phoenix-firestorm/indra/llcommon/llsingleton.h

514 lines
20 KiB
C++

/**
* @file llsingleton.h
*
* $LicenseInfo:firstyear=2002&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2010, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
#ifndef LLSINGLETON_H
#define LLSINGLETON_H
#include <boost/noncopyable.hpp>
#include <boost/unordered_set.hpp>
#include <list>
#include <vector>
#include <typeinfo>
class LLSingletonBase: private boost::noncopyable
{
public:
class MasterList;
private:
// All existing LLSingleton instances are tracked in this master list.
typedef std::list<LLSingletonBase*> list_t;
static list_t& get_master();
// This, on the other hand, is a stack whose top indicates the LLSingleton
// currently being initialized.
static list_t& get_initializing();
static list_t& get_initializing_from(MasterList*);
// Produce a vector<LLSingletonBase*> of master list, in dependency order.
typedef std::vector<LLSingletonBase*> vec_t;
static vec_t dep_sort();
bool mCleaned; // cleanupSingleton() has been called
// we directly depend on these other LLSingletons
typedef boost::unordered_set<LLSingletonBase*> set_t;
set_t mDepends;
protected:
typedef enum e_init_state
{
UNINITIALIZED = 0, // must be default-initialized state
CONSTRUCTING,
INITIALIZING,
INITIALIZED,
DELETED
} EInitState;
// Define tag<T> to pass to our template constructor. You can't explicitly
// invoke a template constructor with ordinary template syntax:
// http://stackoverflow.com/a/3960925/5533635
template <typename T>
struct tag
{
typedef T type;
};
// Base-class constructor should only be invoked by the DERIVED_TYPE
// constructor, which passes tag<DERIVED_TYPE> for various purposes.
template <typename DERIVED_TYPE>
LLSingletonBase(tag<DERIVED_TYPE>);
virtual ~LLSingletonBase();
// Every new LLSingleton should be added to/removed from the master list
void add_master();
void remove_master();
// with a little help from our friends.
template <class T> friend struct LLSingleton_manage_master;
// Maintain a stack of the LLSingleton subclass instance currently being
// initialized. We use this to notice direct dependencies: we want to know
// if A requires B. We deduce a dependency if while initializing A,
// control reaches B::getInstance().
// We want &A to be at the top of that stack during both A::A() and
// A::initSingleton(), since a call to B::getInstance() might occur during
// either.
// Unfortunately the desired timespan does not correspond neatly with a
// single C++ scope, else we'd use RAII to track it. But we do know that
// LLSingletonBase's constructor definitely runs just before
// LLSingleton's, which runs just before the specific subclass's.
void push_initializing(const char*);
// LLSingleton is, and must remain, the only caller to initSingleton().
// That being the case, we control exactly when it happens -- and we can
// pop the stack immediately thereafter.
void pop_initializing();
private:
// logging
static void log_initializing(const char* verb, const char* name);
protected:
// If a given call to B::getInstance() happens during either A::A() or
// A::initSingleton(), record that A directly depends on B.
void capture_dependency(list_t& initializing, EInitState);
// delegate LL_ERRS() logging to llsingleton.cpp
static void logerrs(const char* p1, const char* p2="",
const char* p3="", const char* p4="");
// delegate LL_WARNS() logging to llsingleton.cpp
static void logwarns(const char* p1, const char* p2="",
const char* p3="", const char* p4="");
static std::string demangle(const char* mangled);
// Default methods in case subclass doesn't declare them.
virtual void initSingleton() {}
virtual void cleanupSingleton() {}
// deleteSingleton() isn't -- and shouldn't be -- a virtual method. It's a
// class static. However, given only Foo*, deleteAll() does need to be
// able to reach Foo::deleteSingleton(). Make LLSingleton (which declares
// deleteSingleton()) store a pointer here. Since we know it's a static
// class method, a classic-C function pointer will do.
void (*mDeleteSingleton)();
public:
/**
* Call this to call the cleanupSingleton() method for every LLSingleton
* constructed since the start of the last cleanupAll() call. (Any
* LLSingleton constructed DURING a cleanupAll() call won't be cleaned up
* until the next cleanupAll() call.) cleanupSingleton() neither deletes
* nor destroys its LLSingleton; therefore it's safe to include logic that
* might take significant realtime or even throw an exception.
