phoenix-firestorm/indra/newview/llsechandler_basic.cpp

1587 lines
47 KiB
C++

/**
* @file llsechandler_basic.cpp
* @brief Security API for services such as certificate handling
* secure local storage, etc.
*
* $LicenseInfo:firstyear=2003&license=viewergpl$
*
* Copyright (c) 2003-2000, Linden Research, Inc.
*
* Second Life Viewer Source Code
* The source code in this file ("Source Code") is provided by Linden Lab
* to you under the terms of the GNU General Public License, version 2.0
* ("GPL"), unless you have obtained a separate licensing agreement
* ("Other License"), formally executed by you and Linden Lab. Terms of
* the GPL can be found in doc/GPL-license.txt in this distribution, or
* online at http://secondlife.com/developers/opensource/gplv2
*
* There are special exceptions to the terms and conditions of the GPL as
* it is applied to this Source Code. View the full text of the exception
* in the file doc/FLOSS-exception.txt in this software distribution, or
* online at http://secondlife.com/developers/opensource/flossexception
*
LLS * By copying, modifying or distributing this software, you acknowledge
* that you have read and understood your obligations described above,
* and agree to abide by those obligations.
*
* ALL LINDEN LAB SOURCE CODE IS PROVIDED "AS IS." LINDEN LAB MAKES NO
* WARRANTIES, EXPRESS, IMPLIED OR OTHERWISE, REGARDING ITS ACCURACY,
* COMPLETENESS OR PERFORMANCE.
* $/LicenseInfo$
*/
#include "llviewerprecompiledheaders.h"
#include "llsecapi.h"
#include "llsechandler_basic.h"
#include "llsdserialize.h"
#include "llviewernetwork.h"
#include "llxorcipher.h"
#include "llfile.h"
#include "lldir.h"
#include "llviewercontrol.h"
#include <vector>
#include <ios>
#include <openssl/ossl_typ.h>
#include <openssl/x509.h>
#include <openssl/x509v3.h>
#include <openssl/pem.h>
#include <openssl/asn1.h>
#include <openssl/rand.h>
#include <openssl/err.h>
#include <iostream>
#include <iomanip>
#include <time.h>
// 128 bits of salt data...
#define STORE_SALT_SIZE 16
#define BUFFER_READ_SIZE 256
std::string cert_string_from_asn1_string(ASN1_STRING* value);
std::string cert_string_from_octet_string(ASN1_OCTET_STRING* value);
LLSD _basic_constraints_ext(X509* cert);
LLSD _key_usage_ext(X509* cert);
LLSD _ext_key_usage_ext(X509* cert);
LLSD _subject_key_identifier_ext(X509 *cert);
LLSD _authority_key_identifier_ext(X509* cert);
LLBasicCertificate::LLBasicCertificate(const std::string& pem_cert)
{
// BIO_new_mem_buf returns a read only bio, but takes a void* which isn't const
// so we need to cast it.
BIO * pem_bio = BIO_new_mem_buf((void*)pem_cert.c_str(), pem_cert.length());
if(pem_bio == NULL)
{
LL_WARNS("SECAPI") << "Could not allocate an openssl memory BIO." << LL_ENDL;
throw LLInvalidCertificate(this);
}
mCert = NULL;
PEM_read_bio_X509(pem_bio, &mCert, 0, NULL);
BIO_free(pem_bio);
if (!mCert)
{
throw LLInvalidCertificate(this);
}
_initLLSD();
}
LLBasicCertificate::LLBasicCertificate(X509* pCert)
{
if (!pCert || !pCert->cert_info)
{
throw LLInvalidCertificate(this);
}
mCert = X509_dup(pCert);
_initLLSD();
}
LLBasicCertificate::~LLBasicCertificate()
{
if(mCert)
{
X509_free(mCert);
}
}
//
// retrieve the pem using the openssl functionality
std::string LLBasicCertificate::getPem() const
{
char * pem_bio_chars = NULL;
// a BIO is the equivalent of a 'std::stream', and
// can be a file, mem stream, whatever. Grab a memory based
// BIO for the result
BIO *pem_bio = BIO_new(BIO_s_mem());
if (!pem_bio)
{
LL_WARNS("SECAPI") << "Could not allocate an openssl memory BIO." << LL_ENDL;
return std::string();
}
PEM_write_bio_X509(pem_bio, mCert);
int length = BIO_get_mem_data(pem_bio, &pem_bio_chars);
std::string result = std::string(pem_bio_chars, length);
BIO_free(pem_bio);
return result;
}
// get the DER encoding for the cert
// DER is a binary encoding format for certs...
std::vector<U8> LLBasicCertificate::getBinary() const
{
U8 * der_bio_data = NULL;
// get a memory bio
BIO *der_bio = BIO_new(BIO_s_mem());
if (!der_bio)
{
LL_WARNS("SECAPI") << "Could not allocate an openssl memory BIO." << LL_ENDL;
return std::vector<U8>();
}
i2d_X509_bio(der_bio, mCert);
int length = BIO_get_mem_data(der_bio, &der_bio_data);
std::vector<U8> result(length);
// vectors are guranteed to be a contiguous chunk of memory.
memcpy(&result[0], der_bio_data, length);
BIO_free(der_bio);
return result;
}
LLSD LLBasicCertificate::getLLSD() const
{
return mLLSDInfo;
}
// Initialize the LLSD info for the certificate
LLSD& LLBasicCertificate::_initLLSD()
{
// call the various helpers to build the LLSD
mLLSDInfo[CERT_SUBJECT_NAME] = cert_name_from_X509_NAME(X509_get_subject_name(mCert));
mLLSDInfo[CERT_ISSUER_NAME] = cert_name_from_X509_NAME(X509_get_issuer_name(mCert));
mLLSDInfo[CERT_SUBJECT_NAME_STRING] = cert_string_name_from_X509_NAME(X509_get_subject_name(mCert));
mLLSDInfo[CERT_ISSUER_NAME_STRING] = cert_string_name_from_X509_NAME(X509_get_issuer_name(mCert));
ASN1_INTEGER *sn = X509_get_serialNumber(mCert);
if (sn != NULL)
{
mLLSDInfo[CERT_SERIAL_NUMBER] = cert_string_from_asn1_integer(sn);
}
mLLSDInfo[CERT_VALID_TO] = cert_date_from_asn1_time(X509_get_notAfter(mCert));
mLLSDInfo[CERT_VALID_FROM] = cert_date_from_asn1_time(X509_get_notBefore(mCert));
mLLSDInfo[CERT_SHA1_DIGEST] = cert_get_digest("sha1", mCert);
mLLSDInfo[CERT_MD5_DIGEST] = cert_get_digest("md5", mCert);
// add the known extensions
mLLSDInfo[CERT_BASIC_CONSTRAINTS] = _basic_constraints_ext(mCert);
mLLSDInfo[CERT_KEY_USAGE] = _key_usage_ext(mCert);
mLLSDInfo[CERT_EXTENDED_KEY_USAGE] = _ext_key_usage_ext(mCert);
mLLSDInfo[CERT_SUBJECT_KEY_IDENTFIER] = _subject_key_identifier_ext(mCert);
mLLSDInfo[CERT_AUTHORITY_KEY_IDENTIFIER] = _authority_key_identifier_ext(mCert);
return mLLSDInfo;
}
// Retrieve the basic constraints info
LLSD _basic_constraints_ext(X509* cert)
{
LLSD result;
BASIC_CONSTRAINTS *bs = (BASIC_CONSTRAINTS *)X509_get_ext_d2i(cert, NID_basic_constraints, NULL, NULL);
if(bs)
{
result = LLSD::emptyMap();
// Determines whether the cert can be used as a CA
result[CERT_BASIC_CONSTRAINTS_CA] = (bool)bs->ca;
if(bs->pathlen)
{
// the pathlen determines how deep a certificate chain can be from
// this CA
if((bs->pathlen->type == V_ASN1_NEG_INTEGER)
|| !bs->ca)
{
result[CERT_BASIC_CONSTRAINTS_PATHLEN] = 0;
}
else
{
result[CERT_BASIC_CONSTRAINTS_PATHLEN] = (int)ASN1_INTEGER_get(bs->pathlen);
}
}
}
return result;
}
// retrieve the key usage, which specifies how the cert can be used.
