phoenix-firestorm/indra/newview/lldrawpoolwater.cpp

812 lines
23 KiB
C++

/**
* @file lldrawpoolwater.cpp
* @brief LLDrawPoolWater class implementation
*
* $LicenseInfo:firstyear=2002&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2010, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
#include "llviewerprecompiledheaders.h"
#include "llfeaturemanager.h"
#include "lldrawpoolwater.h"
#include "llviewercontrol.h"
#include "lldir.h"
#include "llerror.h"
#include "m3math.h"
#include "llrender.h"
#include "llagent.h" // for gAgent for getRegion for getWaterHeight
#include "llcubemap.h"
#include "lldrawable.h"
#include "llface.h"
#include "llsky.h"
#include "llviewertexturelist.h"
#include "llviewerregion.h"
#include "llvosky.h"
#include "llvowater.h"
#include "llworld.h"
#include "pipeline.h"
#include "llviewershadermgr.h"
#include "llenvironment.h"
#include "llsettingssky.h"
#include "llsettingswater.h"
static float sTime;
BOOL deferred_render = FALSE;
BOOL LLDrawPoolWater::sSkipScreenCopy = FALSE;
BOOL LLDrawPoolWater::sNeedsReflectionUpdate = TRUE;
BOOL LLDrawPoolWater::sNeedsDistortionUpdate = TRUE;
F32 LLDrawPoolWater::sWaterFogEnd = 0.f;
LLDrawPoolWater::LLDrawPoolWater() : LLFacePool(POOL_WATER)
{
}
LLDrawPoolWater::~LLDrawPoolWater()
{
}
void LLDrawPoolWater::setTransparentTextures(const LLUUID& transparentTextureId, const LLUUID& nextTransparentTextureId)
{
LLSettingsWater::ptr_t pwater = LLEnvironment::instance().getCurrentWater();
mWaterImagep[0] = LLViewerTextureManager::getFetchedTexture(!transparentTextureId.isNull() ? transparentTextureId : pwater->GetDefaultTransparentTextureAssetId());
mWaterImagep[1] = LLViewerTextureManager::getFetchedTexture(!nextTransparentTextureId.isNull() ? nextTransparentTextureId : (!transparentTextureId.isNull() ? transparentTextureId : pwater->GetDefaultTransparentTextureAssetId()));
mWaterImagep[0]->addTextureStats(1024.f*1024.f);
mWaterImagep[1]->addTextureStats(1024.f*1024.f);
}
void LLDrawPoolWater::setOpaqueTexture(const LLUUID& opaqueTextureId)
{
LLSettingsWater::ptr_t pwater = LLEnvironment::instance().getCurrentWater();
mOpaqueWaterImagep = LLViewerTextureManager::getFetchedTexture(opaqueTextureId);
mOpaqueWaterImagep->addTextureStats(1024.f*1024.f);
}
void LLDrawPoolWater::setNormalMaps(const LLUUID& normalMapId, const LLUUID& nextNormalMapId)
{
LLSettingsWater::ptr_t pwater = LLEnvironment::instance().getCurrentWater();
mWaterNormp[0] = LLViewerTextureManager::getFetchedTexture(!normalMapId.isNull() ? normalMapId : pwater->GetDefaultWaterNormalAssetId());
mWaterNormp[1] = LLViewerTextureManager::getFetchedTexture(!nextNormalMapId.isNull() ? nextNormalMapId : (!normalMapId.isNull() ? normalMapId : pwater->GetDefaultWaterNormalAssetId()));
mWaterNormp[0]->addTextureStats(1024.f*1024.f);
mWaterNormp[1]->addTextureStats(1024.f*1024.f);
}
//static
void LLDrawPoolWater::restoreGL()
{
/*LLSettingsWater::ptr_t pwater = LLEnvironment::instance().getCurrentWater();
