phoenix-firestorm/indra/newview/lllegacyatmospherics.cpp

646 lines
16 KiB
C++

/**
* @file lllegacyatmospherics.cpp
* @brief LLAtmospherics class implementation
*
* $LicenseInfo:firstyear=2001&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2010, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
#include "llviewerprecompiledheaders.h"
#include "lllegacyatmospherics.h"
#include "llfeaturemanager.h"
#include "llviewercontrol.h"
#include "llframetimer.h"
#include "llagent.h"
#include "llagentcamera.h"
#include "lldrawable.h"
#include "llface.h"
#include "llglheaders.h"
#include "llsky.h"
#include "llviewercamera.h"
#include "llviewertexturelist.h"
#include "llviewerobjectlist.h"
#include "llviewerregion.h"
#include "llworld.h"
#include "pipeline.h"
#include "v3colorutil.h"
#include "llsettingssky.h"
#include "llenvironment.h"
#include "lldrawpoolwater.h"
class LLFastLn
{
public:
LLFastLn()
{
mTable[0] = 0;
for( S32 i = 1; i < 257; i++ )
{
mTable[i] = log((F32)i);
}
}
F32 ln( F32 x )
{
const F32 OO_255 = 0.003921568627450980392156862745098f;
const F32 LN_255 = 5.5412635451584261462455391880218f;
if( x < OO_255 )
{
return log(x);
}
else
if( x < 1 )
{
x *= 255.f;
S32 index = llfloor(x);
F32 t = x - index;
F32 low = mTable[index];
F32 high = mTable[index + 1];
return low + t * (high - low) - LN_255;
}
else
if( x <= 255 )
{
S32 index = llfloor(x);
F32 t = x - index;
F32 low = mTable[index];
F32 high = mTable[index + 1];
return low + t * (high - low);
}
else
{
return log( x );
}
}
F32 pow( F32 x, F32 y )
{
return (F32)LL_FAST_EXP(y * ln(x));
}
private:
F32 mTable[257]; // index 0 is unused
};
static LLFastLn gFastLn;
// Functions used a lot.
inline F32 LLHaze::calcPhase(const F32 cos_theta) const
{
const F32 g2 = mG * mG;
const F32 den = 1 + g2 - 2 * mG * cos_theta;
return (1 - g2) * gFastLn.pow(den, -1.5);
}
inline void color_pow(LLColor3 &col, const F32 e)
{
col.mV[0] = gFastLn.pow(col.mV[0], e);
col.mV[1] = gFastLn.pow(col.mV[1], e);
col.mV[2] = gFastLn.pow(col.mV[2], e);
}
inline LLColor3 color_norm(const LLColor3 &col)
{
const F32 m = color_max(col);
if (m > 1.f)
{
return 1.f/m * col;
}
else return col;
}
inline void color_gamma_correct(LLColor3 &col)
{
const F32 gamma_inv = 1.f/1.2f;
if (col.mV[0] != 0.f)
{
col.mV[0] = gFastLn.pow(col.mV[0], gamma_inv);
}
if (col.mV[1] != 0.f)
{
col.mV[1] = gFastLn.pow(col.mV[1], gamma_inv);
}
if (col.mV[2] != 0.f)
{
col.mV[2] = gFastLn.pow(col.mV[2], gamma_inv);
}
}
static LLColor3 calc_air_sca_sea_level()
{
static LLColor3 WAVE_LEN(675, 520, 445);
static LLColor3 refr_ind = refr_ind_calc(WAVE_LEN);
static LLColor3 n21 = refr_ind * refr_ind - LLColor3(1, 1, 1);
static LLColor3 n4 = n21 * n21;
static LLColor3 wl2 = WAVE_LEN * WAVE_LEN * 1e-6f;
static LLColor3 wl4 = wl2 * wl2;
static LLColor3 mult_const = fsigma * 2.0f/ 3.0f * 1e24f * (F_PI * F_PI) * n4;
static F32 dens_div_N = F32( ATM_SEA_LEVEL_NDENS / Ndens2);
return dens_div_N * mult_const.divide(wl4);
}
// static constants.