//
LLSD _key_usage_ext(X509* cert)
{
LLSD result;
ASN1_STRING *usage_str = (ASN1_STRING *)X509_get_ext_d2i(cert, NID_key_usage, NULL, NULL);
if(usage_str)
{
result = LLSD::emptyArray();
long usage = 0;
if(usage_str->length > 0)
{
usage = usage_str->data[0];
if(usage_str->length > 1)
{
usage |= usage_str->data[1] << 8;
}
}
ASN1_STRING_free(usage_str);
if(usage)
{
if(usage & KU_DIGITAL_SIGNATURE) result.append(LLSD((std::string)CERT_KU_DIGITAL_SIGNATURE));
if(usage & KU_NON_REPUDIATION) result.append(LLSD((std::string)CERT_KU_NON_REPUDIATION));
if(usage & KU_KEY_ENCIPHERMENT) result.append(LLSD((std::string)CERT_KU_KEY_ENCIPHERMENT));
if(usage & KU_DATA_ENCIPHERMENT) result.append(LLSD((std::string)CERT_KU_DATA_ENCIPHERMENT));
if(usage & KU_KEY_AGREEMENT) result.append(LLSD((std::string)CERT_KU_KEY_AGREEMENT));
if(usage & KU_KEY_CERT_SIGN) result.append(LLSD((std::string)CERT_KU_CERT_SIGN));
if(usage & KU_CRL_SIGN) result.append(LLSD((std::string)CERT_KU_CRL_SIGN));
if(usage & KU_ENCIPHER_ONLY) result.append(LLSD((std::string)CERT_KU_ENCIPHER_ONLY));
if(usage & KU_DECIPHER_ONLY) result.append(LLSD((std::string)CERT_KU_DECIPHER_ONLY));
}
}
return result;
}
// retrieve the extended key usage for the cert
LLSD _ext_key_usage_ext(X509* cert)
{
LLSD result;
EXTENDED_KEY_USAGE *eku = (EXTENDED_KEY_USAGE *)X509_get_ext_d2i(cert, NID_ext_key_usage, NULL, NULL);
if(eku)
{
result = LLSD::emptyArray();
while(sk_ASN1_OBJECT_num(eku))
{
ASN1_OBJECT *usage = sk_ASN1_OBJECT_pop(eku);
if(usage)
{
int nid = OBJ_obj2nid(usage);
if (nid)
{
std::string sn = OBJ_nid2sn(nid);
result.append(sn);
}
ASN1_OBJECT_free(usage);
}
}
}
return result;
}
// retrieve the subject key identifier of the cert
LLSD _subject_key_identifier_ext(X509 *cert)
{
LLSD result;
ASN1_OCTET_STRING *skeyid = (ASN1_OCTET_STRING *)X509_get_ext_d2i(cert, NID_subject_key_identifier, NULL, NULL);
if(skeyid)
{
result = cert_string_from_octet_string(skeyid);
}
return result;
}
// retrieve the authority key identifier of the cert
LLSD _authority_key_identifier_ext(X509* cert)
{
LLSD result;
AUTHORITY_KEYID *akeyid = (AUTHORITY_KEYID *)X509_get_ext_d2i(cert, NID_authority_key_identifier, NULL, NULL);
if(akeyid)
{
result = LLSD::emptyMap();
if(akeyid->keyid)
{
result[CERT_AUTHORITY_KEY_IDENTIFIER_ID] = cert_string_from_octet_string(akeyid->keyid);
}
if(akeyid->serial)
{
result[CERT_AUTHORITY_KEY_IDENTIFIER_SERIAL] = cert_string_from_asn1_integer(akeyid->serial);
}
}
// we ignore the issuer name in the authority key identifier, we check the issue name via
// the the issuer name entry in the cert.
return result;
}
// retrieve an openssl x509 object,
// which must be freed by X509_free
X509* LLBasicCertificate::getOpenSSLX509() const
{
return X509_dup(mCert);
}
// generate a single string containing the subject or issuer
// name of the cert.
std::string cert_string_name_from_X509_NAME(X509_NAME* name)
{
char * name_bio_chars = NULL;
// get a memory bio
BIO *name_bio = BIO_new(BIO_s_mem());
// stream the name into the bio. The name will be in the 'short name' format
X509_NAME_print_ex(name_bio, name, 0, XN_FLAG_RFC2253);
int length = BIO_get_mem_data(name_bio, &name_bio_chars);
std::string result = std::string(name_bio_chars, length);
BIO_free(name_bio);
return result;
}
// generate an LLSD from a certificate name (issuer or subject name).
// the name will be strings indexed by the 'long form'
LLSD cert_name_from_X509_NAME(X509_NAME* name)
{
LLSD result = LLSD::emptyMap();
int name_entries = X509_NAME_entry_count(name);
for (int entry_index=0; entry_index < name_entries; entry_index++)
{
char buffer[32];
X509_NAME_ENTRY *entry = X509_NAME_get_entry(name, entry_index);
std::string name_value = std::string((const char*)M_ASN1_STRING_data(X509_NAME_ENTRY_get_data(entry)),
M_ASN1_STRING_length(X509_NAME_ENTRY_get_data(entry)));
ASN1_OBJECT* name_obj = X509_NAME_ENTRY_get_object(entry);
OBJ_obj2txt(buffer, sizeof(buffer), name_obj, 0);
std::string obj_buffer_str = std::string(buffer);
result[obj_buffer_str] = name_value;
}
return result;
}
// Generate a string from an ASN1 integer. ASN1 Integers are
// bignums, so they can be 'infinitely' long, therefore we
// cannot simply use a conversion to U64 or something.