*
* The most important property of cleanupAll() is that cleanupSingleton()
* methods are called in dependency order, leaf classes last. Thus, given
* two LLSingleton subclasses A and B, if A's dependency on B is properly
* expressed as a B::getInstance() or B::instance() call during either
* A::A() or A::initSingleton(), B will be cleaned up after A.
*
* If a cleanupSingleton() method throws an exception, the exception is
* logged, but cleanupAll() attempts to continue calling the rest of the
* cleanupSingleton() methods.
*/
static void cleanupAll();
/**
* Call this to call the deleteSingleton() method for every LLSingleton
* constructed since the start of the last deleteAll() call. (Any
* LLSingleton constructed DURING a deleteAll() call won't be cleaned up
* until the next deleteAll() call.) deleteSingleton() deletes and
* destroys its LLSingleton. Any cleanup logic that might take significant
* realtime -- or throw an exception -- must not be placed in your
* LLSingleton's destructor, but rather in its cleanupSingleton() method.
*
* The most important property of deleteAll() is that deleteSingleton()
* methods are called in dependency order, leaf classes last. Thus, given
* two LLSingleton subclasses A and B, if A's dependency on B is properly
* expressed as a B::getInstance() or B::instance() call during either
* A::A() or A::initSingleton(), B will be cleaned up after A.
*
* If a deleteSingleton() method throws an exception, the exception is
* logged, but deleteAll() attempts to continue calling the rest of the
* deleteSingleton() methods.
*/
static void deleteAll();
};
// Most of the time, we want LLSingleton_manage_master() to forward its
// methods to real LLSingletonBase methods.
template <class T>
struct LLSingleton_manage_master
{
void add(LLSingletonBase* sb) { sb->add_master(); }
void remove(LLSingletonBase* sb) { sb->remove_master(); }
void push_initializing(LLSingletonBase* sb) { sb->push_initializing(typeid(T).name()); }
void pop_initializing (LLSingletonBase* sb) { sb->pop_initializing(); }
LLSingletonBase::list_t& get_initializing(T*) { return LLSingletonBase::get_initializing(); }
};
// But for the specific case of LLSingletonBase::MasterList, don't.
template <>
struct LLSingleton_manage_master<LLSingletonBase::MasterList>
{
void add(LLSingletonBase*) {}
void remove(LLSingletonBase*) {}
void push_initializing(LLSingletonBase*) {}
void pop_initializing (LLSingletonBase*) {}
LLSingletonBase::list_t& get_initializing(LLSingletonBase::MasterList* instance)
{
return LLSingletonBase::get_initializing_from(instance);
}
};
// Now we can implement LLSingletonBase's template constructor.
template <typename DERIVED_TYPE>
LLSingletonBase::LLSingletonBase(tag<DERIVED_TYPE>):
mCleaned(false),
mDeleteSingleton(NULL)
{
// Make this the currently-initializing LLSingleton.
LLSingleton_manage_master<DERIVED_TYPE>().push_initializing(this);
}
/**
* LLSingleton implements the getInstance() method part of the Singleton
* pattern. It can't make the derived class constructors protected, though, so
* you have to do that yourself.
*
* Derive your class from LLSingleton, passing your subclass name as
* LLSingleton's template parameter, like so:
*
* class Foo: public LLSingleton<Foo>
* {
* // use this macro at start of every LLSingleton subclass
* LLSINGLETON(Foo);
* public:
* // ...
* };
*
* Foo& instance = Foo::instance();
*
* LLSingleton recognizes a couple special methods in your derived class.
*
* If you override LLSingleton<T>::initSingleton(), your method will be called
* immediately after the instance is constructed. This is useful for breaking
* circular dependencies: if you find that your LLSingleton subclass
* constructor references other LLSingleton subclass instances in a chain
* leading back to yours, move the instance reference from your constructor to
* your initSingleton() method.
*
* If you override LLSingleton<T>::cleanupSingleton(), your method will be
* called if someone calls LLSingletonBase::cleanupAll(). The significant part
* of this promise is that cleanupAll() will call individual
* cleanupSingleton() methods in reverse dependency order.
*
* That is, consider LLSingleton subclasses C, B and A. A depends on B, which
* in turn depends on C. These dependencies are expressed as calls to
* B::instance() or B::getInstance(), and C::instance() or C::getInstance().
* It shouldn't matter whether these calls appear in A::A() or
* A::initSingleton(), likewise B::B() or B::initSingleton().
*
* We promise that if you later call LLSingletonBase::cleanupAll():
* 1. A::cleanupSingleton() will be called before
* 2. B::cleanupSingleton(), which will be called before
* 3. C::cleanupSingleton().
