phoenix-firestorm/indra/newview/llvowlsky.cpp

582 lines
17 KiB
C++

/**
* @file llvowlsky.cpp
* @brief LLVOWLSky class implementation
*
* $LicenseInfo:firstyear=2007&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2010, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
#include "llviewerprecompiledheaders.h"
#include "pipeline.h"
#include "llvowlsky.h"
#include "llsky.h"
#include "lldrawpoolwlsky.h"
#include "llface.h"
#include "llviewercontrol.h"
#include "llenvironment.h"
#include "llsettingssky.h"
constexpr U32 MIN_SKY_DETAIL = 8;
constexpr U32 MAX_SKY_DETAIL = 180;
inline U32 LLVOWLSky::getNumStacks(void)
{
return llmin(MAX_SKY_DETAIL, llmax(MIN_SKY_DETAIL, gSavedSettings.getU32("WLSkyDetail")));
}
inline U32 LLVOWLSky::getNumSlices(void)
{
return 2 * llmin(MAX_SKY_DETAIL, llmax(MIN_SKY_DETAIL, gSavedSettings.getU32("WLSkyDetail")));
}
inline U32 LLVOWLSky::getStripsNumVerts(void)
{
return (getNumStacks() - 1) * getNumSlices();
}
inline U32 LLVOWLSky::getStripsNumIndices(void)
{
return 2 * ((getNumStacks() - 2) * (getNumSlices() + 1)) + 1 ;
}
inline U32 LLVOWLSky::getStarsNumVerts(void)
{
return 1000;
}
inline U32 LLVOWLSky::getStarsNumIndices(void)
{
return 1000;
}
LLVOWLSky::LLVOWLSky(const LLUUID &id, const LLPCode pcode, LLViewerRegion *regionp)
: LLStaticViewerObject(id, pcode, regionp, TRUE)
{
initStars();
}
void LLVOWLSky::idleUpdate(LLAgent &agent, const F64 &time)
{
}
BOOL LLVOWLSky::isActive(void) const
{
return FALSE;
}
LLDrawable * LLVOWLSky::createDrawable(LLPipeline * pipeline)
{
pipeline->allocDrawable(this);
//LLDrawPoolWLSky *poolp = static_cast<LLDrawPoolWLSky *>(
gPipeline.getPool(LLDrawPool::POOL_WL_SKY);
mDrawable->setRenderType(LLPipeline::RENDER_TYPE_WL_SKY);
return mDrawable;
}
// a tiny helper function for controlling the sky dome tesselation.
inline F32 calcPhi(const U32 &i, const F32 &reciprocal_num_stacks)
{
// Calc: PI/8 * 1-((1-t^4)*(1-t^4)) { 0<t<1 }
// Demos: \pi/8*\left(1-((1-x^{4})*(1-x^{4}))\right)\ \left\{0<x\le1\right\}
// i should range from [0..SKY_STACKS] so t will range from [0.f .. 1.f]
F32 t = float(i) * reciprocal_num_stacks; //SL-16127: remove: / float(getNumStacks());
// ^4 the parameter of the tesselation to bias things toward 0 (the dome's apex)
t *= t;
t *= t;
// invert and square the parameter of the tesselation to bias things toward 1 (the horizon)
t = 1.f - t;
t = t*t;
t = 1.f - t;
return (F_PI / 8.f) * t;
}
void LLVOWLSky::resetVertexBuffers()
{
mStripsVerts.clear();
mStarsVerts = nullptr;
mFsSkyVerts = nullptr;
gPipeline.markRebuild(mDrawable, LLDrawable::REBUILD_ALL);
}
void LLVOWLSky::cleanupGL()
{
mStripsVerts.clear();
mStarsVerts = nullptr;
mFsSkyVerts = nullptr;
LLDrawPoolWLSky::cleanupGL();
}
void LLVOWLSky::restoreGL()
{
LLDrawPoolWLSky::restoreGL();
gPipeline.markRebuild(mDrawable, LLDrawable::REBUILD_ALL);
