phoenix-firestorm/indra/newview/lldrawpoolwlsky.cpp

624 lines
18 KiB
C++

/**
* @file lldrawpoolwlsky.cpp
* @brief LLDrawPoolWLSky class implementation
*
* $LicenseInfo:firstyear=2007&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2010, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
#include "llviewerprecompiledheaders.h"
#include "lldrawpoolwlsky.h"
#include "llerror.h"
#include "llgl.h"
#include "pipeline.h"
#include "llviewercamera.h"
#include "llimage.h"
#include "llviewershadermgr.h"
#include "llglslshader.h"
#include "llsky.h"
#include "llvowlsky.h"
#include "llviewerregion.h"
#include "llface.h"
#include "llrender.h"
#include "llenvironment.h"
#include "llatmosphere.h"
static LLStaticHashedString sCamPosLocal("camPosLocal");
static LLStaticHashedString sCustomAlpha("custom_alpha");
static LLGLSLShader* cloud_shader = NULL;
static LLGLSLShader* sky_shader = NULL;
static LLGLSLShader* sun_shader = NULL;
static LLGLSLShader* moon_shader = NULL;
LLDrawPoolWLSky::LLDrawPoolWLSky(void) :
LLDrawPool(POOL_WL_SKY)
{
}
LLDrawPoolWLSky::~LLDrawPoolWLSky()
{
}
LLViewerTexture *LLDrawPoolWLSky::getDebugTexture()
{
return NULL;
}
void LLDrawPoolWLSky::beginRenderPass( S32 pass )
{
sky_shader =
LLPipeline::sUnderWaterRender ?
&gObjectFullbrightNoColorWaterProgram :
&gWLSkyProgram;
cloud_shader =
LLPipeline::sUnderWaterRender ?
&gObjectFullbrightNoColorWaterProgram :
&gWLCloudProgram;
sun_shader =
LLPipeline::sUnderWaterRender ?
&gObjectFullbrightNoColorWaterProgram :
&gWLSunProgram;
moon_shader =
LLPipeline::sUnderWaterRender ?
&gObjectFullbrightNoColorWaterProgram :
&gWLMoonProgram;
}
void LLDrawPoolWLSky::endRenderPass( S32 pass )
{
}
void LLDrawPoolWLSky::beginDeferredPass(S32 pass)
{
sky_shader = &gDeferredWLSkyProgram;
cloud_shader = &gDeferredWLCloudProgram;
sun_shader =
LLPipeline::sUnderWaterRender ?
&gObjectFullbrightNoColorWaterProgram :
&gDeferredWLSunProgram;
moon_shader =
LLPipeline::sUnderWaterRender ?
&gObjectFullbrightNoColorWaterProgram :
&gDeferredWLMoonProgram;
}
void LLDrawPoolWLSky::endDeferredPass(S32 pass)
{
}
void LLDrawPoolWLSky::renderFsSky(const LLVector3& camPosLocal, F32 camHeightLocal, LLGLSLShader * shader) const
{
gSky.mVOWLSkyp->drawFsSky();
}
void LLDrawPoolWLSky::renderDome(const LLVector3& camPosLocal, F32 camHeightLocal, LLGLSLShader * shader) const
{
llassert_always(NULL != shader);
gGL.pushMatrix();
//chop off translation
if (LLPipeline::sReflectionRender && camPosLocal.mV[2] > 256.f)
{
gGL.translatef(camPosLocal.mV[0], camPosLocal.mV[1], 256.f-camPosLocal.mV[2]*0.5f);
}
else
{
gGL.translatef(camPosLocal.mV[0], camPosLocal.mV[1], camPosLocal.mV[2]);
}
// the windlight sky dome works most conveniently in a coordinate system
// where Y is up, so permute our basis vectors accordingly.
