phoenix-firestorm/indra/llcommon/lltracerecording.cpp

915 lines
23 KiB
C++

/**
* @file lltracesampler.cpp
*
* $LicenseInfo:firstyear=2001&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2012, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
#include "linden_common.h"
#include "lltrace.h"
#include "llfasttimer.h"
#include "lltracerecording.h"
#include "lltracethreadrecorder.h"
#include "llthread.h"
namespace LLTrace
{
///////////////////////////////////////////////////////////////////////
// Recording
///////////////////////////////////////////////////////////////////////
Recording::Recording(EPlayState state)
: mElapsedSeconds(0),
mInHandOff(false)
{
mBuffers = new AccumulatorBufferGroup();
setPlayState(state);
}
Recording::Recording( const Recording& other )
{
*this = other;
}
Recording& Recording::operator = (const Recording& other)
{
// this will allow us to seamlessly start without affecting any data we've acquired from other
setPlayState(PAUSED);
const_cast<Recording&>(other).update();
EPlayState other_play_state = other.getPlayState();
mBuffers = other.mBuffers;
// above call will clear mElapsedSeconds as a side effect, so copy it here
mElapsedSeconds = other.mElapsedSeconds;
mSamplingTimer = other.mSamplingTimer;
setPlayState(other_play_state);
return *this;
}
Recording::~Recording()
{
if (isStarted() && LLTrace::get_thread_recorder().notNull())
{
LLTrace::get_thread_recorder()->deactivate(mBuffers.write());
}
}
void Recording::update()
{
if (isStarted())
{
mElapsedSeconds += mSamplingTimer.getElapsedTimeF64();
AccumulatorBufferGroup* buffers = mBuffers.write();
LLTrace::get_thread_recorder()->bringUpToDate(buffers);
mSamplingTimer.reset();
}
}
void Recording::handleReset()
{
mBuffers.write()->reset();
mElapsedSeconds = LLUnits::Seconds::fromValue(0.0);
mSamplingTimer.reset();
}
void Recording::handleStart()
{
mSamplingTimer.reset();
mBuffers.setStayUnique(true);
LLTrace::get_thread_recorder()->activate(mBuffers.write(), mInHandOff);
mInHandOff = false;
}
void Recording::handleStop()
{
mElapsedSeconds += mSamplingTimer.getElapsedTimeF64();
LLTrace::get_thread_recorder()->deactivate(mBuffers.write());
mBuffers.setStayUnique(false);
}
void Recording::handleSplitTo(Recording& other)
{
other.mInHandOff = true;
mBuffers.write()->handOffTo(*other.mBuffers.write());
}
void Recording::appendRecording( Recording& other )
{
update();
other.update();
mBuffers.write()->append(*other.mBuffers);
mElapsedSeconds += other.mElapsedSeconds;
}
LLUnit<F64, LLUnits::Seconds> Recording::getSum(const TraceType<TimeBlockAccumulator>& stat)
{
const TimeBlockAccumulator& accumulator = mBuffers->mStackTimers[stat.getIndex()];
return LLUnits::Seconds::fromValue((F64)(accumulator.mTotalTimeCounter - accumulator.mStartTotalTimeCounter)
/ (F64)LLTrace::TimeBlock::countsPerSecond());
}
LLUnit<F64, LLUnits::Seconds> Recording::getSum(const TraceType<TimeBlockAccumulator::SelfTimeFacet>& stat)
{
const TimeBlockAccumulator& accumulator = mBuffers->mStackTimers[stat.getIndex()];
return LLUnits::Seconds::fromValue((F64)(accumulator.mSelfTimeCounter) / (F64)LLTrace::TimeBlock::countsPerSecond());
}
U32 Recording::getSum(const TraceType<TimeBlockAccumulator::CallCountFacet>& stat)
{
return mBuffers->mStackTimers[stat.getIndex()].mCalls;
}
LLUnit<F64, LLUnits::Seconds> Recording::getPerSec(const TraceType<TimeBlockAccumulator>& stat)
{
const TimeBlockAccumulator& accumulator = mBuffers->mStackTimers[stat.getIndex()];
return LLUnits::Seconds::fromValue((F64)(accumulator.mTotalTimeCounter - accumulator.mStartTotalTimeCounter)
/ ((F64)LLTrace::TimeBlock::countsPerSecond() * mElapsedSeconds.value()));
}