// We retrieve as a readable string for UI
std::string cert_string_from_asn1_integer(ASN1_INTEGER* value)
{
std::string result;
BIGNUM *bn = ASN1_INTEGER_to_BN(value, NULL);
if(bn)
{
char * ascii_bn = BN_bn2hex(bn);
if(ascii_bn)
{
result = ascii_bn;
OPENSSL_free(ascii_bn);
}
BN_free(bn);
}
return result;
}
// Generate a string from an OCTET string.
// we retrieve as a
std::string cert_string_from_octet_string(ASN1_OCTET_STRING* value)
{
std::stringstream result;
result << std::hex << std::setprecision(2);
for (int i=0; i < value->length; i++)
{
if (i != 0)
{
result << ":";
}
result << std::setfill('0') << std::setw(2) << (int)value->data[i];
}
return result.str();
}
// Generate a string from an ASN1 integer. ASN1 Integers are
// bignums, so they can be 'infinitely' long, therefore we
// cannot simply use a conversion to U64 or something.
// We retrieve as a readable string for UI
std::string cert_string_from_asn1_string(ASN1_STRING* value)
{
char * string_bio_chars = NULL;
std::string result;
// get a memory bio
BIO *string_bio = BIO_new(BIO_s_mem());
if(!string_bio)
{
// stream the name into the bio. The name will be in the 'short name' format
ASN1_STRING_print_ex(string_bio, value, ASN1_STRFLGS_RFC2253);
int length = BIO_get_mem_data(string_bio, &string_bio_chars);
result = std::string(string_bio_chars, length);
BIO_free(string_bio);
}
else
{
LL_WARNS("SECAPI") << "Could not allocate an openssl memory BIO." << LL_ENDL;
}
return result;
}
// retrieve a date structure from an ASN1 time, for
// validity checking.
LLDate cert_date_from_asn1_time(ASN1_TIME* asn1_time)
{
struct tm timestruct = {0};
int i = asn1_time->length;
if (i < 10)
{
return LLDate();
}
// convert the date from the ASN1 time (which is a string in ZULU time), to
// a timeval.
timestruct.tm_year = (asn1_time->data[0]-'0') * 10 + (asn1_time->data[1]-'0');
/* Deal with Year 2000 */
if (timestruct.tm_year < 70)
timestruct.tm_year += 100;
timestruct.tm_mon = (asn1_time->data[2]-'0') * 10 + (asn1_time->data[3]-'0') - 1;
timestruct.tm_mday = (asn1_time->data[4]-'0') * 10 + (asn1_time->data[5]-'0');
timestruct.tm_hour = (asn1_time->data[6]-'0') * 10 + (asn1_time->data[7]-'0');
timestruct.tm_min = (asn1_time->data[8]-'0') * 10 + (asn1_time->data[9]-'0');
timestruct.tm_sec = (asn1_time->data[10]-'0') * 10 + (asn1_time->data[11]-'0');
#if LL_WINDOWS
return LLDate((F64)_mkgmtime(&timestruct));
#else // LL_WINDOWS
return LLDate((F64)timegm(&timestruct));
#endif // LL_WINDOWS
}
// Generate a string containing a digest. The digest time is 'ssh1' or
// 'md5', and the resulting string is of the form "aa:12:5c:' and so on
std::string cert_get_digest(const std::string& digest_type, X509 *cert)
{
unsigned char digest_data[BUFFER_READ_SIZE];
unsigned int len = sizeof(digest_data);
std::stringstream result;
const EVP_MD* digest = NULL;
// we could use EVP_get_digestbyname, but that requires initializer code which
// would require us to complicate things by plumbing it into the system.
if (digest_type == "md5")
{
digest = EVP_md5();
}
else if (digest_type == "sha1")
{
digest = EVP_sha1();
}
else
{
return std::string();
}
X509_digest(cert, digest, digest_data, &len);
result << std::hex << std::setprecision(2);
for (unsigned int i=0; i < len; i++)
{
if (i != 0)
{
result << ":";
}
result << std::setfill('0') << std::setw(2) << (int)digest_data[i];
}
return result.str();
}
// class LLBasicCertificateVector
// This class represents a list of certificates, implemented by a vector of certificate pointers.
// it contains implementations of the virtual functions for iterators, search, add, remove, etc.
//
// Find a certificate in the list.
// It will find a cert that has minimally the params listed, with the values being the same
LLBasicCertificateVector::iterator LLBasicCertificateVector::find(const LLSD& params)
{
BOOL found = FALSE;
// loop through the entire vector comparing the values in the certs
// against those passed in via the params.
// params should be a map. Only the items specified in the map will be
// checked, but they must match exactly, even if they're maps or arrays.
for(iterator cert = begin();
cert != end();
cert++)
{
found= TRUE;
LLSD cert_info = (*cert)->getLLSD();
for (LLSD::map_const_iterator param = params.beginMap();
param != params.endMap();
param++)
{
if (!cert_info.has((std::string)param->first) ||
(!valueCompareLLSD(cert_info[(std::string)param->first], param->second)))
{
found = FALSE;
break;
}
}
if (found)
{
return (cert);
}
}
return end();
}
// Insert a certificate into the store. If the certificate already
// exists in the store, nothing is done.
void LLBasicCertificateVector::insert(iterator _iter,
LLPointer<LLCertificate> cert)
{
LLSD cert_info = cert->getLLSD();
if (cert_info.isMap() && cert_info.has(CERT_SHA1_DIGEST))
{
LLSD existing_cert_info = LLSD::emptyMap();
existing_cert_info[CERT_MD5_DIGEST] = cert_info[CERT_MD5_DIGEST];
if(find(existing_cert_info) == end())
{
BasicIteratorImpl *basic_iter = dynamic_cast<BasicIteratorImpl*>(_iter.mImpl.get());
mCerts.insert(basic_iter->mIter, cert);
}
}
}
// remove a certificate from the store
LLPointer<LLCertificate> LLBasicCertificateVector::erase(iterator _iter)
{
if (_iter != end())
{
BasicIteratorImpl *basic_iter = dynamic_cast<BasicIteratorImpl*>(_iter.mImpl.get());
LLPointer<LLCertificate> result = (*_iter);
mCerts.erase(basic_iter->mIter);
return result;
}
return NULL;
}
//
// LLBasicCertificateStore
// This class represents a store of CA certificates. The basic implementation
// uses a pem file such as the legacy CA.pem stored in the existing
// SL implementation.