* Put differently, if your LLSingleton subclass constructor or
* initSingleton() method explicitly depends on some other LLSingleton
* subclass, you may continue to rely on that other subclass in your
* cleanupSingleton() method.
*
* We introduce a special cleanupSingleton() method because cleanupSingleton()
* operations can involve nontrivial realtime, or might throw an exception. A
* destructor should do neither!
*
* If your cleanupSingleton() method throws an exception, we log that
* exception but proceed with the remaining cleanupSingleton() calls.
*
* Similarly, if at some point you call LLSingletonBase::deleteAll(), all
* remaining LLSingleton instances will be destroyed in dependency order. (Or
* call MySubclass::deleteSingleton() to specifically destroy the canonical
* MySubclass instance.)
*
* As currently written, LLSingleton is not thread-safe.
*/
template <typename DERIVED_TYPE>
class LLSingleton : public LLSingletonBase
{
private:
static DERIVED_TYPE* constructSingleton()
{
return new DERIVED_TYPE();
}
// We know of no way to instruct the compiler that every subclass
// constructor MUST be private. However, we can make the LLSINGLETON()
// macro both declare a private constructor and provide the required
// friend declaration. How can we ensure that every subclass uses
// LLSINGLETON()? By making that macro provide a definition for this pure
// virtual method. If you get "can't instantiate class due to missing pure
// virtual method" for this method, then add LLSINGLETON(yourclass) in the
// subclass body.
virtual void you_must_use_LLSINGLETON_macro() = 0;
// stores pointer to singleton instance
struct SingletonLifetimeManager
{
SingletonLifetimeManager()
{
construct();
}
static void construct()
{
sData.mInitState = CONSTRUCTING;
sData.mInstance = constructSingleton();
sData.mInitState = INITIALIZING;
}
~SingletonLifetimeManager()
{
// The dependencies between LLSingletons, and the arbitrary order
// of static-object destruction, mean that we DO NOT WANT this
// destructor to delete this LLSingleton. This destructor will run
// without regard to any other LLSingleton whose cleanup might
// depend on its existence. If you want to clean up LLSingletons,
// call LLSingletonBase::deleteAll() sometime before static-object
// destruction begins. That method will properly honor cross-
// LLSingleton dependencies. Otherwise we simply leak LLSingleton
// instances at shutdown. Since the whole process is terminating
// anyway, that's not necessarily a bad thing; it depends on what
// resources your LLSingleton instances are managing.
}
};
protected:
// Pass DERIVED_TYPE explicitly to LLSingletonBase's constructor because,
// until our subclass constructor completes, *this isn't yet a
// full-fledged DERIVED_TYPE.
LLSingleton(): LLSingletonBase(LLSingletonBase::tag<DERIVED_TYPE>())
{
// populate base-class function pointer with the static
// deleteSingleton() function for this particular specialization
mDeleteSingleton = &deleteSingleton;
// add this new instance to the master list
LLSingleton_manage_master<DERIVED_TYPE>().add(this);
}
public:
virtual ~LLSingleton()
{
// remove this instance from the master list
LLSingleton_manage_master<DERIVED_TYPE>().remove(this);
sData.mInstance = NULL;
sData.mInitState = DELETED;
}
/**
* @brief Immediately delete the singleton.
*
* A subsequent call to LLProxy::getInstance() will construct a new
* instance of the class.
*
* Without an explicit call to LLSingletonBase::deleteAll(), LLSingletons
* are implicitly destroyed after main() has exited and the C++ runtime is
* cleaning up statically-constructed objects. Some classes derived from
* LLSingleton have objects that are part of a runtime system that is
* terminated before main() exits. Calling the destructor of those objects
* after the termination of their respective systems can cause crashes and
* other problems during termination of the project. Using this method to
* destroy the singleton early can prevent these crashes.
*
* An example where this is needed is for a LLSingleton that has an APR
* object as a member that makes APR calls on destruction. The APR system is
* shut down explicitly before main() exits. This causes a crash on exit.
* Using this method before the call to apr_terminate() and NOT calling
* getInstance() again will prevent the crash.