LLColor3 const LLHaze::sAirScaSeaLevel = calc_air_sca_sea_level();
F32 const LLHaze::sAirScaIntense = color_intens(LLHaze::sAirScaSeaLevel);
F32 const LLHaze::sAirScaAvg = LLHaze::sAirScaIntense / 3.f;
/***************************************
Atmospherics
***************************************/
LLAtmospherics::LLAtmospherics()
: mCloudDensity(0.2f),
mWind(0.f),
mWorldScale(1.f)
{
/// WL PARAMS
mInitialized = FALSE;
mUpdateTimer.reset();
mAmbientScale = gSavedSettings.getF32("SkyAmbientScale");
mNightColorShift = gSavedSettings.getColor3("SkyNightColorShift");
mFogColor.mV[VRED] = mFogColor.mV[VGREEN] = mFogColor.mV[VBLUE] = 0.5f;
mFogColor.mV[VALPHA] = 0.0f;
mFogRatio = 1.2f;
mHazeConcentration = 0.f;
mInterpVal = 0.f;
}
LLAtmospherics::~LLAtmospherics()
{
}
void LLAtmospherics::init()
{
const F32 haze_int = color_intens(mHaze.calcSigSca(0));
mHazeConcentration = haze_int / (color_intens(mHaze.calcAirSca(0)) + haze_int);
mInitialized = true;
}
LLColor4 LLAtmospherics::calcSkyColorInDir(const LLVector3 &dir, bool isShiny)
{
F32 saturation = 0.3f;
if (dir.mV[VZ] < -0.02f)
{
LLColor4 col = LLColor4(llmax(mFogColor[0],0.2f), llmax(mFogColor[1],0.2f), llmax(mFogColor[2],0.22f),0.f);
if (isShiny)
{
LLColor3 desat_fog = LLColor3(mFogColor);
F32 brightness = desat_fog.brightness();
// So that shiny somewhat shows up at night.
if (brightness < 0.15f)
{
brightness = 0.15f;
desat_fog = smear(0.15f);
}
LLColor3 greyscale = smear(brightness);
desat_fog = desat_fog * saturation + greyscale * (1.0f - saturation);
if (!gPipeline.canUseWindLightShaders())
{
col = LLColor4(desat_fog, 0.f);
}
else
{
col = LLColor4(desat_fog * 0.5f, 0.f);
}
}
float x = 1.0f-fabsf(-0.1f-dir.mV[VZ]);
x *= x;
col.mV[0] *= x*x;
col.mV[1] *= powf(x, 2.5f);
col.mV[2] *= x*x*x;
return col;
}
// undo OGL_TO_CFR_ROTATION and negate vertical direction.
LLVector3 Pn = LLVector3(-dir[1] , -dir[2], -dir[0]);
AtmosphericsVars vars;
calcSkyColorWLVert(Pn, vars);
LLColor3 sky_color = calcSkyColorWLFrag(Pn, vars);
if (isShiny)
{
F32 brightness = sky_color.brightness();
LLColor3 greyscale = smear(brightness);
sky_color = sky_color * saturation + greyscale * (1.0f - saturation);
sky_color *= (0.5f + 0.5f * brightness);
}
return LLColor4(sky_color, 0.0f);
}
void LLAtmospherics::calcSkyColorWLVert(LLVector3 & Pn, AtmosphericsVars& vars)
{
// LEGACY_ATMOSPHERICS
LLSettingsSky::ptr_t psky = LLEnvironment::instance().getCurrentSky();
LLColor3 blue_density = psky->getBlueDensity();
LLColor3 blue_horizon = psky->getBlueHorizon();
F32 haze_density = psky->getHazeDensity();
F32 haze_horizon = psky->getHazeHorizon();
F32 density_multiplier = psky->getDensityMultiplier();
F32 max_y = psky->getMaxY();
LLVector3 lightnorm = LLVector3(LLEnvironment::instance().getClampedLightNorm());
// project the direction ray onto the sky dome.