LLBasicCertificateStore::LLBasicCertificateStore(const std::string& filename)
{
mFilename = filename;
load_from_file(filename);
}
void LLBasicCertificateStore::load_from_file(const std::string& filename)
{
// scan the PEM file extracting each certificate
BIO* file_bio = BIO_new(BIO_s_file());
if(file_bio)
{
if (BIO_read_filename(file_bio, filename.c_str()) > 0)
{
X509 *cert_x509 = NULL;
while((PEM_read_bio_X509(file_bio, &cert_x509, 0, NULL)) &&
(cert_x509 != NULL))
{
try
{
add(new LLBasicCertificate(cert_x509));
}
catch (...)
{
LL_WARNS("SECAPI") << "Failure creating certificate from the certificate store file." << LL_ENDL;
}
X509_free(cert_x509);
cert_x509 = NULL;
}
BIO_free(file_bio);
}
}
else
{
LL_WARNS("SECAPI") << "Could not allocate a file BIO" << LL_ENDL;
}
}
LLBasicCertificateStore::~LLBasicCertificateStore()
{
}
// persist the store
void LLBasicCertificateStore::save()
{
llofstream file_store(mFilename, llofstream::binary);
if(!file_store.fail())
{
for(iterator cert = begin();
cert != end();
cert++)
{
std::string pem = (*cert)->getPem();
if(!pem.empty())
{
file_store << (*cert)->getPem() << std::endl;
}
}
file_store.close();
}
else
{
LL_WARNS("SECAPI") << "Could not open certificate store " << mFilename << "for save" << LL_ENDL;
}
}
// return the store id
std::string LLBasicCertificateStore::storeId() const
{
// this is the basic handler which uses the CA.pem store,
// so we ignore this.
return std::string("");
}
//
// LLBasicCertificateChain
// This class represents a chain of certs, each cert being signed by the next cert
// in the chain. Certs must be properly signed by the parent
LLBasicCertificateChain::LLBasicCertificateChain(const X509_STORE_CTX* store)
{
// we're passed in a context, which contains a cert, and a blob of untrusted
// certificates which compose the chain.
if((store == NULL) || (store->cert == NULL))
{
LL_WARNS("SECAPI") << "An invalid store context was passed in when trying to create a certificate chain" << LL_ENDL;
return;
}
// grab the child cert
LLPointer<LLCertificate> current = new LLBasicCertificate(store->cert);
add(current);
if(store->untrusted != NULL)
{
// if there are other certs in the chain, we build up a vector
// of untrusted certs so we can search for the parents of each
// consecutive cert.
LLBasicCertificateVector untrusted_certs;
for(int i = 0; i < sk_X509_num(store->untrusted); i++)
{
LLPointer<LLCertificate> cert = new LLBasicCertificate(sk_X509_value(store->untrusted, i));
untrusted_certs.add(cert);
}
while(untrusted_certs.size() > 0)
{
LLSD find_data = LLSD::emptyMap();
LLSD cert_data = current->getLLSD();
// we simply build the chain via subject/issuer name as the
// client should not have passed in multiple CA's with the same
// subject name. If they did, it'll come out in the wash during
// validation.
find_data[CERT_SUBJECT_NAME_STRING] = cert_data[CERT_ISSUER_NAME_STRING];
LLBasicCertificateVector::iterator issuer = untrusted_certs.find(find_data);
if (issuer != untrusted_certs.end())
{
current = untrusted_certs.erase(issuer);
add(current);
}
else
{
break;
}
}
}
}
// subdomain wildcard specifiers can be divided into 3 parts
// the part before the first *, the part after the first * but before
// the second *, and the part after the second *.
// It then iterates over the second for each place in the string
// that it matches. ie if the subdomain was testfoofoobar, and
// the wildcard was test*foo*bar, it would match test, then
// recursively match foofoobar and foobar
bool _cert_subdomain_wildcard_match(const std::string& subdomain,
const std::string& wildcard)
{
// split wildcard into the portion before the *, and the portion after
int wildcard_pos = wildcard.find_first_of('*');
// check the case where there is no wildcard.
if(wildcard_pos == wildcard.npos)
{
return (subdomain == wildcard);
}
// we need to match the first part of the subdomain string up to the wildcard
// position
if(subdomain.substr(0, wildcard_pos) != wildcard.substr(0, wildcard_pos))
{
// the first portions of the strings didn't match
return FALSE;
}
// as the portion of the wildcard string before the * matched, we need to check the
// portion afterwards. Grab that portion.
std::string new_wildcard_string = wildcard.substr( wildcard_pos+1, wildcard.npos);
if(new_wildcard_string.empty())
{
// we had nothing after the *, so it's an automatic match
return TRUE;
}
// grab the portion of the remaining wildcard string before the next '*'. We need to find this
// within the remaining subdomain string. and then recursively check.
std::string new_wildcard_match_string = new_wildcard_string.substr(0, new_wildcard_string.find_first_of('*'));
// grab the portion of the subdomain after the part that matched the initial wildcard portion
std::string new_subdomain = subdomain.substr(wildcard_pos, subdomain.npos);
// iterate through the current subdomain, finding instances of the match string.
int sub_pos = new_subdomain.find_first_of(new_wildcard_match_string);
while(sub_pos != std::string::npos)
{
new_subdomain = new_subdomain.substr(sub_pos, std::string::npos);
if(_cert_subdomain_wildcard_match(new_subdomain, new_wildcard_string))
{
return TRUE;
}
sub_pos = new_subdomain.find_first_of(new_wildcard_match_string, 1);
}
// didn't find any instances of the match string that worked in the subdomain, so fail.
return FALSE;
}
// RFC2459 does not address wildcards as part of it's name matching
// specification, and there is no RFC specifying wildcard matching,
// RFC2818 does a few statements about wildcard matching, but is very
// general. Generally, wildcard matching is per implementation, although
// it's pretty similar.
// in our case, we use the '*' wildcard character only, within each
// subdomain. The hostname and the CN specification should have the
// same number of subdomains.
