llerrs << "Bad face on selection" << llendl;
return;
}
facep->renderSelected(mFaceSelectImagep, color);
}
}
if (hasRenderDebugFeatureMask(RENDER_DEBUG_FEATURE_SELECTED))
{
// Paint 'em red!
color.setVec(1.f, 0.f, 0.f, 0.5f);
if ((LLViewerShaderMgr::instance()->getVertexShaderLevel(LLViewerShaderMgr::SHADER_INTERFACE) > 0))
{
gHighlightProgram.vertexAttrib4f(LLViewerShaderMgr::MATERIAL_COLOR,1,0,0,0.5f);
}
int count = mHighlightFaces.size();
for (S32 i = 0; i < count; i++)
{
LLFace* facep = mHighlightFaces[i];
facep->renderSelected(LLViewerImage::sNullImagep, color);
}
}
// Contains a list of the faces of objects that are physical or
// have touch-handlers.
mHighlightFaces.clear();
if (LLViewerShaderMgr::instance()->getVertexShaderLevel(LLViewerShaderMgr::SHADER_INTERFACE) > 0)
{
gHighlightProgram.unbind();
}
}
void LLPipeline::renderGeom(LLCamera& camera, BOOL forceVBOUpdate)
{
LLMemType mt(LLMemType::MTYPE_PIPELINE);
LLFastTimer t(LLFastTimer::FTM_RENDER_GEOMETRY);
assertInitialized();
F64 saved_modelview[16];
F64 saved_projection[16];
//HACK: preserve/restore matrices around HUD render
if (gPipeline.hasRenderType(LLPipeline::RENDER_TYPE_HUD))
{
for (U32 i = 0; i < 16; i++)
{
saved_modelview[i] = gGLModelView[i];
saved_projection[i] = gGLProjection[i];
}
}
///////////////////////////////////////////
//
// Sync and verify GL state
//
//
stop_glerror();
gFrameStats.start(LLFrameStats::RENDER_SYNC);
glEnableClientState(GL_VERTEX_ARRAY);
LLVertexBuffer::unbind();
// Do verification of GL state
LLGLState::checkStates();
LLGLState::checkTextureChannels();
LLGLState::checkClientArrays();
if (mRenderDebugMask & RENDER_DEBUG_VERIFY)
{
if (!verify())
{
llerrs << "Pipeline verification failed!" << llendl;
}
}
//by bao
//fake vertex buffer updating
//to guaranttee at least updating one VBO buffer every frame
//to walk around the bug caused by ATI card --> DEV-3855
//
if(forceVBOUpdate)
gSky.mVOSkyp->updateDummyVertexBuffer() ;
gFrameStats.start(LLFrameStats::RENDER_GEOM);
// Initialize lots of GL state to "safe" values
glMatrixMode(GL_TEXTURE);
glLoadIdentity();
glMatrixMode(GL_MODELVIEW);
LLGLSPipeline gls_pipeline;
LLGLEnable multisample(GL_MULTISAMPLE_ARB);
LLGLState gls_color_material(GL_COLOR_MATERIAL, mLightingDetail < 2);
// Toggle backface culling for debugging
LLGLEnable cull_face(mBackfaceCull ? GL_CULL_FACE : 0);
// Set fog
BOOL use_fog = hasRenderDebugFeatureMask(LLPipeline::RENDER_DEBUG_FEATURE_FOG);
LLGLEnable fog_enable(use_fog &&
!gPipeline.canUseWindLightShadersOnObjects() ? GL_FOG : 0);
gSky.updateFog(camera.getFar());
if (!use_fog)
{
sUnderWaterRender = FALSE;
}
LLViewerImage::sDefaultImagep->bind(0);
LLViewerImage::sDefaultImagep->setClamp(FALSE, FALSE);
//////////////////////////////////////////////
//
// Actually render all of the geometry
//
//
stop_glerror();
BOOL occlude = sUseOcclusion > 1;
U32 cur_type = 0;
if (gPipeline.hasRenderDebugMask(LLPipeline::RENDER_DEBUG_PICKING))
{
gObjectList.renderObjectsForSelect(camera, gViewerWindow->getVirtualWindowRect());
}
else if (gSavedSettings.getBOOL("RenderDeferred"))
{
renderGeomDeferred();
}
else
{
for (pool_set_t::iterator iter = mPools.begin(); iter != mPools.end(); ++iter)
{
LLDrawPool *poolp = *iter;
if (hasRenderType(poolp->getType()))
{
poolp->prerender();
}
}
LLFastTimer t(LLFastTimer::FTM_POOLS);
calcNearbyLights(camera);
setupHWLights(NULL);
pool_set_t::iterator iter1 = mPools.begin();
while ( iter1 != mPools.end() )
{
LLDrawPool *poolp = *iter1;
cur_type = poolp->getType();
if (occlude && cur_type > LLDrawPool::POOL_AVATAR)
{
occlude = FALSE;
gGLLastMatrix = NULL;
glLoadMatrixd(gGLModelView);
doOcclusion(camera);
}
pool_set_t::iterator iter2 = iter1;
if (hasRenderType(poolp->getType()) && poolp->getNumPasses() > 0)
{
LLFastTimer t(LLFastTimer::FTM_POOLRENDER);
gGLLastMatrix = NULL;
glLoadMatrixd(gGLModelView);
for( S32 i = 0; i < poolp->getNumPasses(); i++ )
{
poolp->beginRenderPass(i);
for (iter2 = iter1; iter2 != mPools.end(); iter2++)
{
LLDrawPool *p = *iter2;
if (p->getType() != cur_type)
{
break;
}
p->render(i);
}
poolp->endRenderPass(i);
LLVertexBuffer::unbind();
if (gDebugGL || gDebugPipeline)
{
GLint depth;
glGetIntegerv(GL_MODELVIEW_STACK_DEPTH, &depth);
if (depth > 3)
{
llerrs << "GL matrix stack corrupted!" << llendl;
}
std::string msg = llformat("%s pass %d", gPoolNames[cur_type].c_str(), i);
LLGLState::checkStates(msg);
LLGLState::checkTextureChannels(msg);
LLGLState::checkClientArrays(msg);
}
}
}
else
{
// Skip all pools of this type
for (iter2 = iter1; iter2 != mPools.end(); iter2++)
{
LLDrawPool *p = *iter2;
if (p->getType() != cur_type)
{
break;
}
}
}
iter1 = iter2;
stop_glerror();
}
}
LLVertexBuffer::unbind();
LLGLState::checkStates();
LLGLState::checkTextureChannels();
LLGLState::checkClientArrays();
gGLLastMatrix = NULL;
glLoadMatrixd(gGLModelView);
if (occlude)
{
occlude = FALSE;
gGLLastMatrix = NULL;
glLoadMatrixd(gGLModelView);
doOcclusion(camera);
}
stop_glerror();
LLGLState::checkStates();
LLGLState::checkTextureChannels();
LLGLState::checkClientArrays();
if (!sReflectionRender)
{
renderHighlights();
}
// Contains a list of the faces of objects that are physical or
// have touch-handlers.
mHighlightFaces.clear();
renderDebug();
LLVertexBuffer::unbind();
if (!LLPipeline::sReflectionRender && gPipeline.hasRenderDebugFeatureMask(LLPipeline::RENDER_DEBUG_FEATURE_UI))
{
// Render debugging beacons.
gObjectList.renderObjectBeacons();
LLHUDObject::renderAll();
gObjectList.resetObjectBeacons();
}
//HACK: preserve/restore matrices around HUD render
if (gPipeline.hasRenderType(LLPipeline::RENDER_TYPE_HUD))
{
for (U32 i = 0; i < 16; i++)
{
gGLModelView[i] = saved_modelview[i];
gGLProjection[i] = saved_projection[i];
}
}
LLVertexBuffer::unbind();
LLGLState::checkStates();
LLGLState::checkTextureChannels();
LLGLState::checkClientArrays();
}
void LLPipeline::renderGeomDeferred()
{
gDeferredDiffuseProgram.bind();
gPipeline.renderObjects(LLRenderPass::PASS_SIMPLE, LLVertexBuffer::MAP_VERTEX | LLVertexBuffer::MAP_TEXCOORD | LLVertexBuffer::MAP_COLOR | LLVertexBuffer::MAP_NORMAL, TRUE);
gDeferredDiffuseProgram.unbind();
}
void LLPipeline::addTrianglesDrawn(S32 count)
{
assertInitialized();
mTrianglesDrawn += count;
mBatchCount++;
mMaxBatchSize = llmax(mMaxBatchSize, count);
mMinBatchSize = llmin(mMinBatchSize, count);
if (LLPipeline::sRenderFrameTest)
{
gViewerWindow->getWindow()->swapBuffers();
ms_sleep(16);
}
}
void LLPipeline::renderDebug()
{
LLMemType mt(LLMemType::MTYPE_PIPELINE);
assertInitialized();
gGL.color4f(1,1,1,1);
gGLLastMatrix = NULL;
glLoadMatrixd(gGLModelView);
gGL.setColorMask(true, false);
// Debug stuff.
for (LLWorld::region_list_t::iterator iter = LLWorld::getInstance()->getRegionList().begin();
iter != LLWorld::getInstance()->getRegionList().end(); ++iter)
{
LLViewerRegion* region = *iter;
for (U32 i = 0; i < LLViewerRegion::NUM_PARTITIONS; i++)
{
LLSpatialPartition* part = region->getSpatialPartition(i);
if (part)
{
if (hasRenderType(part->mDrawableType))
{
part->renderDebug();
}
}
}
}
for (LLCullResult::bridge_list_t::iterator i = sCull->beginVisibleBridge(); i != sCull->endVisibleBridge(); ++i)
{
LLSpatialBridge* bridge = *i;
if (!bridge->isDead() && !bridge->isState(LLSpatialGroup::OCCLUDED) && hasRenderType(bridge->mDrawableType))
{
glPushMatrix();
glMultMatrixf((F32*)bridge->mDrawable->getRenderMatrix().mMatrix);
bridge->renderDebug();
glPopMatrix();
}
}
if (mRenderDebugMask & RENDER_DEBUG_COMPOSITION)
{
// Debug composition layers
F32 x, y;
LLGLSNoTexture gls_no_texture;
if (gAgent.getRegion())
{
gGL.begin(LLVertexBuffer::POINTS);
// Draw the composition layer for the region that I'm in.