}
BOOL LLVOWLSky::updateGeometry(LLDrawable * drawable)
{
LL_PROFILE_ZONE_SCOPED;
LLStrider<LLVector3> vertices;
LLStrider<LLVector2> texCoords;
LLStrider<U16> indices;
if (mFsSkyVerts.isNull())
{
mFsSkyVerts = new LLVertexBuffer(LLDrawPoolWLSky::ADV_ATMO_SKY_VERTEX_DATA_MASK);
if (!mFsSkyVerts->allocateBuffer(4, 6))
{
LL_WARNS() << "Failed to allocate Vertex Buffer on full screen sky update" << LL_ENDL;
}
BOOL success = mFsSkyVerts->getVertexStrider(vertices)
&& mFsSkyVerts->getTexCoord0Strider(texCoords)
&& mFsSkyVerts->getIndexStrider(indices);
if(!success)
{
LL_ERRS() << "Failed updating WindLight fullscreen sky geometry." << LL_ENDL;
}
*vertices++ = LLVector3(-1.0f, -1.0f, 0.0f);
*vertices++ = LLVector3( 1.0f, -1.0f, 0.0f);
*vertices++ = LLVector3(-1.0f, 1.0f, 0.0f);
*vertices++ = LLVector3( 1.0f, 1.0f, 0.0f);
*texCoords++ = LLVector2(0.0f, 0.0f);
*texCoords++ = LLVector2(1.0f, 0.0f);
*texCoords++ = LLVector2(0.0f, 1.0f);
*texCoords++ = LLVector2(1.0f, 1.0f);
*indices++ = 0;
*indices++ = 1;
*indices++ = 2;
*indices++ = 1;
*indices++ = 3;
*indices++ = 2;
mFsSkyVerts->unmapBuffer();
}
{
const F32 dome_radius = LLEnvironment::instance().getCurrentSky()->getDomeRadius();
const U32 max_buffer_bytes = gSavedSettings.getS32("RenderMaxVBOSize")*1024;
const U32 data_mask = LLDrawPoolWLSky::SKY_VERTEX_DATA_MASK;
const U32 max_verts = max_buffer_bytes / LLVertexBuffer::calcVertexSize(data_mask);
const U32 total_stacks = getNumStacks();
const U32 verts_per_stack = getNumSlices();
// each seg has to have one more row of verts than it has stacks
// then round down
const U32 stacks_per_seg = (max_verts - verts_per_stack) / verts_per_stack;
// round up to a whole number of segments
const U32 strips_segments = (total_stacks+stacks_per_seg-1) / stacks_per_seg;
mStripsVerts.resize(strips_segments, NULL);
#if RELEASE_SHOW_DEBUG
LL_INFOS() << "WL Skydome strips in " << strips_segments << " batches." << LL_ENDL;
LLTimer timer;
timer.start();
#endif
for (U32 i = 0; i < strips_segments ;++i)
{
LLVertexBuffer * segment = new LLVertexBuffer(LLDrawPoolWLSky::SKY_VERTEX_DATA_MASK);
mStripsVerts[i] = segment;
U32 num_stacks_this_seg = stacks_per_seg;
if ((i == strips_segments - 1) && (total_stacks % stacks_per_seg) != 0)
{
// for the last buffer only allocate what we'll use
num_stacks_this_seg = total_stacks % stacks_per_seg;
}
// figure out what range of the sky we're filling
const U32 begin_stack = i * stacks_per_seg;
const U32 end_stack = begin_stack + num_stacks_this_seg;
llassert(end_stack <= total_stacks);
const U32 num_verts_this_seg = verts_per_stack * (num_stacks_this_seg+1);
llassert(num_verts_this_seg <= max_verts);
const U32 num_indices_this_seg = 1+num_stacks_this_seg*(2+2*verts_per_stack);
llassert(num_indices_this_seg * sizeof(U16) <= max_buffer_bytes);