gGL.rotatef(120.f, 1.f / F_SQRT3, 1.f / F_SQRT3, 1.f / F_SQRT3);
gGL.scalef(0.333f, 0.333f, 0.333f);
gGL.translatef(0.f,-camHeightLocal, 0.f);
// Draw WL Sky
shader->uniform3f(sCamPosLocal, 0.f, camHeightLocal, 0.f);
gSky.mVOWLSkyp->drawDome();
gGL.popMatrix();
}
void LLDrawPoolWLSky::renderSkyHazeDeferred(const LLVector3& camPosLocal, F32 camHeightLocal) const
{
if (gPipeline.useAdvancedAtmospherics() && gPipeline.canUseWindLightShaders() && gAtmosphere)
{
sky_shader->bind();
// bind precomputed textures necessary for calculating sun and sky luminance
sky_shader->bindTexture(LLShaderMgr::TRANSMITTANCE_TEX, gAtmosphere->getTransmittance());
sky_shader->bindTexture(LLShaderMgr::SCATTER_TEX, gAtmosphere->getScattering());
sky_shader->bindTexture(LLShaderMgr::SINGLE_MIE_SCATTER_TEX, gAtmosphere->getMieScattering());
sky_shader->bindTexture(LLShaderMgr::ILLUMINANCE_TEX, gAtmosphere->getIlluminance());
LLSettingsSky::ptr_t psky = LLEnvironment::instance().getCurrentSky();
LLVector4 sun_dir = LLEnvironment::instance().getClampedSunNorm();
LLVector4 moon_dir = LLEnvironment::instance().getClampedMoonNorm();
F32 sunSize = (float)cosf(psky->getSunArcRadians());
sky_shader->uniform1f(LLShaderMgr::SUN_SIZE, sunSize);
sky_shader->uniform3fv(LLShaderMgr::DEFERRED_SUN_DIR, 1, sun_dir.mV);
sky_shader->uniform3fv(LLShaderMgr::DEFERRED_MOON_DIR, 1, moon_dir.mV);
llassert(sky_shader->getUniformLocation(LLShaderMgr::INVERSE_PROJECTION_MATRIX));
glh::matrix4f proj_mat = get_current_projection();
glh::matrix4f inv_proj = proj_mat.inverse();
sky_shader->uniformMatrix4fv(LLShaderMgr::INVERSE_PROJECTION_MATRIX, 1, FALSE, inv_proj.m);
// clouds are rendered along with sky in adv atmo
if (gPipeline.hasRenderType(LLPipeline::RENDER_TYPE_CLOUDS) && gSky.mVOSkyp->getCloudNoiseTex())
{
sky_shader->bindTexture(LLShaderMgr::CLOUD_NOISE_MAP, gSky.mVOSkyp->getCloudNoiseTex());
sky_shader->bindTexture(LLShaderMgr::CLOUD_NOISE_MAP_NEXT, gSky.mVOSkyp->getCloudNoiseTexNext());
}
sky_shader->uniform3f(sCamPosLocal, camPosLocal.mV[0], camPosLocal.mV[1], camPosLocal.mV[2]);
renderFsSky(camPosLocal, camHeightLocal, sky_shader);
sky_shader->unbind();
}
}
void LLDrawPoolWLSky::renderSkyHaze(const LLVector3& camPosLocal, F32 camHeightLocal) const
{
LLVector3 const & origin = LLViewerCamera::getInstance()->getOrigin();
if (gPipeline.canUseWindLightShaders() && gPipeline.hasRenderType(LLPipeline::RENDER_TYPE_SKY))
{
LLGLDisable blend(GL_BLEND);
sky_shader->bind();
/// Render the skydome
renderDome(origin, camHeightLocal, sky_shader);
sky_shader->unbind();
}
}
void LLDrawPoolWLSky::renderStars(void) const
{
LLGLSPipelineSkyBox gls_sky;
LLGLEnable blend(GL_BLEND);
gGL.setSceneBlendType(LLRender::BT_ALPHA);
// *NOTE: have to have bound the cloud noise texture already since register
// combiners blending below requires something to be bound
// and we might as well only bind once.
gGL.getTexUnit(0)->enable(LLTexUnit::TT_TEXTURE);
gPipeline.disableLights();
// *NOTE: we divide by two here and GL_ALPHA_SCALE by two below to avoid
// clamping and allow the star_alpha param to brighten the stars.
