phoenix-firestorm/indra/llcommon/llfasttimer.h

347 lines
11 KiB
C++

/**
* @file llfasttimer.h
* @brief Declaration of a fast timer.
*
* $LicenseInfo:firstyear=2004&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2010, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
#ifndef LL_FASTTIMER_H
#define LL_FASTTIMER_H
#include "llinstancetracker.h"
#include "lltrace.h"
#include "lltreeiterators.h"
#if LL_WINDOWS
#include <intrin.h>
#endif
#define LL_FAST_TIMER_ON 1
#define LL_FASTTIMER_USE_RDTSC 1
#define LL_RECORD_BLOCK_TIME(timer_stat) const LLTrace::BlockTimer& LL_GLUE_TOKENS(block_time_recorder, __LINE__)(LLTrace::timeThisBlock(timer_stat)); (void)LL_GLUE_TOKENS(block_time_recorder, __LINE__);
namespace LLTrace
{
// use to create blocktimer rvalue to be captured in a reference so that the BlockTimer lives to the end of the block.
class BlockTimer timeThisBlock(class BlockTimerStatHandle& timer);
class BlockTimer
{
public:
typedef BlockTimer self_t;
typedef class BlockTimerStatHandle DeclareTimer;
~BlockTimer();
F64Seconds getElapsedTime();
//////////////////////////////////////////////////////////////////////////////
//
// Important note: These implementations must be FAST!
//
#if LL_WINDOWS
//
// Windows implementation of CPU clock
//
//
// NOTE: put back in when we aren't using platform sdk anymore
//
// because MS has different signatures for these functions in winnt.h
// need to rename them to avoid conflicts
//#define _interlockedbittestandset _renamed_interlockedbittestandset
//#define _interlockedbittestandreset _renamed_interlockedbittestandreset
//#include <intrin.h>
//#undef _interlockedbittestandset
//#undef _interlockedbittestandreset
//inline U32 getCPUClockCount32()
//{
// U64 time_stamp = __rdtsc();
// return (U32)(time_stamp >> 8);
//}
//
//// return full timer value, *not* shifted by 8 bits
//inline U64 getCPUClockCount64()
//{
// return __rdtsc();
//}
// shift off lower 8 bits for lower resolution but longer term timing
// on 1Ghz machine, a 32-bit word will hold ~1000 seconds of timing
#if LL_FASTTIMER_USE_RDTSC
static U32 getCPUClockCount32()
{
unsigned __int64 val = __rdtsc();
val = val >> 8;
return static_cast<U32>(val);
}
// return full timer value, *not* shifted by 8 bits
static U64 getCPUClockCount64()
{
return static_cast<U64>( __rdtsc() );
}
#else
//U64 get_clock_count(); // in lltimer.cpp
// These use QueryPerformanceCounter, which is arguably fine and also works on AMD architectures.
static U32 getCPUClockCount32()
{
return (U32)(get_clock_count()>>8);
}
static U64 getCPUClockCount64()
{
return get_clock_count();
}
#endif
#endif
// <FS:ND> Linux/Mac should honour LL_FASTTIMER_USE_RDTSC too
// #if (LL_LINUX || LL_SOLARIS) && !(defined(__i386__) || defined(__amd64__)
#if (LL_LINUX || LL_SOLARIS) && ( !(defined(__i386__) || defined(__amd64__)) || !LL_FASTTIMER_USE_RDTSC )
// </FS:ND>
//
// Linux and Solaris implementation of CPU clock - non-x86.
// This is accurate but SLOW! Only use out of desperation.
