phoenix-firestorm/indra/newview/app_settings/shaders/class2/deferred/sunLightF.glsl

253 lines
6.9 KiB
GLSL

/**
* @file sunLightF.glsl
*
* $LicenseInfo:firstyear=2007&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2007, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
#extension GL_ARB_texture_rectangle : enable
/*[EXTRA_CODE_HERE]*/
#ifdef DEFINE_GL_FRAGCOLOR
out vec4 frag_color;
#else
#define frag_color gl_FragColor
#endif
//class 2, shadows, no SSAO
uniform sampler2DRect depthMap;
uniform sampler2DRect normalMap;
uniform sampler2DShadow shadowMap0;
uniform sampler2DShadow shadowMap1;
uniform sampler2DShadow shadowMap2;
uniform sampler2DShadow shadowMap3;
uniform sampler2DShadow shadowMap4;
uniform sampler2DShadow shadowMap5;
// Inputs
uniform mat4 shadow_matrix[6];
uniform vec4 shadow_clip;
uniform float ssao_radius;
uniform float ssao_max_radius;
uniform float ssao_factor;
uniform float ssao_factor_inv;
VARYING vec2 vary_fragcoord;
uniform mat4 inv_proj;
uniform vec2 screen_res;
uniform vec2 proj_shadow_res;
uniform vec3 sun_dir;
uniform vec3 moon_dir;
uniform vec2 shadow_res;
uniform float shadow_bias;
uniform float shadow_offset;
uniform float spot_shadow_bias;
uniform float spot_shadow_offset;
vec3 decode_normal (vec2 enc);
vec4 getPosition(vec2 pos_screen)
{
float depth = texture2DRect(depthMap, pos_screen.xy).r;
vec2 sc = pos_screen.xy*2.0;
sc /= screen_res;
sc -= vec2(1.0,1.0);
vec4 ndc = vec4(sc.x, sc.y, 2.0*depth-1.0, 1.0);
vec4 pos = inv_proj * ndc;
pos /= pos.w;
pos.w = 1.0;
return pos;
}
float pcfShadow(sampler2DShadow shadowMap, vec4 stc, float scl, vec2 pos_screen)
{
stc.xyz /= stc.w;
stc.z += shadow_bias;
stc.x = floor(stc.x*shadow_res.x + fract(pos_screen.y*0.666666666))/shadow_res.x; // add some jitter to X sample pos according to Y to disguise the snapping going on here
float cs = shadow2D(shadowMap, stc.xyz).x;
float shadow = cs;
shadow += shadow2D(shadowMap, stc.xyz+vec3(2.0/shadow_res.x, 1.5/shadow_res.y, 0.0)).x;
shadow += shadow2D(shadowMap, stc.xyz+vec3(1.0/shadow_res.x, -1.5/shadow_res.y, 0.0)).x;
shadow += shadow2D(shadowMap, stc.xyz+vec3(-2.0/shadow_res.x, 1.5/shadow_res.y, 0.0)).x;
shadow += shadow2D(shadowMap, stc.xyz+vec3(-1.0/shadow_res.x, -1.5/shadow_res.y, 0.0)).x;
return shadow*0.2;
}
float pcfSpotShadow(sampler2DShadow shadowMap, vec4 stc, float scl, vec2 pos_screen)
{
stc.xyz /= stc.w;
stc.z += spot_shadow_bias*scl;
stc.x = floor(proj_shadow_res.x * stc.x + fract(pos_screen.y*0.666666666)) / proj_shadow_res.x; // snap
float cs = shadow2D(shadowMap, stc.xyz).x;
float shadow = cs;
vec2 off = 1.0/proj_shadow_res;
off.y *= 1.5;
shadow += shadow2D(shadowMap, stc.xyz+vec3(off.x*2.0, off.y, 0.0)).x;
shadow += shadow2D(shadowMap, stc.xyz+vec3(off.x, -off.y, 0.0)).x;
shadow += shadow2D(shadowMap, stc.xyz+vec3(-off.x, off.y, 0.0)).x;
shadow += shadow2D(shadowMap, stc.xyz+vec3(-off.x*2.0, -off.y, 0.0)).x;
return shadow*0.2;
}
void main()
{
vec2 pos_screen = vary_fragcoord.xy;