for (x = 0; x <= 260; x++)
{
for (y = 0; y <= 260; y++)
{
if ((x > 255) || (y > 255))
{
gGL.color4f(1.f, 0.f, 0.f, 1.f);
}
else
{
gGL.color4f(0.f, 0.f, 1.f, 1.f);
}
F32 z = gAgent.getRegion()->getCompositionXY((S32)x, (S32)y);
z *= 5.f;
z += 50.f;
gGL.vertex3f(x, y, z);
}
}
gGL.end();
}
}
gGL.flush();
}
void LLPipeline::renderForSelect(std::set<LLViewerObject*>& objects, BOOL render_transparent, const LLRect& screen_rect)
{
assertInitialized();
gGL.setColorMask(true, false);
gPipeline.resetDrawOrders();
for (std::set<LLViewerObject*>::iterator iter = objects.begin(); iter != objects.end(); ++iter)
{
stateSort((*iter)->mDrawable, *LLViewerCamera::getInstance());
}
LLMemType mt(LLMemType::MTYPE_PIPELINE);
glMatrixMode(GL_MODELVIEW);
LLGLSDefault gls_default;
LLGLSObjectSelect gls_object_select;
LLGLDepthTest gls_depth(GL_TRUE,GL_TRUE);
disableLights();
LLVertexBuffer::unbind();
//for each drawpool
LLGLState::checkStates();
LLGLState::checkTextureChannels();
LLGLState::checkClientArrays();
U32 last_type = 0;
for (pool_set_t::iterator iter = mPools.begin(); iter != mPools.end(); ++iter)
{
LLDrawPool *poolp = *iter;
if (poolp->isFacePool() && hasRenderType(poolp->getType()))
{
LLFacePool* face_pool = (LLFacePool*) poolp;
face_pool->renderForSelect();
LLVertexBuffer::unbind();
gGLLastMatrix = NULL;
glLoadMatrixd(gGLModelView);
if (poolp->getType() != last_type)
{
last_type = poolp->getType();
LLGLState::checkStates();
LLGLState::checkTextureChannels();
LLGLState::checkClientArrays();
}
}
}
LLGLEnable alpha_test(GL_ALPHA_TEST);
if (render_transparent)
{
gGL.setAlphaRejectSettings(LLRender::CF_GREATER_EQUAL, 0.f);
}
else
{
gGL.setAlphaRejectSettings(LLRender::CF_GREATER, 0.2f);
}
gGL.getTexUnit(0)->setTextureColorBlend(LLTexUnit::TBO_REPLACE, LLTexUnit::TBS_VERT_COLOR);
gGL.getTexUnit(0)->setTextureAlphaBlend(LLTexUnit::TBO_MULT, LLTexUnit::TBS_TEX_ALPHA, LLTexUnit::TBS_VERT_ALPHA);
U32 prim_mask = LLVertexBuffer::MAP_VERTEX |
LLVertexBuffer::MAP_TEXCOORD;
for (std::set<LLViewerObject*>::iterator i = objects.begin(); i != objects.end(); ++i)
{
LLViewerObject* vobj = *i;
LLDrawable* drawable = vobj->mDrawable;
if (vobj->isDead() ||
vobj->isHUDAttachment() ||
(gHideSelectedObjects && vobj->isSelected()) ||
drawable->isDead() ||
!hasRenderType(drawable->getRenderType()))
{
continue;
}
for (S32 j = 0; j < drawable->getNumFaces(); ++j)
{
LLFace* facep = drawable->getFace(j);
if (!facep->getPool())
{
facep->renderForSelect(prim_mask);
}
}
}
// pick HUD objects
LLVOAvatar* avatarp = gAgent.getAvatarObject();
if (avatarp && sShowHUDAttachments)
{
glh::matrix4f save_proj(glh_get_current_projection());
glh::matrix4f save_model(glh_get_current_modelview());
setup_hud_matrices(screen_rect);
for (LLVOAvatar::attachment_map_t::iterator iter = avatarp->mAttachmentPoints.begin();
iter != avatarp->mAttachmentPoints.end(); )
{
LLVOAvatar::attachment_map_t::iterator curiter = iter++;
LLViewerJointAttachment* attachmentp = curiter->second;
if (attachmentp->getIsHUDAttachment())
{
LLViewerObject* objectp = attachmentp->getObject();
if (objectp)
{
LLDrawable* drawable = objectp->mDrawable;
if (drawable->isDead())
{
continue;
}
for (S32 j = 0; j < drawable->getNumFaces(); ++j)
{
LLFace* facep = drawable->getFace(j);
if (!facep->getPool())
{
facep->renderForSelect(prim_mask);
}
}
//render child faces
LLViewerObject::const_child_list_t& child_list = objectp->getChildren();
for (LLViewerObject::child_list_t::const_iterator iter = child_list.begin();
iter != child_list.end(); iter++)
{
LLViewerObject* child = *iter;
LLDrawable* child_drawable = child->mDrawable;
for (S32 l = 0; l < child_drawable->getNumFaces(); ++l)
{
LLFace* facep = child_drawable->getFace(l);
if (!facep->getPool())
{
facep->renderForSelect(prim_mask);
}
}
}
}
}
}
glMatrixMode(GL_PROJECTION);
glLoadMatrixf(save_proj.m);
glh_set_current_projection(save_proj);
glMatrixMode(GL_MODELVIEW);
glLoadMatrixf(save_model.m);
glh_set_current_modelview(save_model);
}
gGL.getTexUnit(0)->setTextureBlendType(LLTexUnit::TB_MULT);
LLVertexBuffer::unbind();
gGL.setColorMask(true, true);
}
void LLPipeline::rebuildPools()
{
LLMemType mt(LLMemType::MTYPE_PIPELINE);
assertInitialized();
S32 max_count = mPools.size();
pool_set_t::iterator iter1 = mPools.upper_bound(mLastRebuildPool);
while(max_count > 0 && mPools.size() > 0) // && num_rebuilds < MAX_REBUILDS)
{
if (iter1 == mPools.end())
{
iter1 = mPools.begin();
}
LLDrawPool* poolp = *iter1;
if (poolp->isDead())
{
mPools.erase(iter1++);
removeFromQuickLookup( poolp );
if (poolp == mLastRebuildPool)
{
mLastRebuildPool = NULL;
}
delete poolp;
}
else
{
mLastRebuildPool = poolp;
iter1++;
}
max_count--;
}
if (gAgent.getAvatarObject())
{
gAgent.getAvatarObject()->rebuildHUD();
}
}
void LLPipeline::addToQuickLookup( LLDrawPool* new_poolp )
{
LLMemType mt(LLMemType::MTYPE_PIPELINE);
assertInitialized();
switch( new_poolp->getType() )
{
case LLDrawPool::POOL_SIMPLE:
if (mSimplePool)
{
llassert(0);
llwarns << "Ignoring duplicate simple pool." << llendl;
}
else
{
mSimplePool = (LLRenderPass*) new_poolp;
}
break;
case LLDrawPool::POOL_INVISIBLE:
if (mInvisiblePool)
{
llassert(0);
llwarns << "Ignoring duplicate simple pool." << llendl;
}
else
{
mInvisiblePool = (LLRenderPass*) new_poolp;
}
break;
case LLDrawPool::POOL_GLOW:
if (mGlowPool)
{
llassert(0);
llwarns << "Ignoring duplicate glow pool." << llendl;
}
else
{
mGlowPool = (LLRenderPass*) new_poolp;
}
break;
case LLDrawPool::POOL_TREE:
mTreePools[ uintptr_t(new_poolp->getTexture()) ] = new_poolp ;
break;
case LLDrawPool::POOL_TERRAIN:
mTerrainPools[ uintptr_t(new_poolp->getTexture()) ] = new_poolp ;
break;
case LLDrawPool::POOL_BUMP:
if (mBumpPool)
{
llassert(0);
llwarns << "Ignoring duplicate bump pool." << llendl;
}
else
{
mBumpPool = new_poolp;
}
break;
case LLDrawPool::POOL_ALPHA:
if( mAlphaPool )
{
llassert(0);
llwarns << "LLPipeline::addPool(): Ignoring duplicate Alpha pool" << llendl;
}
else
{
mAlphaPool = new_poolp;
}
break;
case LLDrawPool::POOL_AVATAR:
break; // Do nothing
case LLDrawPool::POOL_SKY:
if( mSkyPool )
{
llassert(0);
llwarns << "LLPipeline::addPool(): Ignoring duplicate Sky pool" << llendl;
}
else
{
mSkyPool = new_poolp;
}
break;
case LLDrawPool::POOL_WATER:
if( mWaterPool )
{
llassert(0);
llwarns << "LLPipeline::addPool(): Ignoring duplicate Water pool" << llendl;
}
else
{
mWaterPool = new_poolp;
}
break;
case LLDrawPool::POOL_GROUND:
if( mGroundPool )
{
llassert(0);
llwarns << "LLPipeline::addPool(): Ignoring duplicate Ground Pool" << llendl;
}
else
{
mGroundPool = new_poolp;
}
break;
case LLDrawPool::POOL_WL_SKY:
if( mWLSkyPool )
{
llassert(0);
llwarns << "LLPipeline::addPool(): Ignoring duplicate WLSky Pool" << llendl;
}
else
{
mWLSkyPool = new_poolp;
}
break;
default:
llassert(0);
llwarns << "Invalid Pool Type in LLPipeline::addPool()" << llendl;
break;
}
}
void LLPipeline::removePool( LLDrawPool* poolp )
{
assertInitialized();
removeFromQuickLookup(poolp);
mPools.erase(poolp);
delete poolp;
}
void LLPipeline::removeFromQuickLookup( LLDrawPool* poolp )
{
assertInitialized();
LLMemType mt(LLMemType::MTYPE_PIPELINE);
switch( poolp->getType() )
{
case LLDrawPool::POOL_SIMPLE:
llassert(mSimplePool == poolp);
mSimplePool = NULL;
break;
case LLDrawPool::POOL_INVISIBLE:
llassert(mInvisiblePool == poolp);
mInvisiblePool = NULL;
break;
case LLDrawPool::POOL_WL_SKY:
llassert(mWLSkyPool == poolp);
mWLSkyPool = NULL;
break;
case LLDrawPool::POOL_GLOW:
llassert(mGlowPool == poolp);
mGlowPool = NULL;
break;
case LLDrawPool::POOL_TREE:
#ifdef _DEBUG
{
BOOL found = mTreePools.erase( (uintptr_t)poolp->getTexture() );
llassert( found );
}
#else
mTreePools.erase( (uintptr_t)poolp->getTexture() );
#endif
break;
case LLDrawPool::POOL_TERRAIN:
#ifdef _DEBUG
{
BOOL found = mTerrainPools.erase( (uintptr_t)poolp->getTexture() );
llassert( found );
}
#else
mTerrainPools.erase( (uintptr_t)poolp->getTexture() );
#endif
break;
case LLDrawPool::POOL_BUMP:
llassert( poolp == mBumpPool );
mBumpPool = NULL;
break;
case LLDrawPool::POOL_ALPHA:
llassert( poolp == mAlphaPool );
mAlphaPool = NULL;
break;
case LLDrawPool::POOL_AVATAR:
break; // Do nothing
case LLDrawPool::POOL_SKY:
llassert( poolp == mSkyPool );
mSkyPool = NULL;
break;
case LLDrawPool::POOL_WATER:
llassert( poolp == mWaterPool );
mWaterPool = NULL;
break;
case LLDrawPool::POOL_GROUND:
llassert( poolp == mGroundPool );
mGroundPool = NULL;
break;
default:
llassert(0);
llwarns << "Invalid Pool Type in LLPipeline::removeFromQuickLookup() type=" << poolp->getType() << llendl;
break;
}
}
void LLPipeline::resetDrawOrders()
{
assertInitialized();
// Iterate through all of the draw pools and rebuild them.