// We then iterate that algorithm over each subdomain.
bool _cert_hostname_wildcard_match(const std::string& hostname, const std::string& common_name)
{
std::string new_hostname = hostname;
std::string new_cn = common_name;
int subdomain_pos = new_hostname.find_first_of('.');
int subcn_pos = new_cn.find_first_of('.');
while((subcn_pos != std::string::npos) && (subdomain_pos != std::string::npos))
{
// snip out the first subdomain and cn element
if(!_cert_subdomain_wildcard_match(new_hostname.substr(0, subdomain_pos),
new_cn.substr(0, subcn_pos)))
{
return FALSE;
}
new_hostname = new_hostname.substr(subdomain_pos+1, std::string::npos);
new_cn = new_cn.substr(subcn_pos+1, std::string::npos);
subdomain_pos = new_hostname.find_first_of('.');
subcn_pos = new_cn.find_first_of('.');
}
return _cert_subdomain_wildcard_match(new_hostname, new_cn);
}
// validate that the LLSD array in llsd_set contains the llsd_value
bool _LLSDArrayIncludesValue(const LLSD& llsd_set, LLSD llsd_value)
{
for(LLSD::array_const_iterator set_value = llsd_set.beginArray();
set_value != llsd_set.endArray();
set_value++)
{
if(valueCompareLLSD((*set_value), llsd_value))
{
return TRUE;
}
}
return FALSE;
}
void _validateCert(int validation_policy,
const LLPointer<LLCertificate> cert,
const LLSD& validation_params,
int depth)
{
LLSD current_cert_info = cert->getLLSD();
// check basic properties exist in the cert
if(!current_cert_info.has(CERT_SUBJECT_NAME) || !current_cert_info.has(CERT_SUBJECT_NAME_STRING))
{
throw LLCertException(cert, "Cert doesn't have a Subject Name");
}
if(!current_cert_info.has(CERT_ISSUER_NAME_STRING))
{
throw LLCertException(cert, "Cert doesn't have an Issuer Name");
}
// check basic properties exist in the cert
if(!current_cert_info.has(CERT_VALID_FROM) || !current_cert_info.has(CERT_VALID_TO))
{
throw LLCertException(cert, "Cert doesn't have an expiration period");
}
if (!current_cert_info.has(CERT_SHA1_DIGEST))
{
throw LLCertException(cert, "No SHA1 digest");
}
if (validation_policy & VALIDATION_POLICY_TIME)
{
LLDate validation_date(time(NULL));
if(validation_params.has(CERT_VALIDATION_DATE))
{
validation_date = validation_params[CERT_VALIDATION_DATE];
}
if((validation_date < current_cert_info[CERT_VALID_FROM].asDate()) ||
(validation_date > current_cert_info[CERT_VALID_TO].asDate()))
{
throw LLCertValidationExpirationException(cert, validation_date);
}
}
if (validation_policy & VALIDATION_POLICY_SSL_KU)
{
if (current_cert_info.has(CERT_KEY_USAGE) && current_cert_info[CERT_KEY_USAGE].isArray() &&
(!(_LLSDArrayIncludesValue(current_cert_info[CERT_KEY_USAGE],
LLSD((std::string)CERT_KU_DIGITAL_SIGNATURE))) ||
!(_LLSDArrayIncludesValue(current_cert_info[CERT_KEY_USAGE],
LLSD((std::string)CERT_KU_KEY_ENCIPHERMENT)))))
{
throw LLCertKeyUsageValidationException(cert);
}
// only validate EKU if the cert has it
if(current_cert_info.has(CERT_EXTENDED_KEY_USAGE) && current_cert_info[CERT_EXTENDED_KEY_USAGE].isArray() &&
(!_LLSDArrayIncludesValue(current_cert_info[CERT_EXTENDED_KEY_USAGE],
LLSD((std::string)CERT_EKU_SERVER_AUTH))))
{
throw LLCertKeyUsageValidationException(cert);
}
}
if (validation_policy & VALIDATION_POLICY_CA_KU)
{
if (current_cert_info.has(CERT_KEY_USAGE) && current_cert_info[CERT_KEY_USAGE].isArray() &&
(!_LLSDArrayIncludesValue(current_cert_info[CERT_KEY_USAGE],
(std::string)CERT_KU_CERT_SIGN)))
{
throw LLCertKeyUsageValidationException(cert);
}
}
// validate basic constraints
if ((validation_policy & VALIDATION_POLICY_CA_BASIC_CONSTRAINTS) &&
current_cert_info.has(CERT_BASIC_CONSTRAINTS) &&
current_cert_info[CERT_BASIC_CONSTRAINTS].isMap())
{
if(!current_cert_info[CERT_BASIC_CONSTRAINTS].has(CERT_BASIC_CONSTRAINTS_CA) ||
!current_cert_info[CERT_BASIC_CONSTRAINTS][CERT_BASIC_CONSTRAINTS_CA])
{
throw LLCertBasicConstraintsValidationException(cert);
}
if (current_cert_info[CERT_BASIC_CONSTRAINTS].has(CERT_BASIC_CONSTRAINTS_PATHLEN) &&
((current_cert_info[CERT_BASIC_CONSTRAINTS][CERT_BASIC_CONSTRAINTS_PATHLEN].asInteger() != 0) &&
(depth > current_cert_info[CERT_BASIC_CONSTRAINTS][CERT_BASIC_CONSTRAINTS_PATHLEN].asInteger())))
{
throw LLCertBasicConstraintsValidationException(cert);
}
}
}
bool _verify_signature(LLPointer<LLCertificate> parent,
LLPointer<LLCertificate> child)
{
bool verify_result = FALSE;
LLSD cert1 = parent->getLLSD();
LLSD cert2 = child->getLLSD();
X509 *signing_cert = parent->getOpenSSLX509();
X509 *child_cert = child->getOpenSSLX509();
if((signing_cert != NULL) && (child_cert != NULL))
{
EVP_PKEY *pkey = X509_get_pubkey(signing_cert);
if(pkey)
{
int verify_code = X509_verify(child_cert, pkey);
verify_result = ( verify_code > 0);
EVP_PKEY_free(pkey);
}
else
{
LL_WARNS("SECAPI") << "Could not validate the cert chain signature, as the public key of the signing cert could not be retrieved" << LL_ENDL;
}
}
else
{
LL_WARNS("SECAPI") << "Signature verification failed as there are no certs in the chain" << LL_ENDL;
}
if(child_cert)
{
X509_free(child_cert);
}
if(signing_cert)
{
X509_free(signing_cert);
}
return verify_result;
}
// validate the certificate chain against a store.
// There are many aspects of cert validatioin policy involved in
// trust validation. The policies in this validation algorithm include
// * Hostname matching for SSL certs
// * Expiration time matching
// * Signature validation
// * Chain trust (is the cert chain trusted against the store)
// * Basic constraints
// * key usage and extended key usage
// TODO: We should add 'authority key identifier' for chaining.