if (pwater)
{
setTransparentTextures(pwater->getTransparentTextureID(), pwater->getNextTransparentTextureID());
setOpaqueTexture(pwater->GetDefaultOpaqueTextureAssetId());
setNormalMaps(pwater->getNormalMapID(), pwater->getNextNormalMapID());
}*/
}
void LLDrawPoolWater::prerender()
{
mShaderLevel = (gGLManager.mHasCubeMap && LLCubeMap::sUseCubeMaps) ? LLViewerShaderMgr::instance()->getShaderLevel(LLViewerShaderMgr::SHADER_WATER) : 0;
}
S32 LLDrawPoolWater::getNumPasses()
{
if (LLViewerCamera::getInstance()->getOrigin().mV[2] < 1024.f)
{
return 1;
}
return 0;
}
void LLDrawPoolWater::beginPostDeferredPass(S32 pass)
{
beginRenderPass(pass);
deferred_render = TRUE;
}
void LLDrawPoolWater::endPostDeferredPass(S32 pass)
{
endRenderPass(pass);
deferred_render = FALSE;
}
//===============================
//DEFERRED IMPLEMENTATION
//===============================
void LLDrawPoolWater::renderDeferred(S32 pass)
{
LL_RECORD_BLOCK_TIME(FTM_RENDER_WATER);
deferred_render = TRUE;
shade();
deferred_render = FALSE;
}
//=========================================
void LLDrawPoolWater::render(S32 pass)
{
LL_RECORD_BLOCK_TIME(FTM_RENDER_WATER);
if (mDrawFace.empty() || LLDrawable::getCurrentFrame() <= 1)
{
return;
}
//do a quick 'n dirty depth sort
for (std::vector<LLFace*>::iterator iter = mDrawFace.begin();
iter != mDrawFace.end(); iter++)
{
LLFace* facep = *iter;
facep->mDistance = -facep->mCenterLocal.mV[2];
}
std::sort(mDrawFace.begin(), mDrawFace.end(), LLFace::CompareDistanceGreater());
// See if we are rendering water as opaque or not
if (!LLPipeline::sRenderTransparentWater)
{
// render water for low end hardware
renderOpaqueLegacyWater();
return;
}
LLGLEnable blend(GL_BLEND);
if ((mShaderLevel > 0) && !sSkipScreenCopy)
{
shade();
return;
}
LLVOSky *voskyp = gSky.mVOSkyp;
stop_glerror();
if (!gGLManager.mHasMultitexture)
{
// Ack! No multitexture! Bail!
return;
}
LLFace* refl_face = voskyp->getReflFace();
gPipeline.disableLights();
LLGLDepthTest gls_depth(GL_TRUE, GL_FALSE);
LLGLDisable cullFace(GL_CULL_FACE);
// Set up second pass first
gGL.getTexUnit(1)->activate();
gGL.getTexUnit(1)->enable(LLTexUnit::TT_TEXTURE);
gGL.getTexUnit(1)->bind(mWaterImagep[0]) ;
gGL.getTexUnit(2)->activate();
gGL.getTexUnit(2)->enable(LLTexUnit::TT_TEXTURE);
gGL.getTexUnit(2)->bind(mWaterImagep[1]) ;
LLVector3 camera_up = LLViewerCamera::getInstance()->getUpAxis();
F32 up_dot = camera_up * LLVector3::z_axis;
LLColor4 water_color;
if (LLViewerCamera::getInstance()->cameraUnderWater())
{
water_color.setVec(1.f, 1.f, 1.f, 0.4f);
}
else
{
water_color.setVec(1.f, 1.f, 1.f, 0.5f*(1.f + up_dot));
}
gGL.diffuseColor4fv(water_color.mV);
// Automatically generate texture coords for detail map
glEnable(GL_TEXTURE_GEN_S); //texture unit 1
glEnable(GL_TEXTURE_GEN_T); //texture unit 1
glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, GL_OBJECT_LINEAR);
glTexGeni(GL_T, GL_TEXTURE_GEN_MODE, GL_OBJECT_LINEAR);
// Slowly move over time.