LLUnit<F64, LLUnits::Seconds> Recording::getPerSec(const TraceType<TimeBlockAccumulator::SelfTimeFacet>& stat)
{
const TimeBlockAccumulator& accumulator = mBuffers->mStackTimers[stat.getIndex()];
return LLUnits::Seconds::fromValue((F64)(accumulator.mSelfTimeCounter)
/ ((F64)LLTrace::TimeBlock::countsPerSecond() * mElapsedSeconds.value()));
}
F32 Recording::getPerSec(const TraceType<TimeBlockAccumulator::CallCountFacet>& stat)
{
return (F32)mBuffers->mStackTimers[stat.getIndex()].mCalls / mElapsedSeconds.value();
}
LLUnit<F64, LLUnits::Bytes> Recording::getMin(const TraceType<MemStatAccumulator>& stat)
{
return LLUnits::Bytes::fromValue(mBuffers->mMemStats[stat.getIndex()].mSize.getMin());
}
LLUnit<F64, LLUnits::Bytes> Recording::getMean(const TraceType<MemStatAccumulator>& stat)
{
return LLUnits::Bytes::fromValue(mBuffers->mMemStats[stat.getIndex()].mSize.getMean());
}
LLUnit<F64, LLUnits::Bytes> Recording::getMax(const TraceType<MemStatAccumulator>& stat)
{
return LLUnits::Bytes::fromValue(mBuffers->mMemStats[stat.getIndex()].mSize.getMax());
}
LLUnit<F64, LLUnits::Bytes> Recording::getStandardDeviation(const TraceType<MemStatAccumulator>& stat)
{
return LLUnits::Bytes::fromValue(mBuffers->mMemStats[stat.getIndex()].mSize.getStandardDeviation());
}
LLUnit<F64, LLUnits::Bytes> Recording::getLastValue(const TraceType<MemStatAccumulator>& stat)
{
return LLUnits::Bytes::fromValue(mBuffers->mMemStats[stat.getIndex()].mSize.getLastValue());
}
LLUnit<F64, LLUnits::Bytes> Recording::getMin(const TraceType<MemStatAccumulator::ChildMemFacet>& stat)
{
return LLUnits::Bytes::fromValue(mBuffers->mMemStats[stat.getIndex()].mChildSize.getMin());
}
LLUnit<F64, LLUnits::Bytes> Recording::getMean(const TraceType<MemStatAccumulator::ChildMemFacet>& stat)
{
return LLUnits::Bytes::fromValue(mBuffers->mMemStats[stat.getIndex()].mChildSize.getMean());
}
LLUnit<F64, LLUnits::Bytes> Recording::getMax(const TraceType<MemStatAccumulator::ChildMemFacet>& stat)
{
return LLUnits::Bytes::fromValue(mBuffers->mMemStats[stat.getIndex()].mChildSize.getMax());
}
LLUnit<F64, LLUnits::Bytes> Recording::getStandardDeviation(const TraceType<MemStatAccumulator::ChildMemFacet>& stat)
{
return LLUnits::Bytes::fromValue(mBuffers->mMemStats[stat.getIndex()].mChildSize.getStandardDeviation());
}
LLUnit<F64, LLUnits::Bytes> Recording::getLastValue(const TraceType<MemStatAccumulator::ChildMemFacet>& stat)
{
return LLUnits::Bytes::fromValue(mBuffers->mMemStats[stat.getIndex()].mChildSize.getLastValue());
}
U32 Recording::getSum(const TraceType<MemStatAccumulator::AllocationCountFacet>& stat)
{
return mBuffers->mMemStats[stat.getIndex()].mAllocatedCount;
}
U32 Recording::getSum(const TraceType<MemStatAccumulator::DeallocationCountFacet>& stat)
{
return mBuffers->mMemStats[stat.getIndex()].mAllocatedCount;
}
F64 Recording::getSum( const TraceType<CountAccumulator>& stat )
{
return mBuffers->mCounts[stat.getIndex()].getSum();
}
F64 Recording::getSum( const TraceType<EventAccumulator>& stat )
{
return (F64)mBuffers->mEvents[stat.getIndex()].getSum();
}
F64 Recording::getPerSec( const TraceType<CountAccumulator>& stat )
{
F64 sum = mBuffers->mCounts[stat.getIndex()].getSum();
return sum / mElapsedSeconds.value();
}
U32 Recording::getSampleCount( const TraceType<CountAccumulator>& stat )
{
return mBuffers->mCounts[stat.getIndex()].getSampleCount();
}
bool Recording::hasValue(const TraceType<SampleAccumulator>& stat)
{
return mBuffers->mSamples[stat.getIndex()].hasValue();
}
F64 Recording::getMin( const TraceType<SampleAccumulator>& stat )
{
return mBuffers->mSamples[stat.getIndex()].getMin();
}
F64 Recording::getMax( const TraceType<SampleAccumulator>& stat )
{
return mBuffers->mSamples[stat.getIndex()].getMax();