//try doing an unproject here
vec4 pos = getPosition(pos_screen);
vec3 norm = texture2DRect(normalMap, pos_screen).xyz;
norm = decode_normal(norm.xy); // unpack norm
/*if (pos.z == 0.0) // do nothing for sky *FIX: REMOVE THIS IF/WHEN THE POSITION MAP IS BEING USED AS A STENCIL
{
frag_color = vec4(0.0); // doesn't matter
return;
}*/
float shadow = 0.0;
float da_sun = dot(norm, sun_dir.xyz);
float da_moon = dot(norm, moon_dir.xyz);
float da = max(da_sun, da_moon);
float dp_directional_light = max(0.0, da);
vec3 shadow_pos = pos.xyz;
vec3 offset = ((da_sun > da_moon) ? sun_dir.xyz : moon_dir.xyz) * (1.0-dp_directional_light);
vec4 spos = vec4(shadow_pos+offset*shadow_offset, 1.0);
if (spos.z > -shadow_clip.w)
{
if (dp_directional_light == 0.0)
{
// if we know this point is facing away from the sun then we know it's in shadow without having to do a squirrelly shadow-map lookup
shadow = 0.0;
}
else
{
vec4 lpos;
vec4 near_split = shadow_clip*-0.75;
vec4 far_split = shadow_clip*-1.25;
vec4 transition_domain = near_split-far_split;
float weight = 0.0;
if (spos.z < near_split.z)
{
lpos = shadow_matrix[3]*spos;
float w = 1.0;
w -= max(spos.z-far_split.z, 0.0)/transition_domain.z;
shadow += pcfShadow(shadowMap3, lpos, 0.25, pos_screen)*w;
weight += w;
shadow += max((pos.z+shadow_clip.z)/(shadow_clip.z-shadow_clip.w)*2.0-1.0, 0.0);
}
if (spos.z < near_split.y && spos.z > far_split.z)
{
lpos = shadow_matrix[2]*spos;
float w = 1.0;
w -= max(spos.z-far_split.y, 0.0)/transition_domain.y;
w -= max(near_split.z-spos.z, 0.0)/transition_domain.z;
shadow += pcfShadow(shadowMap2, lpos, 0.5, pos_screen)*w;
weight += w;
}
if (spos.z < near_split.x && spos.z > far_split.y)
{
lpos = shadow_matrix[1]*spos;
float w = 1.0;
w -= max(spos.z-far_split.x, 0.0)/transition_domain.x;
w -= max(near_split.y-spos.z, 0.0)/transition_domain.y;
shadow += pcfShadow(shadowMap1, lpos, 0.75, pos_screen)*w;
weight += w;
}
if (spos.z > far_split.x)
{
lpos = shadow_matrix[0]*spos;
float w = 1.0;
w -= max(near_split.x-spos.z, 0.0)/transition_domain.x;
shadow += pcfShadow(shadowMap0, lpos, 1.0, pos_screen)*w;
weight += w;
}
shadow /= weight;
// take the most-shadowed value out of these two:
// * the blurred sun shadow in the light (shadow) map
// * an unblurred dot product between the sun and this norm
// the goal is to err on the side of most-shadow to fill-in shadow holes and reduce artifacting
shadow = min(shadow, dp_directional_light);
//lpos.xy /= lpos.w*32.0;
//if (fract(lpos.x) < 0.1 || fract(lpos.y) < 0.1)
//{
// shadow = 0.0;
//}
}
}
else
{
// more distant than the shadow map covers
shadow = 1.0;
}
frag_color[0] = shadow;
frag_color[1] = 1.0;
spos = vec4(shadow_pos+norm*spot_shadow_offset, 1.0);
//spotlight shadow 1
vec4 lpos = shadow_matrix[4]*spos;
frag_color[2] = pcfSpotShadow(shadowMap4, lpos, 0.8, pos_screen);
//spotlight shadow 2
lpos = shadow_matrix[5]*spos;
frag_color[3] = pcfSpotShadow(shadowMap5, lpos, 0.8, pos_screen);
//frag_color.rgb = pos.xyz;
//frag_color.b = shadow;
}