F32 offset = fmod(gFrameTimeSeconds*2.f, 100.f);
F32 tp0[4] = {16.f/256.f, 0.0f, 0.0f, offset*0.01f};
F32 tp1[4] = {0.0f, 16.f/256.f, 0.0f, offset*0.01f};
glTexGenfv(GL_S, GL_OBJECT_PLANE, tp0);
glTexGenfv(GL_T, GL_OBJECT_PLANE, tp1);
gGL.getTexUnit(1)->setTextureColorBlend(LLTexUnit::TBO_MULT, LLTexUnit::TBS_TEX_COLOR, LLTexUnit::TBS_PREV_COLOR);
gGL.getTexUnit(1)->setTextureAlphaBlend(LLTexUnit::TBO_REPLACE, LLTexUnit::TBS_PREV_ALPHA);
gGL.getTexUnit(0)->activate();
glClearStencil(1);
glClear(GL_STENCIL_BUFFER_BIT);
LLGLEnable gls_stencil(GL_STENCIL_TEST);
glStencilOp(GL_KEEP, GL_REPLACE, GL_KEEP);
glStencilFunc(GL_ALWAYS, 0, 0xFFFFFFFF);
for (std::vector<LLFace*>::iterator iter = mDrawFace.begin();
iter != mDrawFace.end(); iter++)
{
LLFace *face = *iter;
if (voskyp->isReflFace(face))
{
continue;
}
gGL.getTexUnit(0)->bind(face->getTexture());
face->renderIndexed();
}
// Now, disable texture coord generation on texture state 1
gGL.getTexUnit(1)->activate();
gGL.getTexUnit(1)->unbind(LLTexUnit::TT_TEXTURE);
gGL.getTexUnit(1)->disable();
glDisable(GL_TEXTURE_GEN_S); //texture unit 1
glDisable(GL_TEXTURE_GEN_T); //texture unit 1
gGL.getTexUnit(2)->activate();
gGL.getTexUnit(2)->unbind(LLTexUnit::TT_TEXTURE);
gGL.getTexUnit(2)->disable();
glDisable(GL_TEXTURE_GEN_S); //texture unit 1
glDisable(GL_TEXTURE_GEN_T); //texture unit 1
// Disable texture coordinate and color arrays
gGL.getTexUnit(0)->activate();
gGL.getTexUnit(0)->unbind(LLTexUnit::TT_TEXTURE);
stop_glerror();
if (gSky.mVOSkyp->getCubeMap())
{
gSky.mVOSkyp->getCubeMap()->enable(0);
gSky.mVOSkyp->getCubeMap()->bind();
gGL.matrixMode(LLRender::MM_TEXTURE);
gGL.loadIdentity();
LLMatrix4 camera_mat = LLViewerCamera::getInstance()->getModelview();
LLMatrix4 camera_rot(camera_mat.getMat3());
camera_rot.invert();
gGL.loadMatrix((F32 *)camera_rot.mMatrix);
gGL.matrixMode(LLRender::MM_MODELVIEW);
LLOverrideFaceColor overrid(this, 1.f, 1.f, 1.f, 0.5f*up_dot);
gGL.getTexUnit(0)->setTextureBlendType(LLTexUnit::TB_MULT);
for (std::vector<LLFace*>::iterator iter = mDrawFace.begin();
iter != mDrawFace.end(); iter++)
{
LLFace *face = *iter;
if (voskyp->isReflFace(face))
{
//refl_face = face;
continue;
}
if (face->getGeomCount() > 0)
{
face->renderIndexed();
}
}
gGL.getTexUnit(0)->setTextureBlendType(LLTexUnit::TB_MULT);
gSky.mVOSkyp->getCubeMap()->disable();
gGL.getTexUnit(0)->unbind(LLTexUnit::TT_TEXTURE);
gGL.getTexUnit(0)->enable(LLTexUnit::TT_TEXTURE);
gGL.matrixMode(LLRender::MM_TEXTURE);
gGL.loadIdentity();
gGL.matrixMode(LLRender::MM_MODELVIEW);
}
glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);
if (refl_face)
{
glStencilFunc(GL_NOTEQUAL, 0, 0xFFFFFFFF);
renderReflection(refl_face);
}
gGL.getTexUnit(0)->setTextureBlendType(LLTexUnit::TB_MULT);
}
// for low end hardware
void LLDrawPoolWater::renderOpaqueLegacyWater()
{
LL_PROFILE_ZONE_SCOPED;
LLVOSky *voskyp = gSky.mVOSkyp;
LLGLSLShader* shader = NULL;
if (LLGLSLShader::sNoFixedFunction)
{
if (LLPipeline::sUnderWaterRender)
{
shader = &gObjectSimpleNonIndexedTexGenWaterProgram;
}
else
{
shader = &gObjectSimpleNonIndexedTexGenProgram;
}
shader->bind();
}
stop_glerror();
// Depth sorting and write to depth buffer
// since this is opaque, we should see nothing
// behind the water. No blending because
// of no transparency. And no face culling so
// that the underside of the water is also opaque.
