phoenix-firestorm/indra/llmath/llmath.h

492 lines
12 KiB
C++

/**
* @file llmath.h
* @brief Useful math constants and macros.
*
* $LicenseInfo:firstyear=2000&license=viewergpl$
*
* Copyright (c) 2000-2007, Linden Research, Inc.
*
* Second Life Viewer Source Code
* The source code in this file ("Source Code") is provided by Linden Lab
* to you under the terms of the GNU General Public License, version 2.0
* ("GPL"), unless you have obtained a separate licensing agreement
* ("Other License"), formally executed by you and Linden Lab. Terms of
* the GPL can be found in doc/GPL-license.txt in this distribution, or
* online at http://secondlife.com/developers/opensource/gplv2
*
* There are special exceptions to the terms and conditions of the GPL as
* it is applied to this Source Code. View the full text of the exception
* in the file doc/FLOSS-exception.txt in this software distribution, or
* online at http://secondlife.com/developers/opensource/flossexception
*
* By copying, modifying or distributing this software, you acknowledge
* that you have read and understood your obligations described above,
* and agree to abide by those obligations.
*
* ALL LINDEN LAB SOURCE CODE IS PROVIDED "AS IS." LINDEN LAB MAKES NO
* WARRANTIES, EXPRESS, IMPLIED OR OTHERWISE, REGARDING ITS ACCURACY,
* COMPLETENESS OR PERFORMANCE.
* $/LicenseInfo$
*/
#ifndef LLMATH_H
#define LLMATH_H
#include <cmath>
#include <cstdlib>
#include "lldefs.h"
// work around for Windows & older gcc non-standard function names.
#if LL_WINDOWS
#include <float.h>
#define llisnan(val) _isnan(val)
#define llfinite(val) _finite(val)
#elif (LL_LINUX && __GNUC__ <= 2)
#define llisnan(val) isnan(val)
#define llfinite(val) isfinite(val)
#elif LL_SOLARIS
#define llisnan(val) isnan(val)
#define llfinite(val) (val <= std::numeric_limits<double>::max())
#else
#define llisnan(val) std::isnan(val)
#define llfinite(val) std::isfinite(val)
#endif
// Single Precision Floating Point Routines
#ifndef fsqrtf
#define fsqrtf(x) ((F32)sqrt((F64)(x)))
#endif
#ifndef sqrtf
#define sqrtf(x) ((F32)sqrt((F64)(x)))
#endif
#ifndef cosf
#define cosf(x) ((F32)cos((F64)(x)))
#endif
#ifndef sinf
#define sinf(x) ((F32)sin((F64)(x)))
#endif
#ifndef tanf
#define tanf(x) ((F32)tan((F64)(x)))
#endif
#ifndef acosf
#define acosf(x) ((F32)acos((F64)(x)))
#endif
#ifndef powf
#define powf(x,y) ((F32)pow((F64)(x),(F64)(y)))
#endif
const F32 GRAVITY = -9.8f;
// mathematical constants
const F32 F_PI = 3.1415926535897932384626433832795f;
const F32 F_TWO_PI = 6.283185307179586476925286766559f;
const F32 F_PI_BY_TWO = 1.5707963267948966192313216916398f;
const F32 F_SQRT2 = 1.4142135623730950488016887242097f;
const F32 F_SQRT3 = 1.73205080756888288657986402541f;
const F32 OO_SQRT2 = 0.7071067811865475244008443621049f;
const F32 DEG_TO_RAD = 0.017453292519943295769236907684886f;
const F32 RAD_TO_DEG = 57.295779513082320876798154814105f;
const F32 F_APPROXIMATELY_ZERO = 0.00001f;
const F32 F_LN2 = 0.69314718056f;
const F32 OO_LN2 = 1.4426950408889634073599246810019f;
// BUG: Eliminate in favor of F_APPROXIMATELY_ZERO above?
const F32 FP_MAG_THRESHOLD = 0.0000001f;
// TODO: Replace with logic like is_approx_equal
inline BOOL is_approx_zero( F32 f ) { return (-F_APPROXIMATELY_ZERO < f) && (f < F_APPROXIMATELY_ZERO); }
inline BOOL is_approx_equal(F32 x, F32 y)
{
const S32 COMPARE_MANTISSA_UP_TO_BIT = 0x02;
return (std::abs((S32) ((U32&)x - (U32&)y) ) < COMPARE_MANTISSA_UP_TO_BIT);
}
inline BOOL is_approx_equal(F64 x, F64 y)
{
const S64 COMPARE_MANTISSA_UP_TO_BIT = 0x02;
return (std::abs((S32) ((U64&)x - (U64&)y) ) < COMPARE_MANTISSA_UP_TO_BIT);
}
inline BOOL is_approx_equal_fraction(F32 x, F32 y, U32 frac_bits)
{
BOOL ret = TRUE;
F32 diff = (F32) fabs(x - y);
S32 diffInt = (S32) diff;
S32 diffFracTolerance = (S32) ((diff - (F32) diffInt) * (1 << frac_bits));
// if integer portion is not equal, not enough bits were used for packing
// so error out since either the use case is not correct OR there is
// an issue with pack/unpack. should fail in either case.