for (pool_set_t::iterator iter = mPools.begin(); iter != mPools.end(); ++iter)
{
LLDrawPool *poolp = *iter;
poolp->resetDrawOrders();
}
}
//============================================================================
// Once-per-frame setup of hardware lights,
// including sun/moon, avatar backlight, and up to 6 local lights
void LLPipeline::setupAvatarLights(BOOL for_edit)
{
assertInitialized();
if (for_edit)
{
LLColor4 diffuse(0.8f, 0.8f, 0.8f, 0.f);
LLVector4 light_pos_cam(-8.f, 0.25f, 10.f, 0.f); // w==0 => directional light
LLMatrix4 camera_mat = LLViewerCamera::getInstance()->getModelview();
LLMatrix4 camera_rot(camera_mat.getMat3());
camera_rot.invert();
LLVector4 light_pos = light_pos_cam * camera_rot;
light_pos.normVec();
mHWLightColors[1] = diffuse;
glLightfv(GL_LIGHT1, GL_DIFFUSE, diffuse.mV);
glLightfv(GL_LIGHT1, GL_AMBIENT, LLColor4::black.mV);
glLightfv(GL_LIGHT1, GL_SPECULAR, LLColor4::black.mV);
glLightfv(GL_LIGHT1, GL_POSITION, light_pos.mV);
glLightf (GL_LIGHT1, GL_CONSTANT_ATTENUATION, 1.0f);
glLightf (GL_LIGHT1, GL_LINEAR_ATTENUATION, 0.0f);
glLightf (GL_LIGHT1, GL_QUADRATIC_ATTENUATION, 0.0f);
glLightf (GL_LIGHT1, GL_SPOT_EXPONENT, 0.0f);
glLightf (GL_LIGHT1, GL_SPOT_CUTOFF, 180.0f);
}
else if (gAvatarBacklight) // Always true (unless overridden in a devs .ini)
{
LLVector3 opposite_pos = -1.f * mSunDir;
LLVector3 orthog_light_pos = mSunDir % LLVector3::z_axis;
LLVector4 backlight_pos = LLVector4(lerp(opposite_pos, orthog_light_pos, 0.3f), 0.0f);
backlight_pos.normVec();
LLColor4 light_diffuse = mSunDiffuse;
LLColor4 backlight_diffuse(1.f - light_diffuse.mV[VRED], 1.f - light_diffuse.mV[VGREEN], 1.f - light_diffuse.mV[VBLUE], 1.f);
F32 max_component = 0.001f;
for (S32 i = 0; i < 3; i++)
{
if (backlight_diffuse.mV[i] > max_component)
{
max_component = backlight_diffuse.mV[i];
}
}
F32 backlight_mag;
if (gSky.getSunDirection().mV[2] >= NIGHTTIME_ELEVATION_COS)
{
backlight_mag = BACKLIGHT_DAY_MAGNITUDE_OBJECT;
}
else
{
backlight_mag = BACKLIGHT_NIGHT_MAGNITUDE_OBJECT;
}
backlight_diffuse *= backlight_mag / max_component;
mHWLightColors[1] = backlight_diffuse;
glLightfv(GL_LIGHT1, GL_POSITION, backlight_pos.mV); // this is just sun/moon direction
glLightfv(GL_LIGHT1, GL_DIFFUSE, backlight_diffuse.mV);
glLightfv(GL_LIGHT1, GL_AMBIENT, LLColor4::black.mV);
glLightfv(GL_LIGHT1, GL_SPECULAR, LLColor4::black.mV);
glLightf (GL_LIGHT1, GL_CONSTANT_ATTENUATION, 1.0f);
glLightf (GL_LIGHT1, GL_LINEAR_ATTENUATION, 0.0f);
glLightf (GL_LIGHT1, GL_QUADRATIC_ATTENUATION, 0.0f);
glLightf (GL_LIGHT1, GL_SPOT_EXPONENT, 0.0f);
glLightf (GL_LIGHT1, GL_SPOT_CUTOFF, 180.0f);
}
else
{
mHWLightColors[1] = LLColor4::black;
glLightfv(GL_LIGHT1, GL_DIFFUSE, LLColor4::black.mV);
glLightfv(GL_LIGHT1, GL_AMBIENT, LLColor4::black.mV);
glLightfv(GL_LIGHT1, GL_SPECULAR, LLColor4::black.mV);
}
}
static F32 calc_light_dist(LLVOVolume* light, const LLVector3& cam_pos, F32 max_dist)
{
F32 inten = light->getLightIntensity();
if (inten < .001f)
{
return max_dist;
}
F32 radius = light->getLightRadius();
BOOL selected = light->isSelected();
LLVector3 dpos = light->getRenderPosition() - cam_pos;
F32 dist2 = dpos.lengthSquared();
if (!selected && dist2 > (max_dist + radius)*(max_dist + radius))
{
return max_dist;
}
F32 dist = fsqrtf(dist2);
dist *= 1.f / inten;
dist -= radius;
if (selected)
{
dist -= 10000.f; // selected lights get highest priority
}
if (light->mDrawable.notNull() && light->mDrawable->isState(LLDrawable::ACTIVE))
{
// moving lights get a little higher priority (too much causes artifacts)
dist -= light->getLightRadius()*0.25f;
}
return dist;
}
void LLPipeline::calcNearbyLights(LLCamera& camera)
{
assertInitialized();
if (LLPipeline::sReflectionRender)
{
return;
}
if (mLightingDetail >= 1)
{
// mNearbyLight (and all light_set_t's) are sorted such that
// begin() == the closest light and rbegin() == the farthest light
const S32 MAX_LOCAL_LIGHTS = 6;
// LLVector3 cam_pos = gAgent.getCameraPositionAgent();
LLVector3 cam_pos = LLViewerJoystick::getInstance()->getOverrideCamera() ?
camera.getOrigin() :
gAgent.getPositionAgent();
F32 max_dist = LIGHT_MAX_RADIUS * 4.f; // ignore enitrely lights > 4 * max light rad
// UPDATE THE EXISTING NEARBY LIGHTS
if (!LLPipeline::sSkipUpdate)
{
light_set_t cur_nearby_lights;
for (light_set_t::iterator iter = mNearbyLights.begin();
iter != mNearbyLights.end(); iter++)
{
const Light* light = &(*iter);
LLDrawable* drawable = light->drawable;
LLVOVolume* volight = drawable->getVOVolume();
if (!volight || !drawable->isState(LLDrawable::LIGHT))
{
drawable->clearState(LLDrawable::NEARBY_LIGHT);
continue;
}
if (light->fade <= -LIGHT_FADE_TIME)
{
drawable->clearState(LLDrawable::NEARBY_LIGHT);
continue;
}
if (!sRenderAttachedLights && volight && volight->isAttachment())
{
drawable->clearState(LLDrawable::NEARBY_LIGHT);
continue;
}
F32 dist = calc_light_dist(volight, cam_pos, max_dist);
cur_nearby_lights.insert(Light(drawable, dist, light->fade));
}
mNearbyLights = cur_nearby_lights;
}
// FIND NEW LIGHTS THAT ARE IN RANGE
light_set_t new_nearby_lights;
for (LLDrawable::drawable_set_t::iterator iter = mLights.begin();
iter != mLights.end(); ++iter)
{
LLDrawable* drawable = *iter;
LLVOVolume* light = drawable->getVOVolume();
if (!light || drawable->isState(LLDrawable::NEARBY_LIGHT))
{
continue;
}
if (light->isHUDAttachment())
{
continue; // no lighting from HUD objects
}
F32 dist = calc_light_dist(light, cam_pos, max_dist);
if (dist >= max_dist)
{
continue;
}
new_nearby_lights.insert(Light(drawable, dist, 0.f));
if (new_nearby_lights.size() > (U32)MAX_LOCAL_LIGHTS)
{
new_nearby_lights.erase(--new_nearby_lights.end());
const Light& last = *new_nearby_lights.rbegin();
max_dist = last.dist;
}
}
// INSERT ANY NEW LIGHTS
for (light_set_t::iterator iter = new_nearby_lights.begin();
iter != new_nearby_lights.end(); iter++)
{
const Light* light = &(*iter);
if (mNearbyLights.size() < (U32)MAX_LOCAL_LIGHTS)
{
mNearbyLights.insert(*light);
((LLDrawable*) light->drawable)->setState(LLDrawable::NEARBY_LIGHT);
}
else
{
// crazy cast so that we can overwrite the fade value
// even though gcc enforces sets as const
// (fade value doesn't affect sort so this is safe)
Light* farthest_light = ((Light*) (&(*(mNearbyLights.rbegin()))));
if (light->dist < farthest_light->dist)
{
if (farthest_light->fade >= 0.f)
{
farthest_light->fade = -gFrameIntervalSeconds;
}
}
else
{
break; // none of the other lights are closer
}
}
}
}
}
void LLPipeline::setupHWLights(LLDrawPool* pool)
{
assertInitialized();
// Ambient
LLColor4 ambient = gSky.getTotalAmbientColor();
glLightModelfv(GL_LIGHT_MODEL_AMBIENT,ambient.mV);
// Light 0 = Sun or Moon (All objects)
{
if (gSky.getSunDirection().mV[2] >= NIGHTTIME_ELEVATION_COS)
{
mSunDir.setVec(gSky.getSunDirection());
mSunDiffuse.setVec(gSky.getSunDiffuseColor());
}
else
{
mSunDir.setVec(gSky.getMoonDirection());
mSunDiffuse.setVec(gSky.getMoonDiffuseColor());
}
F32 max_color = llmax(mSunDiffuse.mV[0], mSunDiffuse.mV[1], mSunDiffuse.mV[2]);
if (max_color > 1.f)
{
mSunDiffuse *= 1.f/max_color;
}
mSunDiffuse.clamp();
LLVector4 light_pos(mSunDir, 0.0f);
LLColor4 light_diffuse = mSunDiffuse;
mHWLightColors[0] = light_diffuse;
glLightfv(GL_LIGHT0, GL_POSITION, light_pos.mV); // this is just sun/moon direction
glLightfv(GL_LIGHT0, GL_DIFFUSE, light_diffuse.mV);
glLightfv(GL_LIGHT0, GL_AMBIENT, LLColor4::black.mV);
glLightfv(GL_LIGHT0, GL_SPECULAR, LLColor4::black.mV);
glLightf (GL_LIGHT0, GL_CONSTANT_ATTENUATION, 1.0f);
glLightf (GL_LIGHT0, GL_LINEAR_ATTENUATION, 0.0f);
glLightf (GL_LIGHT0, GL_QUADRATIC_ATTENUATION, 0.0f);
glLightf (GL_LIGHT0, GL_SPOT_EXPONENT, 0.0f);
glLightf (GL_LIGHT0, GL_SPOT_CUTOFF, 180.0f);
}
// Light 1 = Backlight (for avatars)
// (set by enableLightsAvatar)
S32 cur_light = 2;
// Nearby lights = LIGHT 2-7
mLightMovingMask = 0;
if (mLightingDetail >= 1)
{
for (light_set_t::iterator iter = mNearbyLights.begin();
iter != mNearbyLights.end(); ++iter)
{
LLDrawable* drawable = iter->drawable;
LLVOVolume* light = drawable->getVOVolume();
if (!light)
{
continue;
}
if (drawable->isState(LLDrawable::ACTIVE))
{
mLightMovingMask |= (1<<cur_light);
}
LLColor4 light_color = light->getLightColor();
light_color.mV[3] = 0.0f;
F32 fade = iter->fade;
if (fade < LIGHT_FADE_TIME)
{
// fade in/out light
if (fade >= 0.f)
{
fade = fade / LIGHT_FADE_TIME;
((Light*) (&(*iter)))->fade += gFrameIntervalSeconds;
}
else
{
fade = 1.f + fade / LIGHT_FADE_TIME;
((Light*) (&(*iter)))->fade -= gFrameIntervalSeconds;
}
fade = llclamp(fade,0.f,1.f);
light_color *= fade;
}
LLVector3 light_pos(light->getRenderPosition());
LLVector4 light_pos_gl(light_pos, 1.0f);
F32 light_radius = llmax(light->getLightRadius(), 0.001f);
F32 atten, quad;
#if 0 //1.9.1
if (pool->getVertexShaderLevel() > 0)
{
atten = light_radius;
quad = llmax(light->getLightFalloff(), 0.0001f);
}
else
#endif
{
F32 x = (3.f * (1.f + light->getLightFalloff()));
atten = x / (light_radius); // % of brightness at radius
quad = 0.0f;
}
mHWLightColors[cur_light] = light_color;
S32 gllight = GL_LIGHT0+cur_light;
glLightfv(gllight, GL_POSITION, light_pos_gl.mV);
glLightfv(gllight, GL_DIFFUSE, light_color.mV);
glLightfv(gllight, GL_AMBIENT, LLColor4::black.mV);
glLightfv(gllight, GL_SPECULAR, LLColor4::black.mV);
glLightf (gllight, GL_CONSTANT_ATTENUATION, 0.0f);
glLightf (gllight, GL_LINEAR_ATTENUATION, atten);
glLightf (gllight, GL_QUADRATIC_ATTENUATION, quad);
glLightf (gllight, GL_SPOT_EXPONENT, 0.0f);
glLightf (gllight, GL_SPOT_CUTOFF, 180.0f);
cur_light++;
if (cur_light >= 8)
{
break; // safety