LLGLDepthTest gls_depth(GL_TRUE, GL_TRUE);
LLGLDisable no_cull(GL_CULL_FACE);
LLGLDisable no_blend(GL_BLEND);
gPipeline.disableLights();
// Activate the texture binding and bind one
// texture since all images will have the same texture
gGL.getTexUnit(0)->activate();
gGL.getTexUnit(0)->enable(LLTexUnit::TT_TEXTURE);
gGL.getTexUnit(0)->bind(mOpaqueWaterImagep);
// Automatically generate texture coords for water texture
if (!shader)
{
glEnable(GL_TEXTURE_GEN_S); //texture unit 0
glEnable(GL_TEXTURE_GEN_T); //texture unit 0
glTexGenf(GL_S, GL_TEXTURE_GEN_MODE, GL_OBJECT_LINEAR);
glTexGenf(GL_T, GL_TEXTURE_GEN_MODE, GL_OBJECT_LINEAR);
}
// Use the fact that we know all water faces are the same size
// to save some computation
// Slowly move texture coordinates over time so the watter appears
// to be moving.
F32 movement_period_secs = 50.f;
F32 offset = fmod(gFrameTimeSeconds, movement_period_secs);
if (movement_period_secs != 0)
{
offset /= movement_period_secs;
}
else
{
offset = 0;
}
F32 tp0[4] = { 16.f / 256.f, 0.0f, 0.0f, offset };
F32 tp1[4] = { 0.0f, 16.f / 256.f, 0.0f, offset };
if (!shader)
{
glTexGenfv(GL_S, GL_OBJECT_PLANE, tp0);
glTexGenfv(GL_T, GL_OBJECT_PLANE, tp1);
}
else
{
shader->uniform4fv(LLShaderMgr::OBJECT_PLANE_S, 1, tp0);
shader->uniform4fv(LLShaderMgr::OBJECT_PLANE_T, 1, tp1);
}
gGL.diffuseColor3f(1.f, 1.f, 1.f);
for (std::vector<LLFace*>::iterator iter = mDrawFace.begin();
iter != mDrawFace.end(); iter++)
{
LLFace *face = *iter;
if (voskyp->isReflFace(face))
{
continue;
}
face->renderIndexed();
}
stop_glerror();
if (!shader)
{
// Reset the settings back to expected values
glDisable(GL_TEXTURE_GEN_S); //texture unit 0
glDisable(GL_TEXTURE_GEN_T); //texture unit 0
}
gGL.getTexUnit(0)->unbind(LLTexUnit::TT_TEXTURE);
gGL.getTexUnit(0)->setTextureBlendType(LLTexUnit::TB_MULT);
}
void LLDrawPoolWater::renderReflection(LLFace* face)
{
LL_PROFILE_ZONE_SCOPED;
LLVOSky *voskyp = gSky.mVOSkyp;
if (!voskyp)
{
return;
}
if (!face->getGeomCount())
{
return;
}
S8 dr = voskyp->getDrawRefl();
if (dr < 0)
{
return;
}
LLGLSNoFog noFog;
gGL.getTexUnit(0)->bind((dr == 0) ? voskyp->getSunTex() : voskyp->getMoonTex());
LLOverrideFaceColor override(this, LLColor4(face->getFaceColor().mV));
face->renderIndexed();
}
void LLDrawPoolWater::shade2(bool edge, LLGLSLShader* shader, const LLColor3& light_diffuse, const LLVector3& light_dir, F32 light_exp)
{
LL_PROFILE_ZONE_SCOPED;
F32 water_height = LLEnvironment::instance().getWaterHeight();
F32 camera_height = LLViewerCamera::getInstance()->getOrigin().mV[2];
F32 eyedepth = camera_height - water_height;
bool underwater = eyedepth <= 0.0f;
LLEnvironment& environment = LLEnvironment::instance();
LLSettingsWater::ptr_t pwater = environment.getCurrentWater();
LLSettingsSky::ptr_t psky = environment.getCurrentSky();
shader->bind();