}
F64 Recording::getMean( const TraceType<SampleAccumulator>& stat )
{
return mBuffers->mSamples[stat.getIndex()].getMean();
}
F64 Recording::getStandardDeviation( const TraceType<SampleAccumulator>& stat )
{
return mBuffers->mSamples[stat.getIndex()].getStandardDeviation();
}
F64 Recording::getLastValue( const TraceType<SampleAccumulator>& stat )
{
return mBuffers->mSamples[stat.getIndex()].getLastValue();
}
U32 Recording::getSampleCount( const TraceType<SampleAccumulator>& stat )
{
return mBuffers->mSamples[stat.getIndex()].getSampleCount();
}
bool Recording::hasValue(const TraceType<EventAccumulator>& stat)
{
return mBuffers->mEvents[stat.getIndex()].hasValue();
}
F64 Recording::getMin( const TraceType<EventAccumulator>& stat )
{
return mBuffers->mEvents[stat.getIndex()].getMin();
}
F64 Recording::getMax( const TraceType<EventAccumulator>& stat )
{
return mBuffers->mEvents[stat.getIndex()].getMax();
}
F64 Recording::getMean( const TraceType<EventAccumulator>& stat )
{
return mBuffers->mEvents[stat.getIndex()].getMean();
}
F64 Recording::getStandardDeviation( const TraceType<EventAccumulator>& stat )
{
return mBuffers->mEvents[stat.getIndex()].getStandardDeviation();
}
F64 Recording::getLastValue( const TraceType<EventAccumulator>& stat )
{
return mBuffers->mEvents[stat.getIndex()].getLastValue();
}
U32 Recording::getSampleCount( const TraceType<EventAccumulator>& stat )
{
return mBuffers->mEvents[stat.getIndex()].getSampleCount();
}
///////////////////////////////////////////////////////////////////////
// PeriodicRecording
///////////////////////////////////////////////////////////////////////
PeriodicRecording::PeriodicRecording( U32 num_periods, EPlayState state)
: mAutoResize(num_periods == 0),
mCurPeriod(0),
mNumPeriods(0),
mRecordingPeriods(num_periods ? num_periods : 1)
{
setPlayState(state);
}
void PeriodicRecording::nextPeriod()
{
if (mAutoResize)
{
mRecordingPeriods.push_back(Recording());
}
Recording& old_recording = getCurRecording();
mCurPeriod = (mCurPeriod + 1) % mRecordingPeriods.size();
old_recording.splitTo(getCurRecording());
mNumPeriods = llmin(mRecordingPeriods.size(), mNumPeriods + 1);
}
void PeriodicRecording::appendRecording(Recording& recording)
{
getCurRecording().appendRecording(recording);
nextPeriod();
}
void PeriodicRecording::appendPeriodicRecording( PeriodicRecording& other )
{
if (other.mRecordingPeriods.empty()) return;
getCurRecording().update();
other.getCurRecording().update();
const U32 other_recording_slots = other.mRecordingPeriods.size();
const U32 other_num_recordings = other.getNumRecordedPeriods();
const U32 other_current_recording_index = other.mCurPeriod;
const U32 other_oldest_recording_index = (other_current_recording_index + other_recording_slots - other_num_recordings + 1) % other_recording_slots;
// append first recording into our current slot
getCurRecording().appendRecording(other.mRecordingPeriods[other_oldest_recording_index]);
// from now on, add new recordings for everything after the first
U32 other_index = (other_oldest_recording_index + 1) % other_recording_slots;
if (mAutoResize)
{
// push back recordings for everything in the middle
U32 other_index = (other_oldest_recording_index + 1) % other_recording_slots;
while (other_index != other_current_recording_index)
{
mRecordingPeriods.push_back(other.mRecordingPeriods[other_index]);
other_index = (other_index + 1) % other_recording_slots;
}
// add final recording, if it wasn't already added as the first
if (other_num_recordings > 1)
{
mRecordingPeriods.push_back(other.mRecordingPeriods[other_current_recording_index]);
}
mCurPeriod = mRecordingPeriods.size() - 1;
mNumPeriods = mRecordingPeriods.size();
}
else