}
}
}
for ( ; cur_light < 8 ; cur_light++)
{
mHWLightColors[cur_light] = LLColor4::black;
S32 gllight = GL_LIGHT0+cur_light;
glLightfv(gllight, GL_DIFFUSE, LLColor4::black.mV);
glLightfv(gllight, GL_AMBIENT, LLColor4::black.mV);
glLightfv(gllight, GL_SPECULAR, LLColor4::black.mV);
}
if (gAgent.getAvatarObject() &&
gAgent.getAvatarObject()->mSpecialRenderMode == 3)
{
LLColor4 light_color = LLColor4::white;
light_color.mV[3] = 0.0f;
LLVector3 light_pos(LLViewerCamera::getInstance()->getOrigin());
LLVector4 light_pos_gl(light_pos, 1.0f);
F32 light_radius = 16.f;
F32 atten, quad;
{
F32 x = 3.f;
atten = x / (light_radius); // % of brightness at radius
quad = 0.0f;
}
//mHWLightColors[cur_light] = light_color;
S32 gllight = GL_LIGHT2;
glLightfv(gllight, GL_POSITION, light_pos_gl.mV);
glLightfv(gllight, GL_DIFFUSE, light_color.mV);
glLightfv(gllight, GL_AMBIENT, LLColor4::black.mV);
glLightfv(gllight, GL_SPECULAR, LLColor4::black.mV);
glLightf (gllight, GL_CONSTANT_ATTENUATION, 0.0f);
glLightf (gllight, GL_LINEAR_ATTENUATION, atten);
glLightf (gllight, GL_QUADRATIC_ATTENUATION, quad);
glLightf (gllight, GL_SPOT_EXPONENT, 0.0f);
glLightf (gllight, GL_SPOT_CUTOFF, 180.0f);
}
// Init GL state
glDisable(GL_LIGHTING);
for (S32 gllight=GL_LIGHT0; gllight<=GL_LIGHT7; gllight++)
{
glDisable(gllight);
}
mLightMask = 0;
}
void LLPipeline::enableLights(U32 mask)
{
assertInitialized();
if (mLightingDetail == 0)
{
mask &= 0xf003; // sun and backlight only (and fullbright bit)
}
if (mLightMask != mask)
{
if (!mLightMask)
{
glEnable(GL_LIGHTING);
}
if (mask)
{
for (S32 i=0; i<8; i++)
{
if (mask & (1<<i))
{
glEnable(GL_LIGHT0 + i);
glLightfv(GL_LIGHT0 + i, GL_DIFFUSE, mHWLightColors[i].mV);
}
else
{
glDisable(GL_LIGHT0 + i);
glLightfv(GL_LIGHT0 + i, GL_DIFFUSE, LLColor4::black.mV);
}
}
}
else
{
glDisable(GL_LIGHTING);
}
mLightMask = mask;
LLColor4 ambient = gSky.getTotalAmbientColor();
glLightModelfv(GL_LIGHT_MODEL_AMBIENT,ambient.mV);
}
}
void LLPipeline::enableLightsStatic()
{
assertInitialized();
U32 mask = 0x01; // Sun
if (mLightingDetail >= 2)
{
mask |= mLightMovingMask; // Hardware moving lights
glColor4f(0.f, 0.f, 0.f, 1.0f); // no local lighting by default
}
else
{
mask |= 0xff & (~2); // Hardware local lights
}
enableLights(mask);
}
void LLPipeline::enableLightsDynamic()
{
assertInitialized();
U32 mask = 0xff & (~2); // Local lights
enableLights(mask);
if (mLightingDetail >= 2)
{
glColor4f(0.f, 0.f, 0.f, 1.f); // no local lighting by default
}
LLVOAvatar* avatarp = gAgent.getAvatarObject();
if (avatarp && getLightingDetail() <= 0)
{
if (avatarp->mSpecialRenderMode == 0) // normal
{
gPipeline.enableLightsAvatar();
}
else if (avatarp->mSpecialRenderMode >= 1) // anim preview
{
gPipeline.enableLightsAvatarEdit(LLColor4(0.7f, 0.6f, 0.3f, 1.f));
}
}
}
void LLPipeline::enableLightsAvatar()
{
U32 mask = 0xff; // All lights
setupAvatarLights(FALSE);
enableLights(mask);
}
void LLPipeline::enableLightsAvatarEdit(const LLColor4& color)
{
U32 mask = 0x2002; // Avatar backlight only, set ambient
setupAvatarLights(TRUE);
enableLights(mask);
glLightModelfv(GL_LIGHT_MODEL_AMBIENT,color.mV);
}
void LLPipeline::enableLightsFullbright(const LLColor4& color)
{
assertInitialized();
U32 mask = 0x1000; // Non-0 mask, set ambient
enableLights(mask);
glLightModelfv(GL_LIGHT_MODEL_AMBIENT,color.mV);
if (mLightingDetail >= 2)
{
glColor4f(0.f, 0.f, 0.f, 1.f); // no local lighting by default
}
}
void LLPipeline::disableLights()
{
enableLights(0); // no lighting (full bright)
glColor4f(1.f, 1.f, 1.f, 1.f); // lighting color = white by default
}
//============================================================================
class LLMenuItemGL;
class LLInvFVBridge;
struct cat_folder_pair;
class LLVOBranch;
class LLVOLeaf;
void LLPipeline::findReferences(LLDrawable *drawablep)
{
assertInitialized();
if (mLights.find(drawablep) != mLights.end())
{
llinfos << "In mLights" << llendl;
}
if (std::find(mMovedList.begin(), mMovedList.end(), drawablep) != mMovedList.end())
{
llinfos << "In mMovedList" << llendl;
}
if (std::find(mShiftList.begin(), mShiftList.end(), drawablep) != mShiftList.end())
{
llinfos << "In mShiftList" << llendl;
}
if (mRetexturedList.find(drawablep) != mRetexturedList.end())
{
llinfos << "In mRetexturedList" << llendl;
}
if (mActiveQ.find(drawablep) != mActiveQ.end())
{
llinfos << "In mActiveQ" << llendl;
}
if (std::find(mBuildQ1.begin(), mBuildQ1.end(), drawablep) != mBuildQ1.end())
{
llinfos << "In mBuildQ1" << llendl;
}
if (std::find(mBuildQ2.begin(), mBuildQ2.end(), drawablep) != mBuildQ2.end())
{
llinfos << "In mBuildQ2" << llendl;
}
S32 count;
count = gObjectList.findReferences(drawablep);
if (count)
{
llinfos << "In other drawables: " << count << " references" << llendl;
}
}
BOOL LLPipeline::verify()
{
BOOL ok = assertInitialized();
if (ok)
{
for (pool_set_t::iterator iter = mPools.begin(); iter != mPools.end(); ++iter)
{
LLDrawPool *poolp = *iter;
if (!poolp->verify())
{
ok = FALSE;
}
}
}
if (!ok)
{
llwarns << "Pipeline verify failed!" << llendl;
}
return ok;
}
//////////////////////////////
//
// Collision detection
//
//
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* A method to compute a ray-AABB intersection.
* Original code by Andrew Woo, from "Graphics Gems", Academic Press, 1990
* Optimized code by Pierre Terdiman, 2000 (~20-30% faster on my Celeron 500)
* Epsilon value added by Klaus Hartmann. (discarding it saves a few cycles only)
*
* Hence this version is faster as well as more robust than the original one.
*
* Should work provided:
* 1) the integer representation of 0.0f is 0x00000000
* 2) the sign bit of the float is the most significant one
*
* Report bugs: p.terdiman@codercorner.com
*
* \param aabb [in] the axis-aligned bounding box
* \param origin [in] ray origin
* \param dir [in] ray direction
* \param coord [out] impact coordinates
* \return true if ray intersects AABB
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//#define RAYAABB_EPSILON 0.00001f
#define IR(x) ((U32&)x)
bool LLRayAABB(const LLVector3 &center, const LLVector3 &size, const LLVector3& origin, const LLVector3& dir, LLVector3 &coord, F32 epsilon)
{
BOOL Inside = TRUE;
LLVector3 MinB = center - size;
LLVector3 MaxB = center + size;
LLVector3 MaxT;
MaxT.mV[VX]=MaxT.mV[VY]=MaxT.mV[VZ]=-1.0f;
// Find candidate planes.
for(U32 i=0;i<3;i++)
{
if(origin.mV[i] < MinB.mV[i])
{
coord.mV[i] = MinB.mV[i];
Inside = FALSE;
// Calculate T distances to candidate planes
if(IR(dir.mV[i])) MaxT.mV[i] = (MinB.mV[i] - origin.mV[i]) / dir.mV[i];
}
else if(origin.mV[i] > MaxB.mV[i])
{
coord.mV[i] = MaxB.mV[i];
Inside = FALSE;
// Calculate T distances to candidate planes
if(IR(dir.mV[i])) MaxT.mV[i] = (MaxB.mV[i] - origin.mV[i]) / dir.mV[i];
}
}
// Ray origin inside bounding box
if(Inside)
{
coord = origin;
return true;
}
// Get largest of the maxT's for final choice of intersection
U32 WhichPlane = 0;
if(MaxT.mV[1] > MaxT.mV[WhichPlane]) WhichPlane = 1;
if(MaxT.mV[2] > MaxT.mV[WhichPlane]) WhichPlane = 2;
// Check final candidate actually inside box
if(IR(MaxT.mV[WhichPlane])&0x80000000) return false;
for(U32 i=0;i<3;i++)
{
if(i!=WhichPlane)
{
coord.mV[i] = origin.mV[i] + MaxT.mV[WhichPlane] * dir.mV[i];
if (epsilon > 0)
{
if(coord.mV[i] < MinB.mV[i] - epsilon || coord.mV[i] > MaxB.mV[i] + epsilon) return false;
}
else
{
if(coord.mV[i] < MinB.mV[i] || coord.mV[i] > MaxB.mV[i]) return false;
}
}
}
return true; // ray hits box
}
//////////////////////////////
//
// Macros, functions, and inline methods from other classes
//
//
void LLPipeline::setLight(LLDrawable *drawablep, BOOL is_light)
{
if (drawablep && assertInitialized())
{
if (is_light)
{
mLights.insert(drawablep);
drawablep->setState(LLDrawable::LIGHT);
}
else
{
drawablep->clearState(LLDrawable::LIGHT);
mLights.erase(drawablep);
}
}
}
void LLPipeline::setActive(LLDrawable *drawablep, BOOL active)
{
assertInitialized();
if (active)
{
mActiveQ.insert(drawablep);
}
else
{
mActiveQ.erase(drawablep);
}
}
//static
void LLPipeline::toggleRenderType(U32 type)
{
U32 bit = (1<<type);
gPipeline.mRenderTypeMask ^= bit;
}
//static
void LLPipeline::toggleRenderTypeControl(void* data)
{
U32 type = (U32)(intptr_t)data;
U32 bit = (1<<type);
if (gPipeline.hasRenderType(type))
{
llinfos << "Toggling render type mask " << std::hex << bit << " off" << std::dec << llendl;
}
else
{
llinfos << "Toggling render type mask " << std::hex << bit << " on" << std::dec << llendl;
}
gPipeline.toggleRenderType(type);
}
//static
BOOL LLPipeline::hasRenderTypeControl(void* data)
{
U32 type = (U32)(intptr_t)data;
return gPipeline.hasRenderType(type);
}
// Allows UI items labeled "Hide foo" instead of "Show foo"
//static
BOOL LLPipeline::toggleRenderTypeControlNegated(void* data)
{
S32 type = (S32)(intptr_t)data;
return !gPipeline.hasRenderType(type);
}
//static
void LLPipeline::toggleRenderDebug(void* data)
{
U32 bit = (U32)(intptr_t)data;
if (gPipeline.hasRenderDebugMask(bit))
{
llinfos << "Toggling render debug mask " << std::hex << bit << " off" << std::dec << llendl;
}
else
{
llinfos << "Toggling render debug mask " << std::hex << bit << " on" << std::dec << llendl;
}
gPipeline.mRenderDebugMask ^= bit;
}
//static
BOOL LLPipeline::toggleRenderDebugControl(void* data)
{
U32 bit = (U32)(intptr_t)data;
return gPipeline.hasRenderDebugMask(bit);
}
//static
void LLPipeline::toggleRenderDebugFeature(void* data)
{
U32 bit = (U32)(intptr_t)data;
gPipeline.mRenderDebugFeatureMask ^= bit;
}
//static
BOOL LLPipeline::toggleRenderDebugFeatureControl(void* data)
{
U32 bit = (U32)(intptr_t)data;