*/
static void deleteSingleton()
{
delete sData.mInstance;
sData.mInstance = NULL;
sData.mInitState = DELETED;
}
static DERIVED_TYPE* getInstance()
{
static SingletonLifetimeManager sLifeTimeMgr;
switch (sData.mInitState)
{
case UNINITIALIZED:
// should never be uninitialized at this point
logerrs("Uninitialized singleton ",
demangle(typeid(DERIVED_TYPE).name()).c_str());
return NULL;
case CONSTRUCTING:
logerrs("Tried to access singleton ",
demangle(typeid(DERIVED_TYPE).name()).c_str(),
" from singleton constructor!");
return NULL;
case INITIALIZING:
// go ahead and flag ourselves as initialized so we can be
// reentrant during initialization
sData.mInitState = INITIALIZED;
// initialize singleton after constructing it so that it can
// reference other singletons which in turn depend on it, thus
// breaking cyclic dependencies
sData.mInstance->initSingleton();
// pop this off stack of initializing singletons
LLSingleton_manage_master<DERIVED_TYPE>().pop_initializing(sData.mInstance);
break;
case INITIALIZED:
break;
case DELETED:
logwarns("Trying to access deleted singleton ",
demangle(typeid(DERIVED_TYPE).name()).c_str(),
" -- creating new instance");
SingletonLifetimeManager::construct();
// same as first time construction
sData.mInitState = INITIALIZED;
sData.mInstance->initSingleton();
// pop this off stack of initializing singletons
LLSingleton_manage_master<DERIVED_TYPE>().pop_initializing(sData.mInstance);
break;
}
// By this point, if DERIVED_TYPE was pushed onto the initializing
// stack, it has been popped off. So the top of that stack, if any, is
// an LLSingleton that directly depends on DERIVED_TYPE. If this call
// came from another LLSingleton, rather than from vanilla application
// code, record the dependency.
sData.mInstance->capture_dependency(
LLSingleton_manage_master<DERIVED_TYPE>().get_initializing(sData.mInstance),
sData.mInitState);
return sData.mInstance;
}
// Reference version of getInstance()
// Preferred over getInstance() as it disallows checking for NULL
static DERIVED_TYPE& instance()
{
return *getInstance();
}
// Has this singleton been created yet?
// Use this to avoid accessing singletons before they can safely be constructed.
static bool instanceExists()
{
return sData.mInitState == INITIALIZED;
}
// Has this singleton been deleted? This can be useful during shutdown
// processing to avoid "resurrecting" a singleton we thought we'd already
// cleaned up.
static bool wasDeleted()
{
return sData.mInitState == DELETED;
}
private:
struct SingletonData
{
// explicitly has a default constructor so that member variables are zero initialized in BSS
// and only changed by singleton logic, not constructor running during startup
EInitState mInitState;
DERIVED_TYPE* mInstance;
};
static SingletonData sData;
};
template<typename T>
typename LLSingleton<T>::SingletonData LLSingleton<T>::sData;
/**
* Use LLSINGLETON(Foo); at the start of an LLSingleton<Foo> subclass body
* when you want to declare an out-of-line constructor:
*
* @code
* class Foo: public LLSingleton<Foo>
* {
* // use this macro at start of every LLSingleton subclass
* LLSINGLETON(Foo);
* public:
* // ...
* };
* // ...
* [inline]
* Foo::Foo() { ... }
* @endcode
*
* Unfortunately, this mechanism does not permit you to define even a simple
* (but nontrivial) constructor within the class body. If it's literally
* trivial, use LLSINGLETON_EMPTY_CTOR(); if not, use LLSINGLETON() and define
* the constructor outside the class body. If you must define it in a header
* file, use 'inline' (unless it's a template class) to avoid duplicate-symbol
* errors at link time.
*/
#define LLSINGLETON(DERIVED_CLASS) \
private: \
/* implement LLSingleton pure virtual method whose sole purpose */ \
/* is to remind people to use this macro */ \
virtual void you_must_use_LLSINGLETON_macro() {} \
friend class LLSingleton<DERIVED_CLASS>; \
DERIVED_CLASS()
/**
* Use LLSINGLETON_EMPTY_CTOR(Foo); at the start of an LLSingleton<Foo>
* subclass body when the constructor is trivial:
*
* @code
* class Foo: public LLSingleton<Foo>
* {
* // use this macro at start of every LLSingleton subclass
* LLSINGLETON_EMPTY_CTOR(Foo);
* public:
* // ...
* };
* @endcode
*/
#define LLSINGLETON_EMPTY_CTOR(DERIVED_CLASS) \
/* LLSINGLETON() is carefully implemented to permit exactly this */ \
LLSINGLETON(DERIVED_CLASS) {}
#endif