F32 phi = acos(Pn[1]);
F32 sinA = sin(F_PI - phi);
if (fabsf(sinA) < 0.01f)
{ //avoid division by zero
sinA = 0.01f;
}
F32 Plen = psky->getDomeRadius() * sin(F_PI + phi + asin(psky->getDomeOffset() * sinA)) / sinA;
Pn *= Plen;
vars.horizontalProjection[0] = LLVector2(Pn[0], Pn[2]);
vars.horizontalProjection[0] /= - 2.f * Plen;
// Set altitude
if (Pn[1] > 0.f)
{
Pn *= (max_y / Pn[1]);
}
else
{
Pn *= (-32000.f / Pn[1]);
}
Plen = Pn.length();
Pn /= Plen;
// Initialize temp variables
LLColor3 sunlight = psky->getSunlightColor();
LLColor3 ambient = psky->getAmbientColor();
LLColor3 glow = psky->getGlow();
F32 cloud_shadow = psky->getCloudShadow();
// Sunlight attenuation effect (hue and brightness) due to atmosphere
// this is used later for sunlight modulation at various altitudes
LLColor3 light_atten = psky->getLightAttenuation(psky->getMaxY());
// Calculate relative weights
LLColor3 temp2(0.f, 0.f, 0.f);
LLColor3 temp1 = psky->getLightTransmittance();
LLColor3 blue_weight = componentDiv(blue_density, temp1);
LLColor3 haze_weight = componentDiv(smear(haze_density), temp1);
// Compute sunlight from P & lightnorm (for long rays like sky)
temp2.mV[1] = llmax(F_APPROXIMATELY_ZERO, llmax(0.f, Pn[1]) * 1.0f + lightnorm[1] );
temp2.mV[1] = 1.f / temp2.mV[1];
componentMultBy(sunlight, componentExp((light_atten * -1.f) * temp2.mV[1]));
// Distance
temp2.mV[2] = Plen * density_multiplier;
// Transparency (-> temp1)
temp1 = componentExp((temp1 * -1.f) * temp2.mV[2]);
// Compute haze glow
temp2.mV[0] = Pn * lightnorm;
temp2.mV[0] = 1.f - temp2.mV[0];
// temp2.x is 0 at the sun and increases away from sun
temp2.mV[0] = llmax(temp2.mV[0], .001f);
// Set a minimum "angle" (smaller glow.y allows tighter, brighter hotspot)
temp2.mV[0] *= glow.mV[0];
// Higher glow.x gives dimmer glow (because next step is 1 / "angle")
temp2.mV[0] = pow(temp2.mV[0], glow.mV[2]);
// glow.z should be negative, so we're doing a sort of (1 / "angle") function
// Add "minimum anti-solar illumination"
temp2.mV[0] += .25f;
// Haze color above cloud
vars.hazeColor = (blue_horizon * blue_weight * (sunlight + ambient) + componentMult(haze_horizon * haze_weight, sunlight * temp2.mV[0] + ambient));
// Increase ambient when there are more clouds
LLColor3 tmpAmbient = ambient + (LLColor3::white - ambient) * cloud_shadow * 0.5f;
// Dim sunlight by cloud shadow percentage
sunlight *= (1.f - cloud_shadow);
// Haze color below cloud
vars.hazeColorBelowCloud = (blue_horizon * blue_weight * (sunlight + tmpAmbient) + componentMult(haze_horizon * haze_weight, sunlight * temp2.mV[0] + tmpAmbient));
// Final atmosphere additive
componentMultBy(vars.hazeColor, LLColor3::white - temp1);
sunlight = psky->getSunlightColor();
temp2.mV[1] = llmax(0.f, lightnorm[1] * 2.f);
temp2.mV[1] = 1.f / temp2.mV[1];
componentMultBy(sunlight, componentExp((light_atten * -1.f) * temp2.mV[1]));
// Attenuate cloud color by atmosphere
temp1 = componentSqrt(temp1); //less atmos opacity (more transparency) below clouds
// At horizon, blend high altitude sky color towards the darker color below the clouds
vars.hazeColor += componentMult(vars.hazeColorBelowCloud - vars.hazeColor, LLColor3::white - componentSqrt(temp1));
if (Pn[1] < 0.f)
{
// Eric's original:
// LLColor3 dark_brown(0.143f, 0.129f, 0.114f);