return gPipeline.hasRenderDebugFeatureMask(bit);
}
// static
void LLPipeline::setRenderScriptedBeacons(BOOL val)
{
sRenderScriptedBeacons = val;
}
// static
void LLPipeline::toggleRenderScriptedBeacons(void*)
{
sRenderScriptedBeacons = !sRenderScriptedBeacons;
}
// static
BOOL LLPipeline::getRenderScriptedBeacons(void*)
{
return sRenderScriptedBeacons;
}
// static
void LLPipeline::setRenderScriptedTouchBeacons(BOOL val)
{
sRenderScriptedTouchBeacons = val;
}
// static
void LLPipeline::toggleRenderScriptedTouchBeacons(void*)
{
sRenderScriptedTouchBeacons = !sRenderScriptedTouchBeacons;
}
// static
BOOL LLPipeline::getRenderScriptedTouchBeacons(void*)
{
return sRenderScriptedTouchBeacons;
}
// static
void LLPipeline::setRenderPhysicalBeacons(BOOL val)
{
sRenderPhysicalBeacons = val;
}
// static
void LLPipeline::toggleRenderPhysicalBeacons(void*)
{
sRenderPhysicalBeacons = !sRenderPhysicalBeacons;
}
// static
BOOL LLPipeline::getRenderPhysicalBeacons(void*)
{
return sRenderPhysicalBeacons;
}
// static
void LLPipeline::setRenderParticleBeacons(BOOL val)
{
sRenderParticleBeacons = val;
}
// static
void LLPipeline::toggleRenderParticleBeacons(void*)
{
sRenderParticleBeacons = !sRenderParticleBeacons;
}
// static
BOOL LLPipeline::getRenderParticleBeacons(void*)
{
return sRenderParticleBeacons;
}
// static
void LLPipeline::setRenderSoundBeacons(BOOL val)
{
sRenderSoundBeacons = val;
}
// static
void LLPipeline::toggleRenderSoundBeacons(void*)
{
sRenderSoundBeacons = !sRenderSoundBeacons;
}
// static
BOOL LLPipeline::getRenderSoundBeacons(void*)
{
return sRenderSoundBeacons;
}
// static
void LLPipeline::setRenderBeacons(BOOL val)
{
sRenderBeacons = val;
}
// static
void LLPipeline::toggleRenderBeacons(void*)
{
sRenderBeacons = !sRenderBeacons;
}
// static
BOOL LLPipeline::getRenderBeacons(void*)
{
return sRenderBeacons;
}
// static
void LLPipeline::setRenderHighlights(BOOL val)
{
sRenderHighlight = val;
}
// static
void LLPipeline::toggleRenderHighlights(void*)
{
sRenderHighlight = !sRenderHighlight;
}
// static
BOOL LLPipeline::getRenderHighlights(void*)
{
return sRenderHighlight;
}
LLViewerObject* LLPipeline::lineSegmentIntersectInWorld(const LLVector3& start, const LLVector3& end,
S32* face_hit,
LLVector3* intersection, // return the intersection point
LLVector2* tex_coord, // return the texture coordinates of the intersection point
LLVector3* normal, // return the surface normal at the intersection point
LLVector3* bi_normal // return the surface bi-normal at the intersection point
)
{
LLDrawable* drawable = NULL;
for (LLWorld::region_list_t::iterator iter = LLWorld::getInstance()->getRegionList().begin();
iter != LLWorld::getInstance()->getRegionList().end(); ++iter)
{
LLViewerRegion* region = *iter;
for (U32 j = 0; j < LLViewerRegion::NUM_PARTITIONS; j++)
{
if ((j == LLViewerRegion::PARTITION_VOLUME) || (j == LLViewerRegion::PARTITION_BRIDGE)) // only check these partitions for now
{
LLSpatialPartition* part = region->getSpatialPartition(j);
if (part)
{
LLDrawable* hit = part->lineSegmentIntersect(start, end, face_hit, intersection, tex_coord, normal, bi_normal);
if (hit)
{
drawable = hit;
}
}
}
}
}
return drawable ? drawable->getVObj().get() : NULL;
}
LLViewerObject* LLPipeline::lineSegmentIntersectInHUD(const LLVector3& start, const LLVector3& end,
S32* face_hit,
LLVector3* intersection, // return the intersection point
LLVector2* tex_coord, // return the texture coordinates of the intersection point
LLVector3* normal, // return the surface normal at the intersection point
LLVector3* bi_normal // return the surface bi-normal at the intersection point
)
{
LLDrawable* drawable = NULL;
for (LLWorld::region_list_t::iterator iter = LLWorld::getInstance()->getRegionList().begin();
iter != LLWorld::getInstance()->getRegionList().end(); ++iter)
{
LLViewerRegion* region = *iter;
LLSpatialPartition* part = region->getSpatialPartition(LLViewerRegion::PARTITION_HUD);
if (part)
{
LLDrawable* hit = part->lineSegmentIntersect(start, end, face_hit, intersection, tex_coord, normal, bi_normal);
if (hit)
{
drawable = hit;
}
}
}
return drawable ? drawable->getVObj().get() : NULL;
}
LLSpatialPartition* LLPipeline::getSpatialPartition(LLViewerObject* vobj)
{
if (vobj)
{
LLViewerRegion* region = vobj->getRegion();
if (region)
{
return region->getSpatialPartition(vobj->getPartitionType());
}
}
return NULL;
}
void LLPipeline::resetVertexBuffers(LLDrawable* drawable)
{
if (!drawable || drawable->isDead())
{
return;
}
for (S32 i = 0; i < drawable->getNumFaces(); i++)
{
LLFace* facep = drawable->getFace(i);
facep->mVertexBuffer = NULL;
facep->mLastVertexBuffer = NULL;
}
}
void LLPipeline::resetVertexBuffers()
{
sRenderBump = gSavedSettings.getBOOL("RenderObjectBump");
for (LLWorld::region_list_t::iterator iter = LLWorld::getInstance()->getRegionList().begin();
iter != LLWorld::getInstance()->getRegionList().end(); ++iter)
{
LLViewerRegion* region = *iter;
for (U32 i = 0; i < LLViewerRegion::NUM_PARTITIONS; i++)
{
LLSpatialPartition* part = region->getSpatialPartition(i);
if (part)
{
part->resetVertexBuffers();
}
}
}
resetDrawOrders();
gSky.resetVertexBuffers();
if (LLVertexBuffer::sGLCount > 0)
{
LLVertexBuffer::cleanupClass();
}
//delete all name pool caches
LLGLNamePool::cleanupPools();
if (LLVertexBuffer::sGLCount > 0)
{
llwarns << "VBO wipe failed." << llendl;
}
if (!LLVertexBuffer::sStreamIBOPool.mNameList.empty() ||
!LLVertexBuffer::sStreamVBOPool.mNameList.empty() ||
!LLVertexBuffer::sDynamicIBOPool.mNameList.empty() ||
!LLVertexBuffer::sDynamicVBOPool.mNameList.empty())
{
llwarns << "VBO name pool cleanup failed." << llendl;
}
LLVertexBuffer::unbind();
LLPipeline::sTextureBindTest = gSavedSettings.getBOOL("RenderDebugTextureBind");
}
void LLPipeline::renderObjects(U32 type, U32 mask, BOOL texture)
{
assertInitialized();
gGLLastMatrix = NULL;
glLoadMatrixd(gGLLastModelView);
mSimplePool->renderGroups(type, mask, texture);
gGLLastMatrix = NULL;
glLoadMatrixd(gGLLastModelView);
}
void LLPipeline::setUseVBO(BOOL use_vbo)
{
if (use_vbo != LLVertexBuffer::sEnableVBOs)
{
if (use_vbo)
{
llinfos << "Enabling VBO." << llendl;
}
else
{
llinfos << "Disabling VBO." << llendl;
}
resetVertexBuffers();
LLVertexBuffer::initClass(use_vbo);
}
}
void apply_cube_face_rotation(U32 face)
{
switch (face)
{
case 0:
glRotatef(90.f, 0, 1, 0);
glRotatef(180.f, 1, 0, 0);
break;
case 2:
glRotatef(-90.f, 1, 0, 0);
break;
case 4:
glRotatef(180.f, 0, 1, 0);
glRotatef(180.f, 0, 0, 1);
break;
case 1:
glRotatef(-90.f, 0, 1, 0);
glRotatef(180.f, 1, 0, 0);
break;
case 3:
glRotatef(90, 1, 0, 0);
break;
case 5:
glRotatef(180, 0, 0, 1);
break;
}
}
void LLPipeline::generateReflectionMap(LLCubeMap* cube_map, LLCamera& cube_cam)
{
LLGLState::checkStates();
LLGLState::checkTextureChannels();
LLGLState::checkClientArrays();
assertInitialized();
//render dynamic cube map
U32 type_mask = gPipeline.getRenderTypeMask();
S32 use_occlusion = LLPipeline::sUseOcclusion;
LLPipeline::sUseOcclusion = 0;
LLPipeline::sSkipUpdate = TRUE;
U32 res = REFLECTION_MAP_RES;
LLPipeline::sReflectionRender = TRUE;
cube_map->bind();
GLint width;
glGetTexLevelParameteriv(GL_TEXTURE_CUBE_MAP_POSITIVE_X_ARB, 0, GL_TEXTURE_WIDTH, &width);
if (width != res)
{
cube_map->setReflection();
for (U32 i = 0; i < 6; i++)
{
glTexImage2D(gl_cube_face[i], 0, GL_RGBA, res, res, 0, GL_RGBA, GL_FLOAT, NULL);
}
}
glBindTexture(GL_TEXTURE_CUBE_MAP_ARB, 0);
cube_map->disable();
BOOL toggle_ui = gPipeline.hasRenderDebugFeatureMask(LLPipeline::RENDER_DEBUG_FEATURE_UI);
if (toggle_ui)
{
gPipeline.toggleRenderDebugFeature((void*) LLPipeline::RENDER_DEBUG_FEATURE_UI);
}
U32 cube_mask = (1 << LLPipeline::RENDER_TYPE_SIMPLE) |
(1 << LLPipeline::RENDER_TYPE_WATER) |
//(1 << LLPipeline::RENDER_TYPE_BUMP) |
(1 << LLPipeline::RENDER_TYPE_ALPHA) |
(1 << LLPipeline::RENDER_TYPE_TREE) |
//(1 << LLPipeline::RENDER_TYPE_PARTICLES) |
(1 << LLPipeline::RENDER_TYPE_CLOUDS) |
//(1 << LLPipeline::RENDER_TYPE_STARS) |
//(1 << LLPipeline::RENDER_TYPE_AVATAR) |
(1 << LLPipeline::RENDER_TYPE_GLOW) |
(1 << LLPipeline::RENDER_TYPE_GRASS) |
(1 << LLPipeline::RENDER_TYPE_VOLUME) |
(1 << LLPipeline::RENDER_TYPE_TERRAIN) |
(1 << LLPipeline::RENDER_TYPE_SKY) |
(1 << LLPipeline::RENDER_TYPE_WL_SKY) |
(1 << LLPipeline::RENDER_TYPE_GROUND);
LLDrawPoolWater::sSkipScreenCopy = TRUE;
LLPipeline::sSkipUpdate = TRUE;
cube_mask = cube_mask & type_mask;
gPipeline.setRenderTypeMask(cube_mask);
glMatrixMode(GL_PROJECTION);
glPushMatrix();
glMatrixMode(GL_MODELVIEW);
glPushMatrix();
glViewport(0,0,res,res);
glClearColor(0,0,0,0);
LLVector3 origin = cube_cam.getOrigin();
gPipeline.calcNearbyLights(cube_cam);
stop_glerror();
LLViewerImage::unbindTexture(0, GL_TEXTURE_2D);
glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, mCubeFrameBuffer);
glFramebufferRenderbufferEXT(GL_FRAMEBUFFER_EXT, GL_DEPTH_ATTACHMENT_EXT,
GL_RENDERBUFFER_EXT, mCubeDepth);
stop_glerror();
for (S32 i = 0; i < 6; i++)
{
glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, mCubeFrameBuffer);
glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT0_EXT,
gl_cube_face[i], cube_map->getGLName(), 0);
validate_framebuffer_object();
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluPerspective(90.f, 1.f, 0.1f, 1024.f);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
apply_cube_face_rotation(i);
glTranslatef(-origin.mV[0], -origin.mV[1], -origin.mV[2]);
cube_cam.setOrigin(origin);
LLViewerCamera::updateFrustumPlanes(cube_cam);
cube_cam.setOrigin(LLViewerCamera::getInstance()->getOrigin());
static LLCullResult result;