// bind textures for water rendering
if (deferred_render)
{
if (shader->getUniformLocation(LLShaderMgr::DEFERRED_NORM_MATRIX) >= 0)
{
glh::matrix4f norm_mat = get_current_modelview().inverse().transpose();
shader->uniformMatrix4fv(LLShaderMgr::DEFERRED_NORM_MATRIX, 1, FALSE, norm_mat.m);
}
}
LLColor4 specular(psky->getIsSunUp() ? psky->getSunlightColor() : psky->getMoonlightColor());
shader->uniform4fv(LLShaderMgr::SPECULAR_COLOR, 1, specular.mV);
sTime = (F32)LLFrameTimer::getElapsedSeconds() * 0.5f;
S32 reftex = shader->enableTexture(LLShaderMgr::WATER_REFTEX);
if (reftex > -1)
{
gGL.getTexUnit(reftex)->activate();
gGL.getTexUnit(reftex)->bind(&gPipeline.mWaterRef);
gGL.getTexUnit(0)->activate();
}
//bind normal map
S32 bumpTex = shader->enableTexture(LLViewerShaderMgr::BUMP_MAP);
S32 bumpTex2 = shader->enableTexture(LLViewerShaderMgr::BUMP_MAP2);
LLViewerTexture* tex_a = mWaterNormp[0];
LLViewerTexture* tex_b = mWaterNormp[1];
F32 blend_factor = LLEnvironment::instance().getCurrentWater()->getBlendFactor();
gGL.getTexUnit(bumpTex)->unbind(LLTexUnit::TT_TEXTURE);
gGL.getTexUnit(bumpTex2)->unbind(LLTexUnit::TT_TEXTURE);
if (tex_a && (!tex_b || (tex_a == tex_b)))
{
gGL.getTexUnit(bumpTex)->bind(tex_a);
blend_factor = 0; // only one tex provided, no blending
}
else if (tex_b && !tex_a)
{
gGL.getTexUnit(bumpTex)->bind(tex_b);
blend_factor = 0; // only one tex provided, no blending
}
else if (tex_b != tex_a)
{
gGL.getTexUnit(bumpTex)->bind(tex_a);
gGL.getTexUnit(bumpTex2)->bind(tex_b);
}
// bind reflection texture from RenderTarget
S32 screentex = shader->enableTexture(LLShaderMgr::WATER_SCREENTEX);
F32 screenRes[] =
{
1.f/gGLViewport[2],
1.f/gGLViewport[3]
};
S32 diffTex = shader->enableTexture(LLShaderMgr::DIFFUSE_MAP);
stop_glerror();
// set uniforms for water rendering
shader->uniform2fv(LLShaderMgr::DEFERRED_SCREEN_RES, 1, screenRes);
shader->uniform1f(LLShaderMgr::BLEND_FACTOR, blend_factor);
LLColor4 fog_color(pwater->getWaterFogColor(), 0.0f);
F32 fog_density = pwater->getModifiedWaterFogDensity(underwater);
if (screentex > -1)
{
shader->uniform1f(LLShaderMgr::WATER_FOGDENSITY, fog_density);
gGL.getTexUnit(screentex)->bind(&gPipeline.mWaterDis);
}
if (mShaderLevel == 1)
{
//F32 fog_density_slider_value = param_mgr->mDensitySliderValue;
//sWaterFogColor.mV[3] = fog_density_slider_value;
fog_color.mV[VW] = log(fog_density) / log(2);
}
shader->uniform4fv(LLShaderMgr::WATER_FOGCOLOR, 1, fog_color.mV);
//shader->uniformMatrix4fv("inverse_ref", 1, GL_FALSE, (GLfloat*) gGLObliqueProjectionInverse.mMatrix);
shader->uniform1f(LLShaderMgr::WATER_WATERHEIGHT, eyedepth);
shader->uniform1f(LLShaderMgr::WATER_TIME, sTime);
shader->uniform3fv(LLShaderMgr::WATER_EYEVEC, 1, LLViewerCamera::getInstance()->getOrigin().mV);
shader->uniform3fv(LLShaderMgr::WATER_SPECULAR, 1, light_diffuse.mV);