LLColor3 dark_brown(0.082f, 0.076f, 0.066f);
LLColor3 brown(0.430f, 0.386f, 0.322f);
LLColor3 sky_lighting = sunlight + ambient;
F32 haze_brightness = vars.hazeColor.brightness();
if (Pn[1] < -0.05f)
{
vars.hazeColor = colorMix(dark_brown, brown, -Pn[1] * 0.9f) * sky_lighting * haze_brightness;
}
if (Pn[1] > -0.1f)
{
vars.hazeColor = colorMix(LLColor3::white * haze_brightness, vars.hazeColor, fabs((Pn[1] + 0.05f) * -20.f));
}
}
}
LLColor3 LLAtmospherics::calcSkyColorWLFrag(LLVector3 & Pn, AtmosphericsVars& vars)
{
LLSettingsSky::ptr_t psky = LLEnvironment::instance().getCurrentSky();
LLColor3 res;
LLColor3 color0 = vars.hazeColor;
if (!gPipeline.canUseWindLightShaders())
{
res = psky->gammaCorrect(color0 * 2.0f);
}
else
{
res = color0;
}
#ifndef LL_RELEASE_FOR_DOWNLOAD
F32 gamma = psky->getGamma();
LLColor3 color2 = 2.f * color0;
LLColor3 color3 = LLColor3(1.f, 1.f, 1.f) - componentSaturate(color2);
componentPow(color3, gamma);
color3 = LLColor3(1.f, 1.f, 1.f) - color3;
static enum {
OUT_DEFAULT = 0,
OUT_SKY_BLUE = 1,
OUT_RED = 2,
OUT_PN = 3,
OUT_HAZE = 4,
} debugOut = OUT_DEFAULT;
switch(debugOut)
{
case OUT_DEFAULT:
break;
case OUT_SKY_BLUE:
res = LLColor3(0.4f, 0.4f, 0.9f);
break;
case OUT_RED:
res = LLColor3(1.f, 0.f, 0.f);
break;
case OUT_PN:
res = LLColor3(Pn[0], Pn[1], Pn[2]);
break;
case OUT_HAZE:
res = vars.hazeColor;
break;
}
#endif // LL_RELEASE_FOR_DOWNLOAD
return res;
}
void LLAtmospherics::updateFog(const F32 distance, const LLVector3& tosun_in)
{
LLVector3 tosun = tosun_in;
if (!gPipeline.hasRenderDebugFeatureMask(LLPipeline::RENDER_DEBUG_FEATURE_FOG))
{
if (!LLGLSLShader::sNoFixedFunction)
{
glFogf(GL_FOG_DENSITY, 0);
glFogfv(GL_FOG_COLOR, (F32 *) &LLColor4::white.mV);
glFogf(GL_FOG_END, 1000000.f);
}
return;
}
const BOOL hide_clip_plane = TRUE;
LLColor4 target_fog(0.f, 0.2f, 0.5f, 0.f);
const F32 water_height = gAgent.getRegion() ? gAgent.getRegion()->getWaterHeight() : 0.f;
// LLWorld::getInstance()->getWaterHeight();
F32 camera_height = gAgentCamera.getCameraPositionAgent().mV[2];
F32 near_clip_height = LLViewerCamera::getInstance()->getAtAxis().mV[VZ] * LLViewerCamera::getInstance()->getNear();
camera_height += near_clip_height;
F32 fog_distance = 0.f;
LLColor3 res_color[3];
LLColor3 sky_fog_color = LLColor3::white;
LLColor3 render_fog_color = LLColor3::white;
const F32 tosun_z = tosun.mV[VZ];
tosun.mV[VZ] = 0.f;
tosun.normalize();
LLVector3 perp_tosun;
perp_tosun.mV[VX] = -tosun.mV[VY];
perp_tosun.mV[VY] = tosun.mV[VX];
LLVector3 tosun_45 = tosun + perp_tosun;
tosun_45.normalize();
F32 delta = 0.06f;
tosun.mV[VZ] = delta;
perp_tosun.mV[VZ] = delta;
tosun_45.mV[VZ] = delta;
tosun.normalize();
perp_tosun.normalize();
tosun_45.normalize();
// Sky colors, just slightly above the horizon in the direction of the sun, perpendicular to the sun, and at a 45 degree angle to the sun.
res_color[0] = calcSkyColorInDir(tosun);
res_color[1] = calcSkyColorInDir(perp_tosun);
res_color[2] = calcSkyColorInDir(tosun_45);
sky_fog_color = color_norm(res_color[0] + res_color[1] + res_color[2]);
F32 full_off = -0.25f;
F32 full_on = 0.00f;
F32 on = (tosun_z - full_off) / (full_on - full_off);
on = llclamp(on, 0.01f, 1.f);
sky_fog_color *= 0.5f * on;
// We need to clamp these to non-zero, in order for the gamma correction to work. 0^y = ???