gPipeline.updateCull(cube_cam, result);
gPipeline.stateSort(cube_cam, result);
glClearColor(0,0,0,0);
gGL.setColorMask(true, true);
glClear(GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT);
gGL.setColorMask(true, false);
stop_glerror();
gPipeline.renderGeom(cube_cam);
}
glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, 0);
cube_cam.setOrigin(origin);
gShinyOrigin.setVec(cube_cam.getOrigin(), cube_cam.getFar()*2.f);
glMatrixMode(GL_PROJECTION);
glPopMatrix();
glMatrixMode(GL_MODELVIEW);
glPopMatrix();
gViewerWindow->setupViewport();
gPipeline.setRenderTypeMask(type_mask);
LLPipeline::sUseOcclusion = use_occlusion;
LLPipeline::sSkipUpdate = FALSE;
if (toggle_ui)
{
gPipeline.toggleRenderDebugFeature((void*)LLPipeline::RENDER_DEBUG_FEATURE_UI);
}
LLDrawPoolWater::sSkipScreenCopy = FALSE;
LLPipeline::sSkipUpdate = FALSE;
LLPipeline::sReflectionRender = FALSE;
LLGLState::checkStates();
LLGLState::checkTextureChannels();
LLGLState::checkClientArrays();
}
//send cube map vertices and texture coordinates
void render_cube_map()
{
U16 idx[36];
idx[0] = 1; idx[1] = 0; idx[2] = 2; //front
idx[3] = 3; idx[4] = 2; idx[5] = 0;
idx[6] = 4; idx[7] = 5; idx[8] = 1; //top
idx[9] = 0; idx[10] = 1; idx[11] = 5;
idx[12] = 5; idx[13] = 4; idx[14] = 6; //back
idx[15] = 7; idx[16] = 6; idx[17] = 4;
idx[18] = 6; idx[19] = 7; idx[20] = 3; //bottom
idx[21] = 2; idx[22] = 3; idx[23] = 7;
idx[24] = 0; idx[25] = 5; idx[26] = 3; //left
idx[27] = 6; idx[28] = 3; idx[29] = 5;
idx[30] = 4; idx[31] = 1; idx[32] = 7; //right
idx[33] = 2; idx[34] = 7; idx[35] = 1;
LLVector3 vert[8];
LLVector3 r = LLVector3(1,1,1);
vert[0] = r.scaledVec(LLVector3(-1,1,1)); // 0 - left top front
vert[1] = r.scaledVec(LLVector3(1,1,1)); // 1 - right top front
vert[2] = r.scaledVec(LLVector3(1,-1,1)); // 2 - right bottom front
vert[3] = r.scaledVec(LLVector3(-1,-1,1)); // 3 - left bottom front
vert[4] = r.scaledVec(LLVector3(1,1,-1)); // 4 - left top back
vert[5] = r.scaledVec(LLVector3(-1,1,-1)); // 5 - right top back
vert[6] = r.scaledVec(LLVector3(-1,-1,-1)); // 6 - right bottom back
vert[7] = r.scaledVec(LLVector3(1,-1,-1)); // 7 -left bottom back
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glTexCoordPointer(3, GL_FLOAT, 0, vert);
glVertexPointer(3, GL_FLOAT, 0, vert);
glDrawElements(GL_TRIANGLES, 36, GL_UNSIGNED_SHORT, (GLushort*) idx);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
}
void validate_framebuffer_object()
{
GLenum status;
status = glCheckFramebufferStatusEXT(GL_FRAMEBUFFER_EXT);
switch(status)
{
case GL_FRAMEBUFFER_COMPLETE_EXT:
//framebuffer OK, no error.
break;
case GL_FRAMEBUFFER_INCOMPLETE_DIMENSIONS_EXT:
// frame buffer not OK: probably means unsupported depth buffer format
llerrs << "Framebuffer Incomplete Dimensions." << llendl;
break;
case GL_FRAMEBUFFER_INCOMPLETE_ATTACHMENT_EXT:
// frame buffer not OK: probably means unsupported depth buffer format
llerrs << "Framebuffer Incomplete Attachment." << llendl;
break;
case GL_FRAMEBUFFER_UNSUPPORTED_EXT:
/* choose different formats */
llerrs << "Framebuffer unsupported." << llendl;
break;
default:
llerrs << "Unknown framebuffer status." << llendl;
break;
}
}
void LLPipeline::blurReflectionMap(LLCubeMap* cube_in, LLCubeMap* cube_out)
{
LLGLState::checkStates();
LLGLState::checkTextureChannels();
LLGLState::checkClientArrays();
assertInitialized();
U32 res = (U32) gSavedSettings.getS32("RenderReflectionRes");
enableLightsFullbright(LLColor4::white);
LLGLDepthTest depth(GL_FALSE);
gGL.setColorMask(true, true);
glMatrixMode(GL_PROJECTION);
glPushMatrix();
glLoadIdentity();
gluPerspective(90.f+45.f/res, 1.f, 0.1f, 1024.f);
glMatrixMode(GL_MODELVIEW);
glPushMatrix();
cube_out->enableTexture(0);
cube_out->bind();
GLint width;
glGetTexLevelParameteriv(GL_TEXTURE_CUBE_MAP_POSITIVE_X_ARB, 0, GL_TEXTURE_WIDTH, &width);
if (width != res)
{
cube_out->setReflection();
for (U32 i = 0; i < 6; i++)
{
glTexImage2D(gl_cube_face[i], 0, GL_RGBA, res, res, 0, GL_RGBA, GL_FLOAT, NULL);
}
}
glBindTexture(GL_TEXTURE_CUBE_MAP_ARB, 0);
glViewport(0, 0, res, res);
LLGLEnable blend(GL_BLEND);
S32 kernel = 2;
F32 step = 90.f/res;
F32 alpha = 1.f / ((kernel*2)+1);
gGL.color4f(alpha,alpha,alpha,alpha*1.25f);
LLVector3 axis[] =
{
LLVector3(1,0,0),
LLVector3(0,1,0),
LLVector3(0,0,1)
};
stop_glerror();
glViewport(0,0,res, res);
gGL.setSceneBlendType(LLRender::BT_ADD);
cube_in->enableTexture(0);
//3-axis blur
for (U32 j = 0; j < 3; j++)
{
stop_glerror();
if (j == 0)
{
cube_in->bind();
}
else
{
glBindTexture(GL_TEXTURE_CUBE_MAP_ARB, mBlurCubeTexture[j-1]);
}
stop_glerror();
LLViewerImage::unbindTexture(0, GL_TEXTURE_2D);
glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, mBlurCubeBuffer[j]);
stop_glerror();
for (U32 i = 0; i < 6; i++)
{
stop_glerror();
glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT,
GL_COLOR_ATTACHMENT0_EXT,
gl_cube_face[i],
j < 2 ? mBlurCubeTexture[j] : cube_out->getGLName(), 0);
validate_framebuffer_object();
gGL.setColorMask(true, true);
glClear(GL_COLOR_BUFFER_BIT);
glLoadIdentity();
apply_cube_face_rotation(i);
for (S32 x = -kernel; x <= kernel; ++x)
{
glPushMatrix();
glRotatef(x*step, axis[j].mV[0], axis[j].mV[1], axis[j].mV[2]);
render_cube_map();
glPopMatrix();
}
stop_glerror();
}
}
stop_glerror();
glBindTexture(GL_TEXTURE_CUBE_MAP_ARB, 0);
glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, 0);
gGL.setColorMask(true, false);
glMatrixMode(GL_PROJECTION);
glPopMatrix();
glMatrixMode(GL_MODELVIEW);
glPopMatrix();
cube_in->disableTexture();
gViewerWindow->setupViewport();
gGL.setSceneBlendType(LLRender::BT_ALPHA);
LLGLState::checkStates();
LLGLState::checkTextureChannels();
LLGLState::checkClientArrays();
}
void LLPipeline::bindScreenToTexture()
{
}
void LLPipeline::renderBloom(BOOL for_snapshot)
{
if (!(gPipeline.canUseVertexShaders() &&
sRenderGlow))
{
return;
}
LLGLState::checkStates();
LLGLState::checkTextureChannels();
assertInitialized();
if (gUseWireframe)
{
glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
}
U32 res_mod = gSavedSettings.getU32("RenderResolutionDivisor");
LLVector2 tc1(0,0);
LLVector2 tc2((F32) gViewerWindow->getWindowDisplayWidth(),
(F32) gViewerWindow->getWindowDisplayHeight());
if (res_mod > 1)
{
tc2 /= (F32) res_mod;
}
gGL.setColorMask(true, true);
LLFastTimer ftm(LLFastTimer::FTM_RENDER_BLOOM);
gGL.color4f(1,1,1,1);
LLGLDepthTest depth(GL_FALSE);
LLGLDisable blend(GL_BLEND);
LLGLDisable cull(GL_CULL_FACE);
enableLightsFullbright(LLColor4(1,1,1,1));
glMatrixMode(GL_PROJECTION);
glPushMatrix();
glLoadIdentity();
glMatrixMode(GL_MODELVIEW);
glPushMatrix();
glLoadIdentity();
LLGLDisable test(GL_ALPHA_TEST);
gGL.setColorMask(true, true);
glClearColor(0,0,0,0);
if (for_snapshot)
{
mGlow[1].bindTexture();
{
//LLGLEnable stencil(GL_STENCIL_TEST);
//glStencilFunc(GL_NOTEQUAL, 255, 0xFFFFFFFF);
//glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);
//LLGLDisable blend(GL_BLEND);
LLGLEnable blend(GL_BLEND);
gGL.setSceneBlendType(LLRender::BT_ADD);
tc2.setVec(1,1);
gGL.begin(LLVertexBuffer::TRIANGLE_STRIP);
gGL.color4f(1,1,1,1);
gGL.texCoord2f(tc1.mV[0], tc1.mV[1]);
gGL.vertex2f(-1,-1);
gGL.texCoord2f(tc1.mV[0], tc2.mV[1]);
gGL.vertex2f(-1,1);
gGL.texCoord2f(tc2.mV[0], tc1.mV[1]);
gGL.vertex2f(1,-1);
gGL.texCoord2f(tc2.mV[0], tc2.mV[1]);
gGL.vertex2f(1,1);
gGL.end();
gGL.flush();
gGL.setSceneBlendType(LLRender::BT_ALPHA);
}
gGL.flush();
glMatrixMode(GL_PROJECTION);
glPopMatrix();
glMatrixMode(GL_MODELVIEW);
glPopMatrix();
return;
}
{
{
LLFastTimer ftm(LLFastTimer::FTM_RENDER_BLOOM_FBO);
mGlow[2].bindTarget();
mGlow[2].clear();
}
gGlowExtractProgram.bind();
F32 minLum = llclamp(gSavedSettings.getF32("RenderGlowMinLuminance"), 0.0f, 1.0f);
F32 maxAlpha = gSavedSettings.getF32("RenderGlowMaxExtractAlpha");
F32 warmthAmount = gSavedSettings.getF32("RenderGlowWarmthAmount");
LLVector3 lumWeights = gSavedSettings.getVector3("RenderGlowLumWeights");
LLVector3 warmthWeights = gSavedSettings.getVector3("RenderGlowWarmthWeights");
gGlowExtractProgram.uniform1f("minLuminance", minLum);
gGlowExtractProgram.uniform1f("maxExtractAlpha", maxAlpha);
gGlowExtractProgram.uniform3f("lumWeights", lumWeights.mV[0], lumWeights.mV[1], lumWeights.mV[2]);
gGlowExtractProgram.uniform3f("warmthWeights", warmthWeights.mV[0], warmthWeights.mV[1], warmthWeights.mV[2]);
gGlowExtractProgram.uniform1f("warmthAmount", warmthAmount);
LLGLEnable blend_on(GL_BLEND);
LLGLEnable test(GL_ALPHA_TEST);
gGL.setAlphaRejectSettings(LLRender::CF_DEFAULT);
gGL.setSceneBlendType(LLRender::BT_ADD_WITH_ALPHA);
LLViewerImage::unbindTexture(0, GL_TEXTURE_2D);
glDisable(GL_TEXTURE_2D);
glEnable(GL_TEXTURE_RECTANGLE_ARB);
mScreen.bindTexture();
gGL.color4f(1,1,1,1);
gPipeline.enableLightsFullbright(LLColor4(1,1,1,1));
gGL.begin(LLVertexBuffer::TRIANGLE_STRIP);
gGL.texCoord2f(tc1.mV[0], tc1.mV[1]);
gGL.vertex2f(-1,-1);
gGL.texCoord2f(tc1.mV[0], tc2.mV[1]);
gGL.vertex2f(-1,1);
gGL.texCoord2f(tc2.mV[0], tc1.mV[1]);
gGL.vertex2f(1,-1);
gGL.texCoord2f(tc2.mV[0], tc2.mV[1]);
gGL.vertex2f(1,1);
gGL.end();
glEnable(GL_TEXTURE_2D);
glDisable(GL_TEXTURE_RECTANGLE_ARB);
mGlow[2].flush();
}
tc1.setVec(0,0);
tc2.setVec(1,1);
// power of two between 1 and 1024
U32 glowResPow = gSavedSettings.getS32("RenderGlowResolutionPow");
const U32 glow_res = llmax(1,
llmin(1024, 1 << glowResPow));
S32 kernel = gSavedSettings.getS32("RenderGlowIterations")*2;
F32 delta = gSavedSettings.getF32("RenderGlowWidth") / glow_res;
// Use half the glow width if we have the res set to less than 9 so that it looks
// almost the same in either case.