bool allocated = segment->allocateBuffer(num_verts_this_seg, num_indices_this_seg);
#if RELEASE_SHOW_WARNS
if( !allocated )
{
LL_WARNS() << "Failed to allocate Vertex Buffer on update to "
<< num_verts_this_seg << " vertices and "
<< num_indices_this_seg << " indices" << LL_ENDL;
}
#else
(void) allocated;
#endif
// lock the buffer
BOOL success = segment->getVertexStrider(vertices)
&& segment->getTexCoord0Strider(texCoords)
&& segment->getIndexStrider(indices);
#if RELEASE_SHOW_DEBUG
if(!success)
{
LL_ERRS() << "Failed updating WindLight sky geometry." << LL_ENDL;
}
#else
(void) success;
#endif
// fill it
buildStripsBuffer(begin_stack, end_stack, vertices, texCoords, indices, dome_radius, verts_per_stack, total_stacks);
// and unlock the buffer
segment->unmapBuffer();
}
#if RELEASE_SHOW_DEBUG
LL_INFOS() << "completed in " << llformat("%.2f", timer.getElapsedTimeF32().value()) << "seconds" << LL_ENDL;
#endif
}
updateStarColors();
updateStarGeometry(drawable);
LLPipeline::sCompiles++;
return TRUE;
}
void LLVOWLSky::drawStars(void)
{
// render the stars as a sphere centered at viewer camera
if (mStarsVerts.notNull())
{
mStarsVerts->setBuffer();
mStarsVerts->drawArrays(LLRender::TRIANGLES, 0, getStarsNumVerts()*4);
}
}
void LLVOWLSky::drawFsSky(void)
{
if (mFsSkyVerts.isNull())
{
updateGeometry(mDrawable);
}
LLGLDisable disable_blend(GL_BLEND);
mFsSkyVerts->setBuffer();
mFsSkyVerts->drawRange(LLRender::TRIANGLES, 0, mFsSkyVerts->getNumVerts() - 1, mFsSkyVerts->getNumIndices(), 0);
gPipeline.addTrianglesDrawn(mFsSkyVerts->getNumIndices());
LLVertexBuffer::unbind();
}
void LLVOWLSky::drawDome(void)
{
if (mStripsVerts.empty())
{
updateGeometry(mDrawable);
}
LLGLDepthTest gls_depth(GL_TRUE, GL_FALSE);
std::vector< LLPointer<LLVertexBuffer> >::const_iterator strips_vbo_iter, end_strips;
end_strips = mStripsVerts.end();
for(strips_vbo_iter = mStripsVerts.begin(); strips_vbo_iter != end_strips; ++strips_vbo_iter)
{
LLVertexBuffer * strips_segment = strips_vbo_iter->get();
strips_segment->setBuffer();
strips_segment->drawRange(
LLRender::TRIANGLE_STRIP,
0, strips_segment->getNumVerts()-1, strips_segment->getNumIndices(),
0);
gPipeline.addTrianglesDrawn(strips_segment->getNumIndices());
}
LLVertexBuffer::unbind();
}
void LLVOWLSky::initStars()
{
const F32 DISTANCE_TO_STARS = LLEnvironment::instance().getCurrentSky()->getDomeRadius();
// Initialize star map
mStarVertices.resize(getStarsNumVerts());
mStarColors.resize(getStarsNumVerts());
mStarIntensities.resize(getStarsNumVerts());
std::vector<LLVector3>::iterator v_p = mStarVertices.begin();
std::vector<LLColor4>::iterator v_c = mStarColors.begin();
std::vector<F32>::iterator v_i = mStarIntensities.begin();
U32 i;
for (i = 0; i < getStarsNumVerts(); ++i)
{
v_p->mV[VX] = ll_frand() - 0.5f;
v_p->mV[VY] = ll_frand() - 0.5f;
// we only want stars on the top half of the dome!