// This algorithm doesn't simply validate the chain by itself
// and verify the last cert is in the certificate store, or points
// to a cert in the store. It validates whether any cert in the chain
// is trusted in the store, even if it's not the last one.
void LLBasicCertificateChain::validate(int validation_policy,
LLPointer<LLCertificateStore> ca_store,
const LLSD& validation_params)
{
if(size() < 1)
{
throw LLCertException(NULL, "No certs in chain");
}
iterator current_cert = begin();
LLSD current_cert_info = (*current_cert)->getLLSD();
LLSD validation_date;
if (validation_params.has(CERT_VALIDATION_DATE))
{
validation_date = validation_params[CERT_VALIDATION_DATE];
}
if (validation_policy & VALIDATION_POLICY_HOSTNAME)
{
if(!validation_params.has(CERT_HOSTNAME))
{
throw LLCertException((*current_cert), "No hostname passed in for validation");
}
if(!current_cert_info.has(CERT_SUBJECT_NAME) || !current_cert_info[CERT_SUBJECT_NAME].has(CERT_NAME_CN))
{
throw LLInvalidCertificate((*current_cert));
}
LL_INFOS("SECAPI") << "Validating the hostname " << validation_params[CERT_HOSTNAME].asString() <<
"against the cert CN " << current_cert_info[CERT_SUBJECT_NAME][CERT_NAME_CN].asString() << LL_ENDL;
if(!_cert_hostname_wildcard_match(validation_params[CERT_HOSTNAME].asString(),
current_cert_info[CERT_SUBJECT_NAME][CERT_NAME_CN].asString()))
{
throw LLCertValidationHostnameException(validation_params[CERT_HOSTNAME].asString(),
(*current_cert));
}
}
int depth = 0;
LLPointer<LLCertificate> previous_cert;
// loop through the cert chain, validating the current cert against the next one.
while(current_cert != end())
{
int local_validation_policy = validation_policy;
if(current_cert == begin())
{
// for the child cert, we don't validate CA stuff
local_validation_policy &= ~(VALIDATION_POLICY_CA_KU |
VALIDATION_POLICY_CA_BASIC_CONSTRAINTS);
}
else
{
// for non-child certs, we don't validate SSL Key usage
local_validation_policy &= ~VALIDATION_POLICY_SSL_KU;
if(!_verify_signature((*current_cert),
previous_cert))
{
throw LLCertValidationInvalidSignatureException(previous_cert);
}
}
_validateCert(local_validation_policy,
(*current_cert),
validation_params,
depth);
// look for a CA in the CA store that may belong to this chain.
LLSD cert_llsd = (*current_cert)->getLLSD();
LLSD cert_search_params = LLSD::emptyMap();
// is the cert itself in the store?
cert_search_params[CERT_SHA1_DIGEST] = cert_llsd[CERT_SHA1_DIGEST];
LLCertificateStore::iterator found_store_cert = ca_store->find(cert_search_params);
if(found_store_cert != ca_store->end())
{
return;
}
// is the parent in the cert store?
cert_search_params = LLSD::emptyMap();
cert_search_params[CERT_SUBJECT_NAME_STRING] = cert_llsd[CERT_ISSUER_NAME_STRING];
if (cert_llsd.has(CERT_AUTHORITY_KEY_IDENTIFIER))
{
LLSD cert_aki = cert_llsd[CERT_AUTHORITY_KEY_IDENTIFIER];
if(cert_aki.has(CERT_AUTHORITY_KEY_IDENTIFIER_ID))
{
cert_search_params[CERT_SUBJECT_KEY_IDENTFIER] = cert_aki[CERT_AUTHORITY_KEY_IDENTIFIER_ID];
}
if(cert_aki.has(CERT_AUTHORITY_KEY_IDENTIFIER_SERIAL))
{
cert_search_params[CERT_SERIAL_NUMBER] = cert_aki[CERT_AUTHORITY_KEY_IDENTIFIER_SERIAL];
}
}
found_store_cert = ca_store->find(cert_search_params);
if(found_store_cert != ca_store->end())
{
LLSD foo = (*found_store_cert)->getLLSD();
// validate the store cert against the depth
_validateCert(validation_policy & VALIDATION_POLICY_CA_BASIC_CONSTRAINTS,
(*found_store_cert),
LLSD(),
depth);
// verify the signature of the CA
if(!_verify_signature((*found_store_cert),
(*current_cert)))
{
throw LLCertValidationInvalidSignatureException(*current_cert);
}
// successfully validated.
return;
}
previous_cert = (*current_cert);
current_cert++;
depth++;
}
if (validation_policy & VALIDATION_POLICY_TRUSTED)
{
LLPointer<LLCertificate> untrusted_ca_cert = (*this)[size()-1];
// we reached the end without finding a trusted cert.
throw LLCertValidationTrustException((*this)[size()-1]);
}
}
// LLSecAPIBasicHandler Class
// Interface handler class for the various security storage handlers.
// We read the file on construction, and write it on destruction. This
// means multiple processes cannot modify the datastore.
LLSecAPIBasicHandler::LLSecAPIBasicHandler(const std::string& protected_data_file,
const std::string& legacy_password_path)
{
mProtectedDataFilename = protected_data_file;
mProtectedDataMap = LLSD::emptyMap();
mLegacyPasswordPath = legacy_password_path;
}
LLSecAPIBasicHandler::LLSecAPIBasicHandler()
{
}
void LLSecAPIBasicHandler::init()
{
mProtectedDataMap = LLSD::emptyMap();
if (mProtectedDataFilename.length() == 0)
{
mProtectedDataFilename = gDirUtilp->getExpandedFilename(LL_PATH_USER_SETTINGS,
"bin_conf.dat");
mLegacyPasswordPath = gDirUtilp->getExpandedFilename(LL_PATH_USER_SETTINGS, "password.dat");
mProtectedDataFilename = gDirUtilp->getExpandedFilename(LL_PATH_USER_SETTINGS,
"bin_conf.dat");
std::string store_file = gDirUtilp->getExpandedFilename(LL_PATH_USER_SETTINGS,
"CA.pem");
// copy the CA file to a user writable location so we can manipulate it.
// for this provider, by using a user writable file, there is a risk that
// an attacking program can modify the file, but OS dependent providers
// will reduce that risk.