if (glowResPow < 9)
{
delta *= 0.5f;
}
F32 strength = gSavedSettings.getF32("RenderGlowStrength");
gGlowProgram.bind();
gGlowProgram.uniform1f("glowStrength", strength);
for (S32 i = 0; i < kernel; i++)
{
LLViewerImage::unbindTexture(0, GL_TEXTURE_2D);
{
LLFastTimer ftm(LLFastTimer::FTM_RENDER_BLOOM_FBO);
mGlow[i%2].bindTarget();
mGlow[i%2].clear();
}
if (i == 0)
{
mGlow[2].bindTexture();
}
else
{
mGlow[(i-1)%2].bindTexture();
}
if (i%2 == 0)
{
gGlowProgram.uniform2f("glowDelta", delta, 0);
}
else
{
gGlowProgram.uniform2f("glowDelta", 0, delta);
}
gGL.begin(LLVertexBuffer::TRIANGLE_STRIP);
gGL.texCoord2f(tc1.mV[0], tc1.mV[1]);
gGL.vertex2f(-1,-1);
gGL.texCoord2f(tc1.mV[0], tc2.mV[1]);
gGL.vertex2f(-1,1);
gGL.texCoord2f(tc2.mV[0], tc1.mV[1]);
gGL.vertex2f(1,-1);
gGL.texCoord2f(tc2.mV[0], tc2.mV[1]);
gGL.vertex2f(1,1);
gGL.end();
mGlow[i%2].flush();
}
gGlowProgram.unbind();
if (LLRenderTarget::sUseFBO)
{
LLFastTimer ftm(LLFastTimer::FTM_RENDER_BLOOM_FBO);
glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, 0);
}
gViewerWindow->setupViewport();
/*mGlow[1].bindTexture();
{
LLGLEnable stencil(GL_STENCIL_TEST);
glStencilFunc(GL_NOTEQUAL, 255, 0xFFFFFFFF);
glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);
LLGLDisable blend(GL_BLEND);
gGL.begin(LLVertexBuffer::TRIANGLE_STRIP);
gGL.color4f(1,1,1,1);
gGL.texCoord2f(tc1.mV[0], tc1.mV[1]);
gGL.vertex2f(-1,-1);
gGL.texCoord2f(tc1.mV[0], tc2.mV[1]);
gGL.vertex2f(-1,1);
gGL.texCoord2f(tc2.mV[0], tc1.mV[1]);
gGL.vertex2f(1,-1);
gGL.texCoord2f(tc2.mV[0], tc2.mV[1]);
gGL.vertex2f(1,1);
gGL.end();
gGL.flush();
}
if (!gPipeline.hasRenderDebugMask(LLPipeline::RENDER_DEBUG_GLOW))
{
tc2.setVec((F32) gViewerWindow->getWindowDisplayWidth(),
(F32) gViewerWindow->getWindowDisplayHeight());
if (res_mod > 1)
{
tc2 /= (F32) res_mod;
}
LLGLEnable blend(GL_BLEND);
gGL.blendFunc(GL_ONE, GL_ONE);
glDisable(GL_TEXTURE_2D);
glEnable(GL_TEXTURE_RECTANGLE_ARB);
mScreen.bindTexture();
gGL.begin(LLVertexBuffer::TRIANGLE_STRIP);
gGL.color4f(1,1,1,1);
gGL.texCoord2f(tc1.mV[0], tc1.mV[1]);
gGL.vertex2f(-1,-1);
gGL.texCoord2f(tc1.mV[0], tc2.mV[1]);
gGL.vertex2f(-1,1);
gGL.texCoord2f(tc2.mV[0], tc1.mV[1]);
gGL.vertex2f(1,-1);
gGL.texCoord2f(tc2.mV[0], tc2.mV[1]);
gGL.vertex2f(1,1);
gGL.end();
gGL.flush();
glEnable(GL_TEXTURE_2D);
glDisable(GL_TEXTURE_RECTANGLE_ARB);
gGL.blendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
}*/
gGL.flush();
{
LLVertexBuffer::unbind();
F32 uv0[] =
{
tc1.mV[0], tc1.mV[1],
tc1.mV[0], tc2.mV[1],
tc2.mV[0], tc1.mV[1],
tc2.mV[0], tc2.mV[1]
};
tc2.setVec((F32) gViewerWindow->getWindowDisplayWidth(),
(F32) gViewerWindow->getWindowDisplayHeight());
if (res_mod > 1)
{
tc2 /= (F32) res_mod;
}
F32 uv1[] =
{
tc1.mV[0], tc1.mV[1],
tc1.mV[0], tc2.mV[1],
tc2.mV[0], tc1.mV[1],
tc2.mV[0], tc2.mV[1]
};
F32 v[] =
{
-1,-1,
-1,1,
1,-1,
1,1
};
LLGLDisable blend(GL_BLEND);
//tex unit 0
gGL.getTexUnit(0)->setTextureColorBlend(LLTexUnit::TBO_REPLACE, LLTexUnit::TBS_TEX_COLOR);
mGlow[1].bindTexture();
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glTexCoordPointer(2, GL_FLOAT, 0, uv0);
gGL.getTexUnit(1)->activate();
glEnable(GL_TEXTURE_RECTANGLE_ARB);
//tex unit 1
gGL.getTexUnit(1)->setTextureColorBlend(LLTexUnit::TBO_ADD, LLTexUnit::TBS_TEX_COLOR, LLTexUnit::TBS_PREV_COLOR);
glClientActiveTextureARB(GL_TEXTURE1_ARB);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glTexCoordPointer(2, GL_FLOAT, 0, uv1);
glVertexPointer(2, GL_FLOAT, 0, v);
mScreen.bindTexture();
LLGLEnable multisample(GL_MULTISAMPLE_ARB);
glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
glDisable(GL_TEXTURE_RECTANGLE_ARB);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
gGL.getTexUnit(1)->setTextureBlendType(LLTexUnit::TB_MULT);
glClientActiveTextureARB(GL_TEXTURE0_ARB);
gGL.getTexUnit(0)->activate();
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
gGL.getTexUnit(0)->setTextureBlendType(LLTexUnit::TB_MULT);
}
gGL.setSceneBlendType(LLRender::BT_ALPHA);
glMatrixMode(GL_PROJECTION);
glPopMatrix();
glMatrixMode(GL_MODELVIEW);
glPopMatrix();
LLVertexBuffer::unbind();
LLGLState::checkStates();
LLGLState::checkTextureChannels();
}
inline float sgn(float a)
{
if (a > 0.0F) return (1.0F);
if (a < 0.0F) return (-1.0F);
return (0.0F);
}
void LLPipeline::generateWaterReflection(LLCamera& camera_in)
{
if (LLPipeline::sWaterReflections && assertInitialized() && LLDrawPoolWater::sNeedsReflectionUpdate)
{
LLVertexBuffer::unbind();
LLGLState::checkStates();
LLGLState::checkTextureChannels();
LLGLState::checkClientArrays();
LLCamera camera = camera_in;
camera.setFar(camera.getFar()*0.87654321f);
LLPipeline::sReflectionRender = TRUE;
S32 occlusion = LLPipeline::sUseOcclusion;
LLPipeline::sUseOcclusion = llmin(occlusion, 1);
U32 type_mask = gPipeline.mRenderTypeMask;
glh::matrix4f projection = glh_get_current_projection();
glh::matrix4f mat;
stop_glerror();
LLPlane plane;
F32 height = gAgent.getRegion()->getWaterHeight();
F32 to_clip = fabsf(camera.getOrigin().mV[2]-height);
F32 pad = -to_clip*0.05f; //amount to "pad" clip plane by
//plane params
LLVector3 pnorm;
F32 pd;
S32 water_clip = 0;
if (!LLViewerCamera::getInstance()->cameraUnderWater())
{ //camera is above water, clip plane points up
pnorm.setVec(0,0,1);
pd = -height;
plane.setVec(pnorm, pd);
water_clip = -1;
}
else
{ //camera is below water, clip plane points down
pnorm = LLVector3(0,0,-1);
pd = height;
plane.setVec(pnorm, pd);
water_clip = 1;
}
if (!LLViewerCamera::getInstance()->cameraUnderWater())
{ //generate planar reflection map
LLViewerImage::unbindTexture(0, GL_TEXTURE_2D);
glClearColor(0,0,0,0);
gGL.setColorMask(true, true);
mWaterRef.bindTarget();
mWaterRef.getViewport(gGLViewport);
mWaterRef.clear();
gGL.setColorMask(true, false);
stop_glerror();
LLVector3 origin = camera.getOrigin();
glPushMatrix();
mat.set_scale(glh::vec3f(1,1,-1));
mat.set_translate(glh::vec3f(0,0,height*2.f));
glh::matrix4f current = glh_get_current_modelview();
mat = current * mat;
glh_set_current_modelview(mat);
glLoadMatrixf(mat.m);
LLViewerCamera::updateFrustumPlanes(camera, FALSE, TRUE);
glCullFace(GL_FRONT);
//initial sky pass (no user clip plane)
{ //mask out everything but the sky
U32 tmp = mRenderTypeMask;
mRenderTypeMask &= ((1 << LLPipeline::RENDER_TYPE_SKY) |
(1 << LLPipeline::RENDER_TYPE_CLOUDS) |
(1 << LLPipeline::RENDER_TYPE_WL_SKY));
static LLCullResult result;
updateCull(camera, result);
stateSort(camera, result);
renderGeom(camera, TRUE);
mRenderTypeMask = tmp;
}
if (LLDrawPoolWater::sNeedsDistortionUpdate)
{
mRenderTypeMask &= ~((1<<LLPipeline::RENDER_TYPE_WATER) |
(1<<LLPipeline::RENDER_TYPE_GROUND) |
(1<<LLPipeline::RENDER_TYPE_SKY) |
(1<<LLPipeline::RENDER_TYPE_CLOUDS));
if (gSavedSettings.getBOOL("RenderWaterReflections"))
{ //mask out selected geometry based on reflection detail
S32 detail = gSavedSettings.getS32("RenderReflectionDetail");
if (detail < 3)
{
mRenderTypeMask &= ~(1 << LLPipeline::RENDER_TYPE_PARTICLES);
if (detail < 2)
{
mRenderTypeMask &= ~(1 << LLPipeline::RENDER_TYPE_AVATAR);
if (detail < 1)
{
mRenderTypeMask &= ~(1 << LLPipeline::RENDER_TYPE_VOLUME);
}
}
}
LLSpatialPartition::sFreezeState = TRUE;
LLPipeline::sSkipUpdate = TRUE;
LLGLUserClipPlane clip_plane(plane, mat, projection);
static LLCullResult result;
updateCull(camera, result, 1);
stateSort(camera, result);
renderGeom(camera);
LLSpatialPartition::sFreezeState = FALSE;
LLPipeline::sSkipUpdate = FALSE;
}
}
glCullFace(GL_BACK);
glPopMatrix();
mWaterRef.flush();
glh_set_current_modelview(current);
}
//render distortion map
static BOOL last_update = TRUE;
if (last_update)
{
camera.setFar(camera_in.getFar());