LLColor4 star_alpha(LLColor4::black);
// *LAPRAS
star_alpha.mV[3] = LLEnvironment::instance().getCurrentSky()->getStarBrightness() / (2.f + ((rand() >> 16)/65535.0f)); // twinkle twinkle
// If start_brightness is not set, exit
if( star_alpha.mV[3] < 0.001 )
{
LL_DEBUGS("SKY") << "star_brightness below threshold." << LL_ENDL;
return;
}
LLViewerTexture* tex_a = gSky.mVOSkyp->getBloomTex();
LLViewerTexture* tex_b = gSky.mVOSkyp->getBloomTexNext();
if (tex_a && (!tex_b || (tex_a == tex_b)))
{
// Bind current and next sun textures
gGL.getTexUnit(0)->bind(tex_a);
}
else if (tex_b && !tex_a)
{
gGL.getTexUnit(0)->bind(tex_b);
}
else if (tex_b != tex_a)
{
gGL.getTexUnit(0)->bind(tex_a);
}
gGL.pushMatrix();
gGL.rotatef(gFrameTimeSeconds*0.01f, 0.f, 0.f, 1.f);
if (LLGLSLShader::sNoFixedFunction)
{
gCustomAlphaProgram.bind();
gCustomAlphaProgram.uniform1f(sCustomAlpha, star_alpha.mV[3]);
}
else
{
gGL.getTexUnit(0)->setTextureColorBlend(LLTexUnit::TBO_MULT, LLTexUnit::TBS_TEX_COLOR, LLTexUnit::TBS_VERT_COLOR);
gGL.getTexUnit(0)->setTextureAlphaBlend(LLTexUnit::TBO_MULT_X2, LLTexUnit::TBS_CONST_ALPHA, LLTexUnit::TBS_TEX_ALPHA);
glTexEnvfv(GL_TEXTURE_ENV, GL_TEXTURE_ENV_COLOR, star_alpha.mV);
}
gSky.mVOWLSkyp->drawStars();
gGL.getTexUnit(0)->unbind(LLTexUnit::TT_TEXTURE);
gGL.popMatrix();
if (LLGLSLShader::sNoFixedFunction)
{
gCustomAlphaProgram.unbind();
}
else
{
// and disable the combiner states
gGL.getTexUnit(0)->setTextureBlendType(LLTexUnit::TB_MULT);
}
}
void LLDrawPoolWLSky::renderStarsDeferred(void) const
{
LLGLSPipelineSkyBox gls_sky;
LLGLEnable blend(GL_BLEND);
gGL.setSceneBlendType(LLRender::BT_ADD_WITH_ALPHA);
// *LAPRAS
F32 star_alpha = LLEnvironment::instance().getCurrentSky()->getStarBrightness() / (2.f + ((rand() >> 16)/65535.0f)); // twinkle twinkle
// If start_brightness is not set, exit
if(star_alpha < 0.001f)
{
LL_DEBUGS("SKY") << "star_brightness below threshold." << LL_ENDL;
return;
}
gDeferredStarProgram.bind();
LLViewerTexture* tex_a = gSky.mVOSkyp->getBloomTex();
LLViewerTexture* tex_b = gSky.mVOSkyp->getBloomTexNext();
F32 blend_factor = LLEnvironment::instance().getCurrentSky()->getBlendFactor();
if (tex_a && (!tex_b || (tex_a == tex_b)))
{
// Bind current and next sun textures
gGL.getTexUnit(0)->bind(tex_a);
gGL.getTexUnit(1)->unbind(LLTexUnit::TT_TEXTURE);
blend_factor = 0;
}
else if (tex_b && !tex_a)
{
gGL.getTexUnit(0)->bind(tex_b);
gGL.getTexUnit(1)->unbind(LLTexUnit::TT_TEXTURE);
blend_factor = 0;
}
else if (tex_b != tex_a)
{
gGL.getTexUnit(0)->bind(tex_a);
gGL.getTexUnit(1)->bind(tex_b);
}
gDeferredStarProgram.uniform1f(LLShaderMgr::BLEND_FACTOR, blend_factor);
gDeferredStarProgram.uniform1f(sCustomAlpha, star_alpha);
gSky.mVOWLSkyp->drawStars();
gGL.getTexUnit(0)->unbind(LLTexUnit::TT_TEXTURE);
gGL.getTexUnit(1)->unbind(LLTexUnit::TT_TEXTURE);
gDeferredStarProgram.unbind();
}
void LLDrawPoolWLSky::renderSkyClouds(const LLVector3& camPosLocal, F32 camHeightLocal) const
{
if (gPipeline.canUseWindLightShaders() && gPipeline.hasRenderType(LLPipeline::RENDER_TYPE_CLOUDS) && gSky.mVOSkyp->getCloudNoiseTex())
{
LLGLEnable blend(GL_BLEND);
gGL.setSceneBlendType(LLRender::BT_ALPHA);
gGL.getTexUnit(0)->bind(gSky.mVOSkyp->getCloudNoiseTex());