{
size_t num_to_copy = llmin( mRecordingPeriods.size(), (size_t)other_num_recordings);
std::vector<Recording>::iterator src_it = other.mRecordingPeriods.begin() + other_index ;
std::vector<Recording>::iterator dest_it = mRecordingPeriods.begin() + mCurPeriod;
// already consumed the first recording from other, so start counting at 1
for(size_t i = 1; i < num_to_copy; i++)
{
*dest_it = *src_it;
if (++src_it == other.mRecordingPeriods.end())
{
src_it = other.mRecordingPeriods.begin();
}
if (++dest_it == mRecordingPeriods.end())
{
dest_it = mRecordingPeriods.begin();
}
}
// want argument to % to be positive, otherwise result could be negative and thus out of bounds
llassert(num_to_copy >= 1);
// advance to last recording period copied, and make that our current period
mCurPeriod = (mCurPeriod + num_to_copy - 1) % mRecordingPeriods.size();
mNumPeriods = llmin(mRecordingPeriods.size(), mNumPeriods + num_to_copy - 1);
}
// end with fresh period, otherwise next appendPeriodicRecording() will merge the first
// recording period with the last one appended here
nextPeriod();
getCurRecording().setPlayState(getPlayState());
}
LLUnit<F64, LLUnits::Seconds> PeriodicRecording::getDuration() const
{
LLUnit<F64, LLUnits::Seconds> duration;
size_t num_periods = mRecordingPeriods.size();
for (size_t i = 1; i <= num_periods; i++)
{
size_t index = (mCurPeriod + num_periods - i) % num_periods;
duration += mRecordingPeriods[index].getDuration();
}
return duration;
}
LLTrace::Recording PeriodicRecording::snapshotCurRecording() const
{
Recording recording_copy(getCurRecording());
recording_copy.stop();
return recording_copy;
}
Recording& PeriodicRecording::getLastRecording()
{
return getPrevRecording(1);
}
const Recording& PeriodicRecording::getLastRecording() const
{
return getPrevRecording(1);
}
Recording& PeriodicRecording::getCurRecording()
{
return mRecordingPeriods[mCurPeriod];
}
const Recording& PeriodicRecording::getCurRecording() const
{
return mRecordingPeriods[mCurPeriod];
}
Recording& PeriodicRecording::getPrevRecording( U32 offset )
{
U32 num_periods = mRecordingPeriods.size();
offset = llclamp(offset, 0u, num_periods - 1);
return mRecordingPeriods[(mCurPeriod + num_periods - offset) % num_periods];
}
const Recording& PeriodicRecording::getPrevRecording( U32 offset ) const
{
U32 num_periods = mRecordingPeriods.size();
offset = llclamp(offset, 0u, num_periods - 1);
return mRecordingPeriods[(mCurPeriod + num_periods - offset) % num_periods];
}
void PeriodicRecording::handleStart()
{
getCurRecording().start();
}
void PeriodicRecording::handleStop()
{
getCurRecording().pause();
}
void PeriodicRecording::handleReset()
{
getCurRecording().stop();
if (mAutoResize)
{
mRecordingPeriods.clear();
mRecordingPeriods.push_back(Recording());
}
else
{
for (std::vector<Recording>::iterator it = mRecordingPeriods.begin(), end_it = mRecordingPeriods.end();
it != end_it;
++it)
{
it->reset();
}
}
mCurPeriod = 0;
mNumPeriods = 0;
getCurRecording().setPlayState(getPlayState());
}
void PeriodicRecording::handleSplitTo(PeriodicRecording& other)
{
getCurRecording().splitTo(other.getCurRecording());
}
F64 PeriodicRecording::getPeriodMin( const TraceType<EventAccumulator>& stat, size_t num_periods /*= U32_MAX*/ )
{
size_t total_periods = mRecordingPeriods.size();
num_periods = llmin(num_periods, isStarted() ? total_periods - 1 : total_periods);
bool has_value = false;
F64 min_val = std::numeric_limits<F64>::max();
for (S32 i = 1; i <= num_periods; i++)
{
Recording& recording = getPrevRecording(i);
if (recording.hasValue(stat))
{
min_val = llmin(min_val, recording.getMin(stat));
has_value = true;
}
}
return has_value
? min_val
: NaN;
}