// for decimal portion, make sure that the delta is no more than 1
// based on the number of bits used for packing decimal portion.
if (diffInt != 0 || diffFracTolerance > 1)
{
ret = FALSE;
}
return ret;
}
inline BOOL is_approx_equal_fraction(F64 x, F64 y, U32 frac_bits)
{
BOOL ret = TRUE;
F64 diff = (F64) fabs(x - y);
S32 diffInt = (S32) diff;
S32 diffFracTolerance = (S32) ((diff - (F64) diffInt) * (1 << frac_bits));
// if integer portion is not equal, not enough bits were used for packing
// so error out since either the use case is not correct OR there is
// an issue with pack/unpack. should fail in either case.
// for decimal portion, make sure that the delta is no more than 1
// based on the number of bits used for packing decimal portion.
if (diffInt != 0 || diffFracTolerance > 1)
{
ret = FALSE;
}
return ret;
}
inline S32 llabs(const S32 a)
{
return S32(std::labs(a));
}
inline F32 llabs(const F32 a)
{
return F32(std::fabs(a));
}
inline F64 llabs(const F64 a)
{
return F64(std::fabs(a));
}
inline S32 lltrunc( F32 f )
{
#if LL_WINDOWS && !defined( __INTEL_COMPILER )
// Avoids changing the floating point control word.
// Add or subtract 0.5 - epsilon and then round
const static U32 zpfp[] = { 0xBEFFFFFF, 0x3EFFFFFF };
S32 result;
__asm {
fld f
mov eax, f
shr eax, 29
and eax, 4
fadd dword ptr [zpfp + eax]
fistp result
}
return result;
#else
return (S32)f;
#endif
}
inline S32 lltrunc( F64 f )
{
return (S32)f;
}
inline S32 llfloor( F32 f )
{
#if LL_WINDOWS && !defined( __INTEL_COMPILER )
// Avoids changing the floating point control word.
// Accurate (unlike Stereopsis version) for all values between S32_MIN and S32_MAX and slightly faster than Stereopsis version.
// Add -(0.5 - epsilon) and then round
const U32 zpfp = 0xBEFFFFFF;
S32 result;
__asm {
fld f
fadd dword ptr [zpfp]
fistp result
}
return result;
#else
return (S32)floor(f);
#endif
}
inline S32 llceil( F32 f )
{
// This could probably be optimized, but this works.
return (S32)ceil(f);
}
#ifndef BOGUS_ROUND
// Use this round. Does an arithmetic round (0.5 always rounds up)
inline S32 llround(const F32 val)
{
return llfloor(val + 0.5f);
}
#else // BOGUS_ROUND
// Old llround implementation - does banker's round (toward nearest even in the case of a 0.5.
// Not using this because we don't have a consistent implementation on both platforms, use
// llfloor(val + 0.5f), which is consistent on all platforms.
inline S32 llround(const F32 val)
{
#if LL_WINDOWS
// Note: assumes that the floating point control word is set to rounding mode (the default)
S32 ret_val;
_asm fld val
_asm fistp ret_val;
return ret_val;
#elif LL_LINUX
// Note: assumes that the floating point control word is set
// to rounding mode (the default)
S32 ret_val;
__asm__ __volatile__( "flds %1 \n\t"
"fistpl %0 \n\t"
: "=m" (ret_val)
: "m" (val) );
return ret_val;
#else
return llfloor(val + 0.5f);
#endif
}
// A fast arithmentic round on intel, from Laurent de Soras http://ldesoras.free.fr
inline int round_int(double x)
{
const float round_to_nearest = 0.5f;
int i;
__asm
{
fld x
fadd st, st (0)
fadd round_to_nearest
fistp i
sar i, 1
}
return (i);
}
#endif // BOGUS_ROUND
inline F32 llround( F32 val, F32 nearest )
{
return F32(floor(val * (1.0f / nearest) + 0.5f)) * nearest;
}
inline F64 llround( F64 val, F64 nearest )
{
return F64(floor(val * (1.0 / nearest) + 0.5)) * nearest;
}
// these provide minimum peak error
//
// avg error = -0.013049
// peak error = -31.4 dB
// RMS error = -28.1 dB
const F32 FAST_MAG_ALPHA = 0.960433870103f;
const F32 FAST_MAG_BETA = 0.397824734759f;
// these provide minimum RMS error
//
// avg error = 0.000003
// peak error = -32.6 dB
// RMS error = -25.7 dB
//
//const F32 FAST_MAG_ALPHA = 0.948059448969f;
//const F32 FAST_MAG_BETA = 0.392699081699f;