gGL.getTexUnit(1)->bind(gSky.mVOSkyp->getCloudNoiseTexNext());
cloud_shader->bind();
F32 blend_factor = LLEnvironment::instance().getCurrentSky()->getBlendFactor();
cloud_shader->uniform1f(LLShaderMgr::BLEND_FACTOR, blend_factor);
/// Render the skydome
renderDome(camPosLocal, camHeightLocal, cloud_shader);
cloud_shader->unbind();
}
}
void LLDrawPoolWLSky::renderHeavenlyBodies()
{
LLGLSPipelineSkyBox gls_skybox;
LLGLEnable blend_on(GL_BLEND);
gPipeline.disableLights();
LLVector3 const & origin = LLViewerCamera::getInstance()->getOrigin();
gGL.pushMatrix();
gGL.translatef(origin.mV[0], origin.mV[1], origin.mV[2]);
LLFace * face = gSky.mVOSkyp->mFace[LLVOSky::FACE_SUN];
F32 blend_factor = LLEnvironment::instance().getCurrentSky()->getBlendFactor();
bool can_use_vertex_shaders = gPipeline.canUseVertexShaders();
if (gSky.mVOSkyp->getSun().getDraw() && face && face->getGeomCount())
{
LLViewerTexture* tex_a = face->getTexture(LLRender::DIFFUSE_MAP);
LLViewerTexture* tex_b = face->getTexture(LLRender::ALTERNATE_DIFFUSE_MAP);
// if we even have sun disc textures to work with...
if (tex_a || tex_b)
{
// if and only if we have a texture defined, render the sun disc
if (can_use_vertex_shaders)
{
sun_shader->bind();
}
if (tex_a && (!tex_b || (tex_a == tex_b)))
{
// Bind current and next sun textures
gGL.getTexUnit(0)->bind(tex_a);
gGL.getTexUnit(1)->unbind(LLTexUnit::TT_TEXTURE);
blend_factor = 0;
}
else if (tex_b && !tex_a)
{
gGL.getTexUnit(0)->bind(tex_b);
gGL.getTexUnit(1)->unbind(LLTexUnit::TT_TEXTURE);
blend_factor = 0;
}
else if (tex_b != tex_a)
{
gGL.getTexUnit(0)->bind(tex_a);
gGL.getTexUnit(1)->bind(tex_b);
}
LLColor4 color(gSky.mVOSkyp->getSun().getInterpColor());
if (can_use_vertex_shaders)
{
sun_shader->uniform4fv(LLShaderMgr::DIFFUSE_COLOR, 1, color.mV);
sun_shader->uniform1f(LLShaderMgr::BLEND_FACTOR, blend_factor);
}
LLFacePool::LLOverrideFaceColor color_override(this, color);
face->renderIndexed();
gGL.getTexUnit(0)->unbind(LLTexUnit::TT_TEXTURE);
gGL.getTexUnit(1)->unbind(LLTexUnit::TT_TEXTURE);
if (can_use_vertex_shaders)
{
sun_shader->unbind();
}
}
}
face = gSky.mVOSkyp->mFace[LLVOSky::FACE_MOON];
if (gSky.mVOSkyp->getMoon().getDraw() && face && face->getTexture(LLRender::DIFFUSE_MAP) && face->getGeomCount() && moon_shader)
{
LLViewerTexture* tex_a = face->getTexture(LLRender::DIFFUSE_MAP);
LLViewerTexture* tex_b = face->getTexture(LLRender::ALTERNATE_DIFFUSE_MAP);
LLColor4 color(gSky.mVOSkyp->getMoon().getInterpColor());
if (can_use_vertex_shaders)
{
moon_shader->bind();
}
if (tex_a && (!tex_b || (tex_a == tex_b)))
{
// Bind current and next sun textures
gGL.getTexUnit(0)->bind(tex_a);
gGL.getTexUnit(1)->unbind(LLTexUnit::TT_TEXTURE);
blend_factor = 0;
}
else if (tex_b && !tex_a)
{
gGL.getTexUnit(0)->bind(tex_b);
gGL.getTexUnit(1)->unbind(LLTexUnit::TT_TEXTURE);
blend_factor = 0;
}
else if (tex_b != tex_a)
{
gGL.getTexUnit(0)->bind(tex_a);
gGL.getTexUnit(1)->bind(tex_b);
}
if (can_use_vertex_shaders)
{
moon_shader->uniform4fv(LLShaderMgr::DIFFUSE_COLOR, 1, color.mV);
moon_shader->uniform1f(LLShaderMgr::BLEND_FACTOR, blend_factor);
}
LLFacePool::LLOverrideFaceColor color_override(this, color);