F64 PeriodicRecording::getPeriodMax( const TraceType<EventAccumulator>& stat, size_t num_periods /*= U32_MAX*/ )
{
size_t total_periods = mRecordingPeriods.size();
num_periods = llmin(num_periods, isStarted() ? total_periods - 1 : total_periods);
bool has_value = false;
F64 max_val = std::numeric_limits<F64>::min();
for (S32 i = 1; i <= num_periods; i++)
{
Recording& recording = getPrevRecording(i);
if (recording.hasValue(stat))
{
max_val = llmax(max_val, recording.getMax(stat));
has_value = true;
}
}
return has_value
? max_val
: NaN;
}
// calculates means using aggregates per period
F64 PeriodicRecording::getPeriodMean( const TraceType<EventAccumulator>& stat, size_t num_periods /*= U32_MAX*/ )
{
size_t total_periods = mRecordingPeriods.size();
num_periods = llmin(num_periods, isStarted() ? total_periods - 1 : total_periods);
F64 mean = 0;
S32 valid_period_count = 0;
for (S32 i = 1; i <= num_periods; i++)
{
Recording& recording = getPrevRecording(i);
if (recording.hasValue(stat))
{
mean += recording.getMean(stat);
valid_period_count++;
}
}
return valid_period_count
? mean / (F64)valid_period_count
: NaN;
}
F64 PeriodicRecording::getPeriodStandardDeviation( const TraceType<EventAccumulator>& stat, size_t num_periods /*= U32_MAX*/ )
{
size_t total_periods = mRecordingPeriods.size();
num_periods = llmin(num_periods, isStarted() ? total_periods - 1 : total_periods);
F64 period_mean = getPeriodMean(stat, num_periods);
F64 sum_of_squares = 0;
S32 valid_period_count = 0;
for (S32 i = 1; i <= num_periods; i++)
{
Recording& recording = getPrevRecording(i);
if (recording.hasValue(stat))
{
F64 delta = recording.getMean(stat) - period_mean;
sum_of_squares += delta * delta;
valid_period_count++;
}
}
return valid_period_count
? sqrt((F64)sum_of_squares / (F64)valid_period_count)
: NaN;
}
F64 PeriodicRecording::getPeriodMin( const TraceType<SampleAccumulator>& stat, size_t num_periods /*= U32_MAX*/ )
{
size_t total_periods = mRecordingPeriods.size();
num_periods = llmin(num_periods, isStarted() ? total_periods - 1 : total_periods);
bool has_value = false;
F64 min_val = std::numeric_limits<F64>::max();
for (S32 i = 1; i <= num_periods; i++)
{
Recording& recording = getPrevRecording(i);
if (recording.hasValue(stat))
{
min_val = llmin(min_val, recording.getMin(stat));
has_value = true;
}
}
return has_value
? min_val
: NaN;
}
F64 PeriodicRecording::getPeriodMax(const TraceType<SampleAccumulator>& stat, size_t num_periods /*= U32_MAX*/)
{
size_t total_periods = mRecordingPeriods.size();
num_periods = llmin(num_periods, isStarted() ? total_periods - 1 : total_periods);
bool has_value = false;
F64 max_val = std::numeric_limits<F64>::min();
for (S32 i = 1; i <= num_periods; i++)
{
Recording& recording = getPrevRecording(i);
if (recording.hasValue(stat))
{
max_val = llmax(max_val, recording.getMax(stat));
has_value = true;
}
}
return has_value
? max_val
: NaN;
}
F64 PeriodicRecording::getPeriodMean( const TraceType<SampleAccumulator>& stat, size_t num_periods /*= U32_MAX*/ )
{
size_t total_periods = mRecordingPeriods.size();
num_periods = llmin(num_periods, isStarted() ? total_periods - 1 : total_periods);
S32 valid_period_count = 0;
F64 mean = 0;
for (S32 i = 1; i <= num_periods; i++)
{
Recording& recording = getPrevRecording(i);
if (recording.hasValue(stat))
{
mean += recording.getMean(stat);
valid_period_count++;
}
}
return valid_period_count
? mean / F64(valid_period_count)
: NaN;
}
F64 PeriodicRecording::getPeriodStandardDeviation( const TraceType<SampleAccumulator>& stat, size_t num_periods /*= U32_MAX*/ )
{
size_t total_periods = mRecordingPeriods.size();
num_periods = llmin(num_periods, isStarted() ? total_periods - 1 : total_periods);