shader->uniform1f(LLShaderMgr::WATER_SPECULAR_EXP, light_exp);
if (LLEnvironment::instance().isCloudScrollPaused())
{
static const std::array<F32, 2> zerowave{ {0.0f, 0.0f} };
shader->uniform2fv(LLShaderMgr::WATER_WAVE_DIR1, 1, zerowave.data());
shader->uniform2fv(LLShaderMgr::WATER_WAVE_DIR2, 1, zerowave.data());
}
else
{
shader->uniform2fv(LLShaderMgr::WATER_WAVE_DIR1, 1, pwater->getWave1Dir().mV);
shader->uniform2fv(LLShaderMgr::WATER_WAVE_DIR2, 1, pwater->getWave2Dir().mV);
}
shader->uniform3fv(LLShaderMgr::WATER_LIGHT_DIR, 1, light_dir.mV);
shader->uniform3fv(LLShaderMgr::WATER_NORM_SCALE, 1, pwater->getNormalScale().mV);
shader->uniform1f(LLShaderMgr::WATER_FRESNEL_SCALE, pwater->getFresnelScale());
shader->uniform1f(LLShaderMgr::WATER_FRESNEL_OFFSET, pwater->getFresnelOffset());
shader->uniform1f(LLShaderMgr::WATER_BLUR_MULTIPLIER, pwater->getBlurMultiplier());
F32 sunAngle = llmax(0.f, light_dir.mV[1]);
F32 scaledAngle = 1.f - sunAngle;
shader->uniform1i(LLShaderMgr::SUN_UP_FACTOR, environment.getIsSunUp() ? 1 : 0);
shader->uniform1f(LLShaderMgr::WATER_SUN_ANGLE, sunAngle);
shader->uniform1f(LLShaderMgr::WATER_SCALED_ANGLE, scaledAngle);
shader->uniform1f(LLShaderMgr::WATER_SUN_ANGLE2, 0.1f + 0.2f*sunAngle);
shader->uniform1i(LLShaderMgr::WATER_EDGE_FACTOR, edge ? 1 : 0);
LLVector4 rotated_light_direction = LLEnvironment::instance().getRotatedLightNorm();
shader->uniform4fv(LLViewerShaderMgr::LIGHTNORM, 1, rotated_light_direction.mV);
shader->uniform3fv(LLShaderMgr::WL_CAMPOSLOCAL, 1, LLViewerCamera::getInstance()->getOrigin().mV);
if (LLViewerCamera::getInstance()->cameraUnderWater())
{
shader->uniform1f(LLShaderMgr::WATER_REFSCALE, pwater->getScaleBelow());
}
else
{
shader->uniform1f(LLShaderMgr::WATER_REFSCALE, pwater->getScaleAbove());
}
{
LLGLDisable cullface(GL_CULL_FACE);
if (edge)
{
for (std::vector<LLFace*>::iterator iter = mDrawFace.begin(); iter != mDrawFace.end(); iter++)
{
LLFace *face = *iter;
if (face)
{
LLVOWater* water = (LLVOWater*) face->getViewerObject();
gGL.getTexUnit(diffTex)->bind(face->getTexture());
if (water)
{
bool edge_patch = water->getIsEdgePatch();
if (edge_patch)
{
//sNeedsReflectionUpdate = TRUE;
face->renderIndexed();
}
}
}
}
}
else
{
for (std::vector<LLFace*>::iterator iter = mDrawFace.begin(); iter != mDrawFace.end(); iter++)
{
LLFace *face = *iter;
if (face)
{
LLVOWater* water = (LLVOWater*) face->getViewerObject();
gGL.getTexUnit(diffTex)->bind(face->getTexture());
if (water)
{
bool edge_patch = water->getIsEdgePatch();
if (!edge_patch)
{
sNeedsReflectionUpdate = TRUE;
sNeedsDistortionUpdate = TRUE;
face->renderIndexed();
}
}
}
}
}
}
gGL.getTexUnit(bumpTex)->unbind(LLTexUnit::TT_TEXTURE);
gGL.getTexUnit(bumpTex2)->unbind(LLTexUnit::TT_TEXTURE);
shader->disableTexture(LLShaderMgr::ENVIRONMENT_MAP, LLTexUnit::TT_CUBE_MAP);