mRenderTypeMask = type_mask & (~(1<<LLPipeline::RENDER_TYPE_WATER) |
(1<<LLPipeline::RENDER_TYPE_GROUND));
stop_glerror();
LLPipeline::sUnderWaterRender = LLViewerCamera::getInstance()->cameraUnderWater() ? FALSE : TRUE;
if (LLPipeline::sUnderWaterRender)
{
mRenderTypeMask &= ~((1<<LLPipeline::RENDER_TYPE_GROUND) |
(1<<LLPipeline::RENDER_TYPE_SKY) |
(1<<LLPipeline::RENDER_TYPE_CLOUDS) |
(1<<LLPipeline::RENDER_TYPE_WL_SKY));
}
LLViewerCamera::updateFrustumPlanes(camera);
LLViewerImage::unbindTexture(0, GL_TEXTURE_2D);
LLColor4& col = LLDrawPoolWater::sWaterFogColor;
glClearColor(col.mV[0], col.mV[1], col.mV[2], 0.f);
gGL.setColorMask(true, true);
mWaterDis.bindTarget();
mWaterDis.getViewport(gGLViewport);
mWaterDis.clear();
gGL.setColorMask(true, false);
if (!LLPipeline::sUnderWaterRender || LLDrawPoolWater::sNeedsReflectionUpdate)
{
//clip out geometry on the same side of water as the camera
mat = glh_get_current_modelview();
LLGLUserClipPlane clip_plane(LLPlane(-pnorm, -(pd+pad)), mat, projection);
static LLCullResult result;
updateCull(camera, result, water_clip);
stateSort(camera, result);
renderGeom(camera);
}
LLPipeline::sUnderWaterRender = FALSE;
mWaterDis.flush();
}
last_update = LLDrawPoolWater::sNeedsReflectionUpdate && LLDrawPoolWater::sNeedsDistortionUpdate;
LLRenderTarget::unbindTarget();
LLPipeline::sReflectionRender = FALSE;
if (!LLRenderTarget::sUseFBO)
{
glClear(GL_DEPTH_BUFFER_BIT);
}
glClearColor(0.f, 0.f, 0.f, 0.f);
gViewerWindow->setupViewport();
mRenderTypeMask = type_mask;
LLDrawPoolWater::sNeedsReflectionUpdate = FALSE;
LLDrawPoolWater::sNeedsDistortionUpdate = FALSE;
LLViewerCamera::getInstance()->setUserClipPlane(LLPlane(-pnorm, -pd));
LLPipeline::sUseOcclusion = occlusion;
LLGLState::checkStates();
LLGLState::checkTextureChannels();
LLGLState::checkClientArrays();
}
}
void LLPipeline::renderGroups(LLRenderPass* pass, U32 type, U32 mask, BOOL texture)
{
for (LLCullResult::sg_list_t::iterator i = sCull->beginVisibleGroups(); i != sCull->endVisibleGroups(); ++i)
{
LLSpatialGroup* group = *i;
if (!group->isDead() &&
(!sUseOcclusion || !group->isState(LLSpatialGroup::OCCLUDED)) &&
gPipeline.hasRenderType(group->mSpatialPartition->mDrawableType) &&
group->mDrawMap.find(type) != group->mDrawMap.end())
{
pass->renderGroup(group,type,mask,texture);
}
}
}
void LLPipeline::generateImpostor(LLVOAvatar* avatar)
{
static LLCullResult result;
result.clear();
grabReferences(result);
if (!avatar || !avatar->mDrawable)
{
return;
}
assertInitialized();
U32 mask;
BOOL muted = LLMuteList::getInstance()->isMuted(avatar->getID());
if (muted)
{
mask = 1 << LLPipeline::RENDER_TYPE_AVATAR;
}
else
{
mask = (1<<LLPipeline::RENDER_TYPE_VOLUME) |
(1<<LLPipeline::RENDER_TYPE_AVATAR) |
(1<<LLPipeline::RENDER_TYPE_BUMP) |
(1<<LLPipeline::RENDER_TYPE_GRASS) |
(1<<LLPipeline::RENDER_TYPE_SIMPLE) |
(1<<LLPipeline::RENDER_TYPE_ALPHA) |
(1<<LLPipeline::RENDER_TYPE_INVISIBLE);
}
mask = mask & gPipeline.getRenderTypeMask();
U32 saved_mask = gPipeline.mRenderTypeMask;
gPipeline.mRenderTypeMask = mask;
S32 occlusion = sUseOcclusion;
sUseOcclusion = 0;
sReflectionRender = TRUE;
sImpostorRender = TRUE;
markVisible(avatar->mDrawable, *LLViewerCamera::getInstance());
LLVOAvatar::sUseImpostors = FALSE;
LLVOAvatar::attachment_map_t::iterator iter;
for (iter = avatar->mAttachmentPoints.begin();
iter != avatar->mAttachmentPoints.end();
++iter)
{
LLViewerObject* object = iter->second->getObject();
if (object)
{
markVisible(object->mDrawable->getSpatialBridge(), *LLViewerCamera::getInstance());
}
}
stateSort(*LLViewerCamera::getInstance(), result);
const LLVector3* ext = avatar->mDrawable->getSpatialExtents();
LLVector3 pos(avatar->getRenderPosition()+avatar->getImpostorOffset());
LLCamera camera = *LLViewerCamera::getInstance();
camera.lookAt(LLViewerCamera::getInstance()->getOrigin(), pos, LLViewerCamera::getInstance()->getUpAxis());
LLVector2 tdim;
LLVector3 half_height = (ext[1]-ext[0])*0.5f;
LLVector3 left = camera.getLeftAxis();
left *= left;
left.normVec();
LLVector3 up = camera.getUpAxis();
up *= up;
up.normVec();
tdim.mV[0] = fabsf(half_height * left);
tdim.mV[1] = fabsf(half_height * up);
glMatrixMode(GL_PROJECTION);
glPushMatrix();
//glh::matrix4f ortho = gl_ortho(-tdim.mV[0], tdim.mV[0], -tdim.mV[1], tdim.mV[1], 1.0, 256.0);
F32 distance = (pos-camera.getOrigin()).length();
F32 fov = atanf(tdim.mV[1]/distance)*2.f*RAD_TO_DEG;
F32 aspect = tdim.mV[0]/tdim.mV[1]; //128.f/256.f;
glh::matrix4f persp = gl_perspective(fov, aspect, 1.f, 256.f);
glh_set_current_projection(persp);
glLoadMatrixf(persp.m);
glMatrixMode(GL_MODELVIEW);
glPushMatrix();
glh::matrix4f mat;
camera.getOpenGLTransform(mat.m);
mat = glh::matrix4f((GLfloat*) OGL_TO_CFR_ROTATION) * mat;
glLoadMatrixf(mat.m);
glh_set_current_modelview(mat);
glClearColor(0.0f,0.0f,0.0f,0.0f);
gGL.setColorMask(true, true);
glStencilMask(0xFFFFFFFF);
glClearStencil(0);
// get the number of pixels per angle
F32 pa = gViewerWindow->getWindowDisplayHeight() / (RAD_TO_DEG * LLViewerCamera::getInstance()->getView());
//get resolution based on angle width and height of impostor (double desired resolution to prevent aliasing)
U32 resY = llmin(nhpo2((U32) (fov*pa)), (U32) 512);
U32 resX = llmin(nhpo2((U32) (atanf(tdim.mV[0]/distance)*2.f*RAD_TO_DEG*pa)), (U32) 512);
if (!avatar->mImpostor.isComplete() || resX != avatar->mImpostor.getWidth() ||
resY != avatar->mImpostor.getHeight())
{
avatar->mImpostor.allocate(resX,resY,GL_RGBA,TRUE);
avatar->mImpostor.bindTexture();
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
LLImageGL::unbindTexture(0, GL_TEXTURE_2D);
}
{
LLGLEnable scissor(GL_SCISSOR_TEST);
glScissor(0, 0, resX, resY);
avatar->mImpostor.bindTarget();
avatar->mImpostor.getViewport(gGLViewport);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT);
}
LLGLEnable stencil(GL_STENCIL_TEST);
glStencilFunc(GL_ALWAYS, 1, 0xFFFFFFFF);
glStencilOp(GL_KEEP, GL_KEEP, GL_REPLACE);
renderGeom(camera);
glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);
glStencilFunc(GL_EQUAL, 1, 0xFFFFFF);
{
LLVector3 left = camera.getLeftAxis()*tdim.mV[0]*2.f;
LLVector3 up = camera.getUpAxis()*tdim.mV[1]*2.f;
LLGLEnable blend(muted ? 0 : GL_BLEND);
if (muted)
{
gGL.setColorMask(true, true);
}
else
{
gGL.setColorMask(false, true);
}
gGL.setSceneBlendType(LLRender::BT_ADD);
LLImageGL::unbindTexture(0, GL_TEXTURE_2D);
LLGLDepthTest depth(GL_FALSE, GL_FALSE);
gGL.color4f(1,1,1,1);
gGL.color4ub(64,64,64,255);
gGL.begin(LLVertexBuffer::QUADS);
gGL.vertex3fv((pos+left-up).mV);
gGL.vertex3fv((pos-left-up).mV);
gGL.vertex3fv((pos-left+up).mV);
gGL.vertex3fv((pos+left+up).mV);
gGL.end();
gGL.flush();
gGL.setSceneBlendType(LLRender::BT_ALPHA);
}
avatar->mImpostor.flush();
avatar->setImpostorDim(tdim);
LLVOAvatar::sUseImpostors = TRUE;
sUseOcclusion = occlusion;
sReflectionRender = FALSE;
sImpostorRender = FALSE;
gPipeline.mRenderTypeMask = saved_mask;
glMatrixMode(GL_PROJECTION);
glPopMatrix();
glMatrixMode(GL_MODELVIEW);
glPopMatrix();
avatar->mNeedsImpostorUpdate = FALSE;
avatar->cacheImpostorValues();
}
BOOL LLPipeline::hasRenderBatches(const U32 type) const
{
return sCull->getRenderMapSize(type) > 0;
}
LLCullResult::drawinfo_list_t::iterator LLPipeline::beginRenderMap(U32 type)
{
return sCull->beginRenderMap(type);
}
LLCullResult::drawinfo_list_t::iterator LLPipeline::endRenderMap(U32 type)
{
return sCull->endRenderMap(type);
}
LLCullResult::sg_list_t::iterator LLPipeline::beginAlphaGroups()
{
return sCull->beginAlphaGroups();
}
LLCullResult::sg_list_t::iterator LLPipeline::endAlphaGroups()
{
return sCull->endAlphaGroups();
}