inline F32 fastMagnitude(F32 a, F32 b)
{
a = (a > 0) ? a : -a;
b = (b > 0) ? b : -b;
return(FAST_MAG_ALPHA * llmax(a,b) + FAST_MAG_BETA * llmin(a,b));
}
////////////////////
//
// Fast F32/S32 conversions
//
// Culled from www.stereopsis.com/FPU.html
const F64 LL_DOUBLE_TO_FIX_MAGIC = 68719476736.0*1.5; //2^36 * 1.5, (52-_shiftamt=36) uses limited precisicion to floor
const S32 LL_SHIFT_AMOUNT = 16; //16.16 fixed point representation,
// Endian dependent code
#ifdef LL_LITTLE_ENDIAN
#define LL_EXP_INDEX 1
#define LL_MAN_INDEX 0
#else
#define LL_EXP_INDEX 0
#define LL_MAN_INDEX 1
#endif
/* Deprecated: use llround(), lltrunc(), or llfloor() instead
// ================================================================================================
// Real2Int
// ================================================================================================
inline S32 F64toS32(F64 val)
{
val = val + LL_DOUBLE_TO_FIX_MAGIC;
return ((S32*)&val)[LL_MAN_INDEX] >> LL_SHIFT_AMOUNT;
}
// ================================================================================================
// Real2Int
// ================================================================================================
inline S32 F32toS32(F32 val)
{
return F64toS32 ((F64)val);
}
*/
////////////////////////////////////////////////
//
// Fast exp and log
//
// Implementation of fast exp() approximation (from a paper by Nicol N. Schraudolph
// http://www.inf.ethz.ch/~schraudo/pubs/exp.pdf
static union
{
double d;
struct
{
#ifdef LL_LITTLE_ENDIAN
S32 j, i;
#else
S32 i, j;
#endif
} n;
} LLECO; // not sure what the name means
#define LL_EXP_A (1048576 * OO_LN2) // use 1512775 for integer
#define LL_EXP_C (60801) // this value of C good for -4 < y < 4
#define LL_FAST_EXP(y) (LLECO.n.i = llround(F32(LL_EXP_A*(y))) + (1072693248 - LL_EXP_C), LLECO.d)
inline F32 llfastpow(const F32 x, const F32 y)
{
return (F32)(LL_FAST_EXP(y * log(x)));
}
inline F32 snap_to_sig_figs(F32 foo, S32 sig_figs)
{
// compute the power of ten
F32 bar = 1.f;
for (S32 i = 0; i < sig_figs; i++)
{
bar *= 10.f;
}
foo = (F32)llround(foo * bar);
// shift back
foo /= bar;
return foo;
}
inline F32 lerp(F32 a, F32 b, F32 u)
{
return a + ((b - a) * u);
}
inline F32 lerp2d(F32 x00, F32 x01, F32 x10, F32 x11, F32 u, F32 v)
{
F32 a = x00 + (x01-x00)*u;
F32 b = x10 + (x11-x10)*u;
F32 r = a + (b-a)*v;
return r;
}
inline F32 ramp(F32 x, F32 a, F32 b)
{
return (a == b) ? 0.0f : ((a - x) / (a - b));
}
inline F32 rescale(F32 x, F32 x1, F32 x2, F32 y1, F32 y2)
{
return lerp(y1, y2, ramp(x, x1, x2));
}
inline F32 clamp_rescale(F32 x, F32 x1, F32 x2, F32 y1, F32 y2)
{
if (y1 < y2)
{
return llclamp(rescale(x,x1,x2,y1,y2),y1,y2);
}
else
{
return llclamp(rescale(x,x1,x2,y1,y2),y2,y1);
}
}
inline F32 cubic_step( F32 x, F32 x0, F32 x1, F32 s0, F32 s1 )
{
if (x <= x0)
return s0;
if (x >= x1)
return s1;
F32 f = (x - x0) / (x1 - x0);
return s0 + (s1 - s0) * (f * f) * (3.0f - 2.0f * f);
}
inline F32 cubic_step( F32 x )
{
x = llclampf(x);
return (x * x) * (3.0f - 2.0f * x);
}
inline F32 quadratic_step( F32 x, F32 x0, F32 x1, F32 s0, F32 s1 )
{
if (x <= x0)
return s0;
if (x >= x1)
return s1;
F32 f = (x - x0) / (x1 - x0);
F32 f_squared = f * f;
return (s0 * (1.f - f_squared)) + ((s1 - s0) * f_squared);
}
inline F32 llsimple_angle(F32 angle)
{
while(angle <= -F_PI)
angle += F_TWO_PI;
while(angle > F_PI)
angle -= F_TWO_PI;
return angle;
}
//calculate the nearesr power of two number for val, bounded by max_power_two
inline U32 get_nearest_power_two(U32 val, U32 max_power_two)
{
if(!max_power_two)
{
max_power_two = 1 << 31 ;
}
if(max_power_two & (max_power_two - 1))
{
return 0 ;
}
for(; val < max_power_two ; max_power_two >>= 1) ;
return max_power_two ;
}
#endif