shader->disableTexture(LLShaderMgr::WATER_SCREENTEX);
shader->disableTexture(LLShaderMgr::BUMP_MAP);
shader->disableTexture(LLShaderMgr::DIFFUSE_MAP);
shader->disableTexture(LLShaderMgr::WATER_REFTEX);
shader->disableTexture(LLShaderMgr::WATER_SCREENDEPTH);
shader->unbind();
}
void LLDrawPoolWater::shade()
{
LL_PROFILE_ZONE_SCOPED;
if (!deferred_render)
{
gGL.setColorMask(true, true);
}
LLVOSky *voskyp = gSky.mVOSkyp;
if(voskyp == NULL)
{
return;
}
LLGLDisable blend(GL_BLEND);
LLColor3 light_diffuse(0,0,0);
F32 light_exp = 0.0f;
LLVector3 light_dir;
LLEnvironment& environment = LLEnvironment::instance();
LLSettingsWater::ptr_t pwater = environment.getCurrentWater();
LLSettingsSky::ptr_t psky = environment.getCurrentSky();
light_dir = environment.getLightDirection();
light_dir.normalize();
bool sun_up = environment.getIsSunUp();
bool moon_up = environment.getIsMoonUp();
if (sun_up)
{
light_diffuse += voskyp->getSun().getColorCached();
}
// moonlight is several orders of magnitude less bright than sunlight,
// so only use this color when the moon alone is showing
else if (moon_up)
{
light_diffuse += psky->getMoonDiffuse();
}
light_exp = light_dir * LLVector3(light_dir.mV[0], light_dir.mV[1], 0.f);
light_diffuse.normalize();
light_diffuse *= (light_exp + 0.25f);
light_exp *= light_exp;
light_exp *= light_exp;
light_exp *= light_exp;
light_exp *= light_exp;
light_exp *= 256.f;
light_exp = light_exp > 32.f ? light_exp : 32.f;
light_diffuse *= 6.f;
LLGLSLShader* shader = nullptr;
LLGLSLShader* edge_shader = nullptr;
F32 eyedepth = LLViewerCamera::getInstance()->getOrigin().mV[2] - LLEnvironment::instance().getWaterHeight();
if (eyedepth < 0.f && LLPipeline::sWaterReflections)
{
if (deferred_render)
{
shader = &gDeferredUnderWaterProgram;
}
else
{
shader = &gUnderWaterProgram;
}
}
else if (deferred_render)
{
shader = &gDeferredWaterProgram;
edge_shader = nullptr;
}
else
{
shader = &gWaterProgram;
edge_shader = &gWaterEdgeProgram;
}
if (mWaterNormp[0])
{
if (gSavedSettings.getBOOL("RenderWaterMipNormal"))
{
mWaterNormp[0]->setFilteringOption(LLTexUnit::TFO_ANISOTROPIC);
}
else
{
mWaterNormp[0]->setFilteringOption(LLTexUnit::TFO_POINT);
}
}
if (mWaterNormp[1])
{
if (gSavedSettings.getBOOL("RenderWaterMipNormal"))
{
mWaterNormp[1]->setFilteringOption(LLTexUnit::TFO_ANISOTROPIC);
}
else
{
mWaterNormp[1]->setFilteringOption(LLTexUnit::TFO_POINT);
}
}
shade2(false, shader, light_diffuse, light_dir, light_exp);
shade2(true, edge_shader ? edge_shader : shader, light_diffuse, light_dir, light_exp);
gGL.getTexUnit(0)->activate();
gGL.getTexUnit(0)->enable(LLTexUnit::TT_TEXTURE);
if (!deferred_render)
{
gGL.setColorMask(true, false);
}
}
LLViewerTexture *LLDrawPoolWater::getDebugTexture()
{
return LLViewerFetchedTexture::sSmokeImagep;
}
LLColor3 LLDrawPoolWater::getDebugColor() const
{
return LLColor3(0.f, 1.f, 1.f);
}