S32 i;
for (i = 0; i < 3; i++)
{
sky_fog_color.mV[i] = llmax(0.0001f, sky_fog_color.mV[i]);
}
color_gamma_correct(sky_fog_color);
render_fog_color = sky_fog_color;
F32 fog_density = 0.f;
fog_distance = mFogRatio * distance;
if (camera_height > water_height)
{
LLColor4 fog(render_fog_color);
if (!LLGLSLShader::sNoFixedFunction)
{
glFogfv(GL_FOG_COLOR, fog.mV);
}
mGLFogCol = fog;
if (hide_clip_plane)
{
// For now, set the density to extend to the cull distance.
const F32 f_log = 2.14596602628934723963618357029f; // sqrt(fabs(log(0.01f)))
fog_density = f_log/fog_distance;
if (!LLGLSLShader::sNoFixedFunction)
{
glFogi(GL_FOG_MODE, GL_EXP2);
}
}
else
{
const F32 f_log = 4.6051701859880913680359829093687f; // fabs(log(0.01f))
fog_density = (f_log)/fog_distance;
if (!LLGLSLShader::sNoFixedFunction)
{
glFogi(GL_FOG_MODE, GL_EXP);
}
}
}
else
{
LLSettingsWater::ptr_t pwater = LLEnvironment::instance().getCurrentWater();
F32 depth = water_height - camera_height;
// get the water param manager variables
float water_fog_density = pwater->getWaterFogDensity();
LLColor4 water_fog_color(pwater->getWaterFogColor());
// adjust the color based on depth. We're doing linear approximations
float depth_scale = gSavedSettings.getF32("WaterGLFogDepthScale");
float depth_modifier = 1.0f - llmin(llmax(depth / depth_scale, 0.01f),
gSavedSettings.getF32("WaterGLFogDepthFloor"));
LLColor4 fogCol = water_fog_color * depth_modifier;
fogCol.setAlpha(1);
// set the gl fog color
mGLFogCol = fogCol;
// set the density based on what the shaders use
fog_density = water_fog_density * gSavedSettings.getF32("WaterGLFogDensityScale");
if (!LLGLSLShader::sNoFixedFunction)
{
glFogfv(GL_FOG_COLOR, (F32 *) &fogCol.mV);
glFogi(GL_FOG_MODE, GL_EXP2);
}
}
mFogColor = sky_fog_color;
mFogColor.setAlpha(1);
LLDrawPoolWater::sWaterFogEnd = fog_distance*2.2f;
if (!LLGLSLShader::sNoFixedFunction)
{
LLGLSFog gls_fog;
glFogf(GL_FOG_END, fog_distance*2.2f);
glFogf(GL_FOG_DENSITY, fog_density);
glHint(GL_FOG_HINT, GL_NICEST);
}
stop_glerror();
}
// Functions used a lot.
F32 color_norm_pow(LLColor3& col, F32 e, BOOL postmultiply)
{
F32 mv = color_max(col);
if (0 == mv)
{
return 0;
}
col *= 1.f / mv;
color_pow(col, e);
if (postmultiply)
{
col *= mv;
}
return mv;
}
// Returns angle (RADIANs) between the horizontal projection of "v" and the x_axis.
// Range of output is 0.0f to 2pi //359.99999...f
// Returns 0.0f when "v" = +/- z_axis.
F32 azimuth(const LLVector3 &v)
{
F32 azimuth = 0.0f;
if (v.mV[VX] == 0.0f)
{
if (v.mV[VY] > 0.0f)
{
azimuth = F_PI * 0.5f;
}
else if (v.mV[VY] < 0.0f)
{
azimuth = F_PI * 1.5f;// 270.f;
}
}
else
{
azimuth = (F32) atan(v.mV[VY] / v.mV[VX]);
if (v.mV[VX] < 0.0f)
{
azimuth += F_PI;
}
else if (v.mV[VY] < 0.0f)
{
azimuth += F_PI * 2;
}
}
return azimuth;
}