v_p->mV[VZ] = ll_frand()/2.f;
v_p->normVec();
*v_p *= DISTANCE_TO_STARS;
*v_i = llmin((F32)pow(ll_frand(),2.f) + 0.1f, 1.f);
v_c->mV[VRED] = 0.75f + ll_frand() * 0.25f ;
v_c->mV[VGREEN] = 1.f ;
v_c->mV[VBLUE] = 0.75f + ll_frand() * 0.25f ;
v_c->mV[VALPHA] = 1.f;
v_c->clamp();
v_p++;
v_c++;
v_i++;
}
}
void LLVOWLSky::buildStripsBuffer(U32 begin_stack,
U32 end_stack,
LLStrider<LLVector3> & vertices,
LLStrider<LLVector2> & texCoords,
LLStrider<U16> & indices,
const F32 dome_radius,
const U32& num_slices,
const U32& num_stacks)
{
U32 i, j;
F32 phi0, theta, x0, y0, z0;
const F32 reciprocal_num_stacks = 1.f / num_stacks;
llassert(end_stack <= num_stacks);
// stacks are iterated one-indexed since phi(0) was handled by the fan above
#if NEW_TESS
for(i = begin_stack; i <= end_stack; ++i)
#else
for(i = begin_stack + 1; i <= end_stack+1; ++i)
#endif
{
phi0 = calcPhi(i, reciprocal_num_stacks);
for(j = 0; j < num_slices; ++j)
{
theta = F_TWO_PI * (float(j) / float(num_slices));
// standard transformation from spherical to
// rectangular coordinates
x0 = sin(phi0) * cos(theta);
y0 = cos(phi0);
z0 = sin(phi0) * sin(theta);
#if NEW_TESS
*vertices++ = LLVector3(x0 * dome_radius, y0 * dome_radius, z0 * dome_radius);
#else
if (i == num_stacks-2)
{
*vertices++ = LLVector3(x0*dome_radius, y0*dome_radius-1024.f*2.f, z0*dome_radius);
}
else if (i == num_stacks-1)
{
*vertices++ = LLVector3(0, y0*dome_radius-1024.f*2.f, 0);
}
else
{
*vertices++ = LLVector3(x0 * dome_radius, y0 * dome_radius, z0 * dome_radius);
}
#endif
// generate planar uv coordinates
// note: x and z are transposed in order for things to animate
// correctly in the global coordinate system where +x is east and
// +y is north
*texCoords++ = LLVector2((-z0 + 1.f) / 2.f, (-x0 + 1.f) / 2.f);
}
}
//build triangle strip...
*indices++ = 0 ;
S32 k = 0 ;
for(i = 1; i <= end_stack - begin_stack; ++i)
{
*indices++ = i * num_slices + k ;
k = (k+1) % num_slices ;
for(j = 0; j < num_slices ; ++j)
{
*indices++ = (i-1) * num_slices + k ;
*indices++ = i * num_slices + k ;
k = (k+1) % num_slices ;
}
if((--k) < 0)
{
k = num_slices - 1 ;
}
*indices++ = i * num_slices + k ;
}
}
void LLVOWLSky::updateStarColors()
{
std::vector<LLColor4>::iterator v_c = mStarColors.begin();
std::vector<F32>::iterator v_i = mStarIntensities.begin();
std::vector<LLVector3>::iterator v_p = mStarVertices.begin();
const F32 var = 0.15f;
const F32 min = 0.5f; //0.75f;
//const F32 sunclose_max = 0.6f;
//const F32 sunclose_range = 1 - sunclose_max;
//F32 below_horizon = - llmin(0.0f, gSky.mVOSkyp->getToSunLast().mV[2]);
//F32 brightness_factor = llmin(1.0f, below_horizon * 20);
static S32 swap = 0;