F64 period_mean = getPeriodMean(stat, num_periods);
S32 valid_period_count = 0;
F64 sum_of_squares = 0;
for (S32 i = 1; i <= num_periods; i++)
{
Recording& recording = getPrevRecording(i);
if (recording.hasValue(stat))
{
F64 delta = recording.getMean(stat) - period_mean;
sum_of_squares += delta * delta;
valid_period_count++;
}
}
return valid_period_count
? sqrt(sum_of_squares / (F64)valid_period_count)
: NaN;
}
///////////////////////////////////////////////////////////////////////
// ExtendableRecording
///////////////////////////////////////////////////////////////////////
void ExtendableRecording::extend()
{
// push the data back to accepted recording
mAcceptedRecording.appendRecording(mPotentialRecording);
// flush data, so we can start from scratch
mPotentialRecording.reset();
}
void ExtendableRecording::handleStart()
{
mPotentialRecording.start();
}
void ExtendableRecording::handleStop()
{
mPotentialRecording.pause();
}
void ExtendableRecording::handleReset()
{
mAcceptedRecording.reset();
mPotentialRecording.reset();
}
void ExtendableRecording::handleSplitTo(ExtendableRecording& other)
{
mPotentialRecording.splitTo(other.mPotentialRecording);
}
///////////////////////////////////////////////////////////////////////
// ExtendablePeriodicRecording
///////////////////////////////////////////////////////////////////////
ExtendablePeriodicRecording::ExtendablePeriodicRecording()
: mAcceptedRecording(0),
mPotentialRecording(0)
{}
void ExtendablePeriodicRecording::extend()
{
// push the data back to accepted recording
mAcceptedRecording.appendPeriodicRecording(mPotentialRecording);
// flush data, so we can start from scratch
mPotentialRecording.reset();
}
void ExtendablePeriodicRecording::handleStart()
{
mPotentialRecording.start();
}
void ExtendablePeriodicRecording::handleStop()
{
mPotentialRecording.pause();
}
void ExtendablePeriodicRecording::handleReset()
{
mAcceptedRecording.reset();
mPotentialRecording.reset();
}
void ExtendablePeriodicRecording::handleSplitTo(ExtendablePeriodicRecording& other)
{
mPotentialRecording.splitTo(other.mPotentialRecording);
}
PeriodicRecording& get_frame_recording()
{
static LLThreadLocalPointer<PeriodicRecording> sRecording(new PeriodicRecording(1000, PeriodicRecording::STARTED));
return *sRecording;
}
}
void LLStopWatchControlsMixinCommon::start()
{
switch (mPlayState)
{
case STOPPED:
handleReset();
handleStart();
break;
case PAUSED:
handleStart();
break;
case STARTED:
break;
default:
llassert(false);
break;
}
mPlayState = STARTED;
}
void LLStopWatchControlsMixinCommon::stop()
{
switch (mPlayState)
{
case STOPPED:
break;
case PAUSED:
break;
case STARTED:
handleStop();
break;
default:
llassert(false);
break;
}
mPlayState = STOPPED;
}
void LLStopWatchControlsMixinCommon::pause()
{
switch (mPlayState)
{
case STOPPED:
break;
case PAUSED:
break;
case STARTED:
handleStop();
break;
default:
llassert(false);
break;
}
mPlayState = PAUSED;
}
void LLStopWatchControlsMixinCommon::resume()
{
switch (mPlayState)
{
case STOPPED:
handleStart();
break;
case PAUSED:
handleStart();
break;
case STARTED:
break;
default:
llassert(false);
break;
}
mPlayState = STARTED;
}
void LLStopWatchControlsMixinCommon::restart()
{
switch (mPlayState)
{
case STOPPED:
handleReset();
handleStart();
break;
case PAUSED:
handleReset();
handleStart();
break;
case STARTED:
handleReset();
break;
default:
llassert(false);
break;
}
mPlayState = STARTED;
}
void LLStopWatchControlsMixinCommon::reset()
{
handleReset();
}
void LLStopWatchControlsMixinCommon::setPlayState( EPlayState state )
{
switch(state)
{
case STOPPED:
stop();
break;
case PAUSED:
pause();
break;
case STARTED:
start();
break;
default:
llassert(false);
break;
}
mPlayState = state;
}