// by using a user file, modifications will be limited to one user if
// we read-only the main file
if (!LLFile::isfile(store_file))
{
std::string ca_file_path = gDirUtilp->getExpandedFilename(LL_PATH_APP_SETTINGS, "CA.pem");
llifstream ca_file(ca_file_path.c_str(), llifstream::binary | llifstream::in);
llofstream copied_store_file(store_file.c_str(), llofstream::binary | llofstream::out);
while(!ca_file.fail())
{
char buffer[BUFFER_READ_SIZE];
ca_file.read(buffer, sizeof(buffer));
copied_store_file.write(buffer, ca_file.gcount());
}
ca_file.close();
copied_store_file.close();
}
LL_INFOS("SECAPI") << "Loading certificate store from " << store_file << LL_ENDL;
mStore = new LLBasicCertificateStore(store_file);
}
_readProtectedData(); // initialize mProtectedDataMap
// may throw LLProtectedDataException if saved datamap is not decryptable
}
LLSecAPIBasicHandler::~LLSecAPIBasicHandler()
{
_writeProtectedData();
}
void LLSecAPIBasicHandler::_readProtectedData()
{
// attempt to load the file into our map
LLPointer<LLSDParser> parser = new LLSDXMLParser();
llifstream protected_data_stream(mProtectedDataFilename.c_str(),
llifstream::binary);
if (!protected_data_stream.fail()) {
int offset;
U8 salt[STORE_SALT_SIZE];
U8 buffer[BUFFER_READ_SIZE];
U8 decrypted_buffer[BUFFER_READ_SIZE];
int decrypted_length;
unsigned char MACAddress[MAC_ADDRESS_BYTES];
LLUUID::getNodeID(MACAddress);
LLXORCipher cipher(MACAddress, MAC_ADDRESS_BYTES);
// read in the salt and key
protected_data_stream.read((char *)salt, STORE_SALT_SIZE);
offset = 0;
if (protected_data_stream.gcount() < STORE_SALT_SIZE)
{
throw LLProtectedDataException("Config file too short.");
}
cipher.decrypt(salt, STORE_SALT_SIZE);
// totally lame. As we're not using the OS level protected data, we need to
// at least obfuscate the data. We do this by using a salt stored at the head of the file
// to encrypt the data, therefore obfuscating it from someone using simple existing tools.
// We do include the MAC address as part of the obfuscation, which would require an
// attacker to get the MAC address as well as the protected store, which improves things
// somewhat. It would be better to use the password, but as this store
// will be used to store the SL password when the user decides to have SL remember it,
// so we can't use that. OS-dependent store implementations will use the OS password/storage
// mechanisms and are considered to be more secure.
// We've a strong intent to move to OS dependent protected data stores.
// read in the rest of the file.
EVP_CIPHER_CTX ctx;
EVP_CIPHER_CTX_init(&ctx);
EVP_DecryptInit(&ctx, EVP_rc4(), salt, NULL);
// allocate memory:
std::string decrypted_data;
while(protected_data_stream.good()) {
// read data as a block:
protected_data_stream.read((char *)buffer, BUFFER_READ_SIZE);
EVP_DecryptUpdate(&ctx, decrypted_buffer, &decrypted_length,
buffer, protected_data_stream.gcount());
decrypted_data.append((const char *)decrypted_buffer, protected_data_stream.gcount());
}
// RC4 is a stream cipher, so we don't bother to EVP_DecryptFinal, as there is
// no block padding.
EVP_CIPHER_CTX_cleanup(&ctx);
std::istringstream parse_stream(decrypted_data);
if (parser->parse(parse_stream, mProtectedDataMap,
LLSDSerialize::SIZE_UNLIMITED) == LLSDParser::PARSE_FAILURE)
{
throw LLProtectedDataException("Config file cannot be decrypted.");
}
}
}
void LLSecAPIBasicHandler::_writeProtectedData()
{
std::ostringstream formatted_data_ostream;
U8 salt[STORE_SALT_SIZE];
U8 buffer[BUFFER_READ_SIZE];
U8 encrypted_buffer[BUFFER_READ_SIZE];
if(mProtectedDataMap.isUndefined())
{
LLFile::remove(mProtectedDataFilename);
return;
}
// create a string with the formatted data.
LLSDSerialize::toXML(mProtectedDataMap, formatted_data_ostream);
std::istringstream formatted_data_istream(formatted_data_ostream.str());
// generate the seed
RAND_bytes(salt, STORE_SALT_SIZE);
// write to a temp file so we don't clobber the initial file if there is
// an error.
std::string tmp_filename = mProtectedDataFilename + ".tmp";
llofstream protected_data_stream(tmp_filename.c_str(),
llofstream::binary);
try
{
EVP_CIPHER_CTX ctx;
EVP_CIPHER_CTX_init(&ctx);
EVP_EncryptInit(&ctx, EVP_rc4(), salt, NULL);
unsigned char MACAddress[MAC_ADDRESS_BYTES];
LLUUID::getNodeID(MACAddress);
LLXORCipher cipher(MACAddress, MAC_ADDRESS_BYTES);
cipher.encrypt(salt, STORE_SALT_SIZE);
protected_data_stream.write((const char *)salt, STORE_SALT_SIZE);
while (formatted_data_istream.good())
{
formatted_data_istream.read((char *)buffer, BUFFER_READ_SIZE);
if(formatted_data_istream.gcount() == 0)
{
break;
}
int encrypted_length;
EVP_EncryptUpdate(&ctx, encrypted_buffer, &encrypted_length,
buffer, formatted_data_istream.gcount());
protected_data_stream.write((const char *)encrypted_buffer, encrypted_length);
}
// no EVP_EncrypteFinal, as this is a stream cipher
EVP_CIPHER_CTX_cleanup(&ctx);
protected_data_stream.close();
}
catch (...)
{
// it's good practice to clean up any secure information on error
// (even though this file isn't really secure. Perhaps in the future
// it may be, however.
LLFile::remove(tmp_filename);
throw LLProtectedDataException("Error writing Protected Data Store");
}
// move the temporary file to the specified file location.
if((((LLFile::isfile(mProtectedDataFilename) != 0) &&
(LLFile::remove(mProtectedDataFilename) != 0))) ||
(LLFile::rename(tmp_filename, mProtectedDataFilename)))
{
LLFile::remove(tmp_filename);
throw LLProtectedDataException("Could not overwrite protected data store");
}
}
// instantiate a certificate from a pem string
LLPointer<LLCertificate> LLSecAPIBasicHandler::getCertificate(const std::string& pem_cert)
{
LLPointer<LLCertificate> result = new LLBasicCertificate(pem_cert);
return result;
}
// instiate a certificate from an openssl X509 structure
LLPointer<LLCertificate> LLSecAPIBasicHandler::getCertificate(X509* openssl_cert)
{
LLPointer<LLCertificate> result = new LLBasicCertificate(openssl_cert);
return result;
}
// instantiate a chain from an X509_STORE_CTX
LLPointer<LLCertificateChain> LLSecAPIBasicHandler::getCertificateChain(const X509_STORE_CTX* chain)
{
LLPointer<LLCertificateChain> result = new LLBasicCertificateChain(chain);
return result;
}
// instantiate a cert store given it's id. if a persisted version
// exists, it'll be loaded. If not, one will be created (but not
// persisted)
LLPointer<LLCertificateStore> LLSecAPIBasicHandler::getCertificateStore(const std::string& store_id)
{
return mStore;
}
// retrieve protected data
LLSD LLSecAPIBasicHandler::getProtectedData(const std::string& data_type,
const std::string& data_id)
{
if (mProtectedDataMap.has(data_type) &&
mProtectedDataMap[data_type].isMap() &&
mProtectedDataMap[data_type].has(data_id))
{
return mProtectedDataMap[data_type][data_id];
}
return LLSD();
}
void LLSecAPIBasicHandler::deleteProtectedData(const std::string& data_type,
const std::string& data_id)
{
if (mProtectedDataMap.has(data_type) &&
mProtectedDataMap[data_type].isMap() &&
mProtectedDataMap[data_type].has(data_id))
{
mProtectedDataMap[data_type].erase(data_id);
}
}
//
// persist data in a protected store
//
void LLSecAPIBasicHandler::setProtectedData(const std::string& data_type,
const std::string& data_id,
const LLSD& data)
{
if (!mProtectedDataMap.has(data_type) || !mProtectedDataMap[data_type].isMap()) {
mProtectedDataMap[data_type] = LLSD::emptyMap();
}
mProtectedDataMap[data_type][data_id] = data;
}
//
// Create a credential object from an identifier and authenticator. credentials are
// per grid.