//
// Try to use the MONOTONIC clock if available, this is a constant time counter
// with nanosecond resolution (but not necessarily accuracy) and attempts are
// made to synchronize this value between cores at kernel start. It should not
// be affected by CPU frequency. If not available use the REALTIME clock, but
// this may be affected by NTP adjustments or other user activity affecting
// the system time.
static U64 getCPUClockCount64()
{
struct timespec tp;
#ifdef CLOCK_MONOTONIC // MONOTONIC supported at build-time?
if (-1 == clock_gettime(CLOCK_MONOTONIC,&tp)) // if MONOTONIC isn't supported at runtime then ouch, try REALTIME
#endif
clock_gettime(CLOCK_REALTIME,&tp);
return (tp.tv_sec*sClockResolution)+tp.tv_nsec;
}
static U32 getCPUClockCount32()
{
return (U32)(getCPUClockCount64() >> 8);
}
#endif // (LL_LINUX || LL_SOLARIS) && !(defined(__i386__) || defined(__amd64__))
// <FS:ND> Linux/Mac should honour LL_FASTTIMER_USE_RDTSC too
//#if (LL_LINUX || LL_SOLARIS || LL_DARWIN) && (defined(__i386__) || defined(__amd64__))
#if (LL_LINUX || LL_SOLARIS || LL_DARWIN) && (defined(__i386__) || defined(__amd64__)) && LL_FASTTIMER_USE_RDTSC
// </FS:ND>
//
// Mac+Linux+Solaris FAST x86 implementation of CPU clock
static U32 getCPUClockCount32()
{
U32 low(0),high(0);
__asm__ volatile (".byte 0x0f, 0x31": "=a"(low), "=d"(high) );
return (low>>8) | (high<<24);
}
static U64 getCPUClockCount64()
{
U32 low(0),high(0);
__asm__ volatile (".byte 0x0f, 0x31": "=a"(low), "=d"(high) );
return (U64)low | ( ((U64)high) << 32);
}
#endif
static BlockTimerStatHandle& getRootTimeBlock();
static void pushLog(LLSD sd);
static void setLogLock(class LLMutex* mutex);
static void writeLog(std::ostream& os);
static void updateTimes();
static U64 countsPerSecond();
// updates cumulative times and hierarchy,
// can be called multiple times in a frame, at any point
static void processTimes();
static void bootstrapTimerTree();
static void incrementalUpdateTimerTree();
// call this once a frame to periodically log timers
static void logStats();
// dumps current cumulative frame stats to log
// call nextFrame() to reset timers
static void dumpCurTimes();
private:
friend class BlockTimerStatHandle;
// FIXME: this friendship exists so that each thread can instantiate a root timer,
// which could be a derived class with a public constructor instead, possibly
friend class ThreadRecorder;
friend BlockTimer timeThisBlock(BlockTimerStatHandle&);
BlockTimer(BlockTimerStatHandle& timer);
// no-copy
BlockTimer(const BlockTimer& other);
BlockTimer& operator=(const BlockTimer& other);
private:
U64 mStartTime;
BlockTimerStackRecord mParentTimerData;
public:
// statics
static std::string sLogName;
static bool sMetricLog,
sLog;
static U64 sClockResolution;
};
// this dummy function assists in allocating a block timer with stack-based lifetime.
// this is done by capturing the return value in a stack-allocated const reference variable.