swap++;
if ((swap % 2) == 1)
{
F32 intensity; // max intensity of each star
U32 x;
for (x = 0; x < getStarsNumVerts(); ++x)
{
//F32 sundir_factor = 1;
LLVector3 tostar = *v_p;
tostar.normVec();
//const F32 how_close_to_sun = tostar * gSky.mVOSkyp->getToSunLast();
//if (how_close_to_sun > sunclose_max)
//{
// sundir_factor = (1 - how_close_to_sun) / sunclose_range;
//}
intensity = *(v_i);
F32 alpha = v_c->mV[VALPHA] + (ll_frand() - 0.5f) * var * intensity;
if (alpha < min * intensity)
{
alpha = min * intensity;
}
if (alpha > intensity)
{
alpha = intensity;
}
//alpha *= brightness_factor * sundir_factor;
alpha = llclamp(alpha, 0.f, 1.f);
v_c->mV[VALPHA] = alpha;
v_c++;
v_i++;
v_p++;
}
}
}
BOOL LLVOWLSky::updateStarGeometry(LLDrawable *drawable)
{
LLStrider<LLVector3> verticesp;
LLStrider<LLColor4U> colorsp;
LLStrider<LLVector2> texcoordsp;
if (mStarsVerts.isNull())
{
mStarsVerts = new LLVertexBuffer(LLDrawPoolWLSky::STAR_VERTEX_DATA_MASK);
if (!mStarsVerts->allocateBuffer(getStarsNumVerts()*6, 0))
{
LL_WARNS() << "Failed to allocate Vertex Buffer for Sky to " << getStarsNumVerts() * 6 << " vertices" << LL_ENDL;
}
}
BOOL success = mStarsVerts->getVertexStrider(verticesp)
&& mStarsVerts->getColorStrider(colorsp)
&& mStarsVerts->getTexCoord0Strider(texcoordsp);
if(!success)
{
LL_ERRS() << "Failed updating star geometry." << LL_ENDL;
}
// *TODO: fix LLStrider with a real prefix increment operator so it can be
// used as a model of OutputIterator. -Brad
// std::copy(mStarVertices.begin(), mStarVertices.end(), verticesp);
if (mStarVertices.size() < getStarsNumVerts())
{
LL_ERRS() << "Star reference geometry insufficient." << LL_ENDL;
}
for (U32 vtx = 0; vtx < getStarsNumVerts(); ++vtx)
{
LLVector3 at = mStarVertices[vtx];
at.normVec();
LLVector3 left = at%LLVector3(0,0,1);
LLVector3 up = at%left;
F32 sc = 16.0f + (ll_frand() * 20.0f);
left *= sc;
up *= sc;
*(verticesp++) = mStarVertices[vtx];
*(verticesp++) = mStarVertices[vtx]+up;
*(verticesp++) = mStarVertices[vtx]+left+up;
*(verticesp++) = mStarVertices[vtx];
*(verticesp++) = mStarVertices[vtx]+left+up;
*(verticesp++) = mStarVertices[vtx]+left;
*(texcoordsp++) = LLVector2(1,0);
*(texcoordsp++) = LLVector2(1,1);
*(texcoordsp++) = LLVector2(0,1);
*(texcoordsp++) = LLVector2(1,0);
*(texcoordsp++) = LLVector2(0,1);
*(texcoordsp++) = LLVector2(0,0);
*(colorsp++) = LLColor4U(mStarColors[vtx]);
*(colorsp++) = LLColor4U(mStarColors[vtx]);
*(colorsp++) = LLColor4U(mStarColors[vtx]);
*(colorsp++) = LLColor4U(mStarColors[vtx]);
*(colorsp++) = LLColor4U(mStarColors[vtx]);
*(colorsp++) = LLColor4U(mStarColors[vtx]);
}
mStarsVerts->unmapBuffer();
return TRUE;
}