LLPointer<LLCredential> LLSecAPIBasicHandler::createCredential(const std::string& grid,
const LLSD& identifier,
const LLSD& authenticator)
{
LLPointer<LLSecAPIBasicCredential> result = new LLSecAPIBasicCredential(grid);
result->setCredentialData(identifier, authenticator);
return result;
}
// Load a credential from the credential store, given the grid
LLPointer<LLCredential> LLSecAPIBasicHandler::loadCredential(const std::string& grid)
{
LLSD credential = getProtectedData("credential", grid);
LLPointer<LLSecAPIBasicCredential> result = new LLSecAPIBasicCredential(grid);
if(credential.isMap() &&
credential.has("identifier"))
{
LLSD identifier = credential["identifier"];
LLSD authenticator;
if (credential.has("authenticator"))
{
authenticator = credential["authenticator"];
}
result->setCredentialData(identifier, authenticator);
}
else
{
// credential was not in protected storage, so pull the credential
// from the legacy store.
std::string first_name = gSavedSettings.getString("FirstName");
std::string last_name = gSavedSettings.getString("LastName");
if ((first_name != "") &&
(last_name != ""))
{
LLSD identifier = LLSD::emptyMap();
LLSD authenticator;
identifier["type"] = "agent";
identifier["first_name"] = first_name;
identifier["last_name"] = last_name;
std::string legacy_password = _legacyLoadPassword();
if (legacy_password.length() > 0)
{
authenticator = LLSD::emptyMap();
authenticator["type"] = "hash";
authenticator["algorithm"] = "md5";
authenticator["secret"] = legacy_password;
}
result->setCredentialData(identifier, authenticator);
}
}
return result;
}
// Save the credential to the credential store. Save the authenticator also if requested.
// That feature is used to implement the 'remember password' functionality.
void LLSecAPIBasicHandler::saveCredential(LLPointer<LLCredential> cred, bool save_authenticator)
{
LLSD credential = LLSD::emptyMap();
credential["identifier"] = cred->getIdentifier();
if (save_authenticator)
{
credential["authenticator"] = cred->getAuthenticator();
}
LL_INFOS("SECAPI") << "Saving Credential " << cred->getGrid() << ":" << cred->userID() << " " << save_authenticator << LL_ENDL;
setProtectedData("credential", cred->getGrid(), credential);
//*TODO: If we're saving Agni credentials, should we write the
// credentials to the legacy password.dat/etc?
_writeProtectedData();
}
// Remove a credential from the credential store.
void LLSecAPIBasicHandler::deleteCredential(LLPointer<LLCredential> cred)
{
LLSD undefVal;
deleteProtectedData("credential", cred->getGrid());
cred->setCredentialData(undefVal, undefVal);
_writeProtectedData();
}
// load the legacy hash for agni, and decrypt it given the
// mac address
std::string LLSecAPIBasicHandler::_legacyLoadPassword()
{
const S32 HASHED_LENGTH = 32;
std::vector<U8> buffer(HASHED_LENGTH);
llifstream password_file(mLegacyPasswordPath, llifstream::binary);
if(password_file.fail())
{
return std::string("");
}
password_file.read((char*)&buffer[0], buffer.size());
if(password_file.gcount() != buffer.size())
{
return std::string("");
}
// Decipher with MAC address
unsigned char MACAddress[MAC_ADDRESS_BYTES];
LLUUID::getNodeID(MACAddress);
LLXORCipher cipher(MACAddress, 6);
cipher.decrypt(&buffer[0], buffer.size());
return std::string((const char*)&buffer[0], buffer.size());
}
// return an identifier for the user
std::string LLSecAPIBasicCredential::userID() const
{
if (!mIdentifier.isMap())
{
return mGrid + "(null)";
}
else if ((std::string)mIdentifier["type"] == "agent")
{
return (std::string)mIdentifier["first_name"] + "_" + (std::string)mIdentifier["last_name"];
}
else if ((std::string)mIdentifier["type"] == "account")
{
return (std::string)mIdentifier["account_name"];
}
return "unknown";
}
// return a printable user identifier
std::string LLSecAPIBasicCredential::asString() const
{
if (!mIdentifier.isMap())
{
return mGrid + ":(null)";
}
else if ((std::string)mIdentifier["type"] == "agent")
{
return mGrid + ":" + (std::string)mIdentifier["first_name"] + " " + (std::string)mIdentifier["last_name"];
}
else if ((std::string)mIdentifier["type"] == "account")
{
return mGrid + ":" + (std::string)mIdentifier["account_name"];
}
return mGrid + ":(unknown type)";
}
bool valueCompareLLSD(const LLSD& lhs, const LLSD& rhs)
{
if (lhs.type() != rhs.type())
{
return FALSE;
}
if (lhs.isMap())
{
// iterate through the map, verifying the right hand side has all of the
// values that the left hand side has.
for (LLSD::map_const_iterator litt = lhs.beginMap();
litt != lhs.endMap();
litt++)
{
if (!rhs.has(litt->first))
{
return FALSE;
}
}
// Now validate that the left hand side has everything the
// right hand side has, and that the values are equal.
for (LLSD::map_const_iterator ritt = rhs.beginMap();
ritt != rhs.endMap();
ritt++)
{
if (!lhs.has(ritt->first))
{
return FALSE;
}
if (!valueCompareLLSD(lhs[ritt->first], ritt->second))
{
return FALSE;
}
}
return TRUE;
}
else if (lhs.isArray())
{
LLSD::array_const_iterator ritt = rhs.beginArray();
// iterate through the array, comparing
for (LLSD::array_const_iterator litt = lhs.beginArray();
litt != lhs.endArray();
litt++)
{
if (!valueCompareLLSD(*ritt, *litt))
{
return FALSE;
}
ritt++;
}
return (ritt == rhs.endArray());
}
else
{
// simple type, compare as string
return (lhs.asString() == rhs.asString());
}
}