// (This is most easily done using the macro LL_RECORD_BLOCK_TIME)
// Otherwise, it would be possible to store a BlockTimer on the heap, resulting in non-nested lifetimes,
// which would break the invariants of the timing hierarchy logic
LL_FORCE_INLINE class BlockTimer timeThisBlock(class BlockTimerStatHandle& timer)
{
return BlockTimer(timer);
}
// stores a "named" timer instance to be reused via multiple BlockTimer stack instances
class BlockTimerStatHandle
: public StatType<TimeBlockAccumulator>
{
public:
BlockTimerStatHandle(const char* name, const char* description = "");
TimeBlockTreeNode& getTreeNode() const;
BlockTimerStatHandle* getParent() const { return getTreeNode().getParent(); }
void setParent(BlockTimerStatHandle* parent) { getTreeNode().setParent(parent); }
typedef std::vector<BlockTimerStatHandle*>::iterator child_iter;
typedef std::vector<BlockTimerStatHandle*>::const_iterator child_const_iter;
child_iter beginChildren();
child_iter endChildren();
bool hasChildren();
std::vector<BlockTimerStatHandle*>& getChildren();
StatType<TimeBlockAccumulator::CallCountFacet>& callCount()
{
return static_cast<StatType<TimeBlockAccumulator::CallCountFacet>&>(*(StatType<TimeBlockAccumulator>*)this);
}
StatType<TimeBlockAccumulator::SelfTimeFacet>& selfTime()
{
return static_cast<StatType<TimeBlockAccumulator::SelfTimeFacet>&>(*(StatType<TimeBlockAccumulator>*)this);
}
bool mCollapsed; // don't show children
};
// iterators and helper functions for walking the call hierarchy of block timers in different ways
typedef LLTreeDFSIter<BlockTimerStatHandle, BlockTimerStatHandle::child_const_iter> block_timer_tree_df_iterator_t;
typedef LLTreeDFSPostIter<BlockTimerStatHandle, BlockTimerStatHandle::child_const_iter> block_timer_tree_df_post_iterator_t;
typedef LLTreeBFSIter<BlockTimerStatHandle, BlockTimerStatHandle::child_const_iter> block_timer_tree_bf_iterator_t;
block_timer_tree_df_iterator_t begin_block_timer_tree_df(BlockTimerStatHandle& id);
block_timer_tree_df_iterator_t end_block_timer_tree_df();
block_timer_tree_df_post_iterator_t begin_block_timer_tree_df_post(BlockTimerStatHandle& id);
block_timer_tree_df_post_iterator_t end_block_timer_tree_df_post();
block_timer_tree_bf_iterator_t begin_block_timer_tree_bf(BlockTimerStatHandle& id);
block_timer_tree_bf_iterator_t end_block_timer_tree_bf();
LL_FORCE_INLINE BlockTimer::BlockTimer(BlockTimerStatHandle& timer)
{
mStartTime = 0;
#if LL_FAST_TIMER_ON
BlockTimerStackRecord* cur_timer_data = LLThreadLocalSingletonPointer<BlockTimerStackRecord>::getInstance();
if (!cur_timer_data)
{
// How likely is it that
// LLThreadLocalSingletonPointer<T>::getInstance() will return NULL?
// Even without researching, what we can say is that if we exit
// without setting mStartTime at all, gcc 4.7 produces (fatal)
// warnings about a possibly-uninitialized data member.
mStartTime = 0;
return;
}
TimeBlockAccumulator& accumulator = timer.getCurrentAccumulator();
accumulator.mActiveCount++;
// keep current parent as long as it is active when we are
accumulator.mMoveUpTree |= (accumulator.mParent->getCurrentAccumulator().mActiveCount == 0);
// store top of stack
mParentTimerData = *cur_timer_data;
// push new information
cur_timer_data->mActiveTimer = this;
cur_timer_data->mTimeBlock = &timer;
cur_timer_data->mChildTime = 0;
mStartTime = getCPUClockCount64();
#endif
}
LL_FORCE_INLINE BlockTimer::~BlockTimer()
{
#if LL_FAST_TIMER_ON
U64 total_time = getCPUClockCount64() - mStartTime;
BlockTimerStackRecord* cur_timer_data = LLThreadLocalSingletonPointer<BlockTimerStackRecord>::getInstance();
if (!cur_timer_data) return;
TimeBlockAccumulator& accumulator = cur_timer_data->mTimeBlock->getCurrentAccumulator();
accumulator.mCalls++;
accumulator.mTotalTimeCounter += total_time;
accumulator.mSelfTimeCounter += total_time - cur_timer_data->mChildTime;
accumulator.mActiveCount--;
// store last caller to bootstrap tree creation
// do this in the destructor in case of recursion to get topmost caller
accumulator.mLastCaller = mParentTimerData.mTimeBlock;
// we are only tracking self time, so subtract our total time delta from parents
mParentTimerData.mChildTime += total_time;
//pop stack
*cur_timer_data = mParentTimerData;
#endif
}
}
typedef LLTrace::BlockTimer LLFastTimer;
#endif // LL_LLFASTTIMER_H