face->renderIndexed();
gGL.getTexUnit(0)->unbind(LLTexUnit::TT_TEXTURE);
gGL.getTexUnit(1)->unbind(LLTexUnit::TT_TEXTURE);
if (can_use_vertex_shaders)
{
moon_shader->unbind();
}
}
gGL.popMatrix();
}
void LLDrawPoolWLSky::renderDeferred(S32 pass)
{
if (!gPipeline.hasRenderType(LLPipeline::RENDER_TYPE_SKY))
{
return;
}
LL_RECORD_BLOCK_TIME(FTM_RENDER_WL_SKY);
const F32 camHeightLocal = LLEnvironment::instance().getCamHeight();
LLGLSNoFog disableFog;
LLGLDisable clip(GL_CLIP_PLANE0);
gGL.setColorMask(true, false);
LLGLSquashToFarClip far_clip(get_current_projection());
LLVector3 const & origin = LLViewerCamera::getInstance()->getOrigin();
if (gPipeline.canUseWindLightShaders())
{
{
// Disable depth-test for sky, but re-enable depth writes for the cloud
// rendering below so the cloud shader can write out depth for the stars to test against
LLGLDepthTest depth(GL_TRUE, GL_FALSE);
if (gPipeline.useAdvancedAtmospherics())
{
renderSkyHazeDeferred(origin, camHeightLocal);
}
else
{
renderSkyHaze(origin, camHeightLocal);
}
renderHeavenlyBodies();
}
renderSkyClouds(origin, camHeightLocal);
}
gGL.setColorMask(true, true);
}
void LLDrawPoolWLSky::renderPostDeferred(S32 pass)
{
LLVector3 const & origin = LLViewerCamera::getInstance()->getOrigin();
LLGLSNoFog disableFog;
LLGLDisable clip(GL_CLIP_PLANE0);
LLGLSquashToFarClip far_clip(get_current_projection());
gGL.pushMatrix();
gGL.translatef(origin.mV[0], origin.mV[1], origin.mV[2]);
gGL.setColorMask(true, false);
// would be nice to do this here, but would need said bodies
// to render at a realistic distance for depth-testing against the clouds...
//renderHeavenlyBodies();
renderStarsDeferred();
gGL.popMatrix();
gGL.setColorMask(true, true);
}
void LLDrawPoolWLSky::render(S32 pass)
{
if (!gPipeline.hasRenderType(LLPipeline::RENDER_TYPE_SKY))
{
return;
}
LL_RECORD_BLOCK_TIME(FTM_RENDER_WL_SKY);
const F32 camHeightLocal = LLEnvironment::instance().getCamHeight();
LLGLSNoFog disableFog;
LLGLDepthTest depth(GL_TRUE, GL_FALSE);
LLGLDisable clip(GL_CLIP_PLANE0);
LLGLSquashToFarClip far_clip(get_current_projection());
LLVector3 const & origin = LLViewerCamera::getInstance()->getOrigin();
renderSkyHaze(origin, camHeightLocal);
bool use_advanced = gPipeline.useAdvancedAtmospherics();
if (!use_advanced)
{
gGL.pushMatrix();
// MAINT-9006 keep sun position consistent between ALM and non-ALM rendering
//gGL.translatef(origin.mV[0], origin.mV[1], origin.mV[2]);
// *NOTE: have to bind a texture here since register combiners blending in
// renderStars() requires something to be bound and we might as well only
// bind the moon's texture once.
gGL.getTexUnit(0)->bind(gSky.mVOSkyp->mFace[LLVOSky::FACE_MOON]->getTexture());
gGL.getTexUnit(1)->bind(gSky.mVOSkyp->mFace[LLVOSky::FACE_MOON]->getTexture(LLRender::ALTERNATE_DIFFUSE_MAP));
renderHeavenlyBodies();
renderStars();
gGL.popMatrix();
}
renderSkyClouds(origin, camHeightLocal);
gGL.getTexUnit(0)->unbind(LLTexUnit::TT_TEXTURE);
}
void LLDrawPoolWLSky::prerender()
{
//LL_INFOS() << "wlsky prerendering pass." << LL_ENDL;
}
LLDrawPoolWLSky *LLDrawPoolWLSky::instancePool()
{
return new LLDrawPoolWLSky();
}
LLViewerTexture* LLDrawPoolWLSky::getTexture()
{
return NULL;
}
void LLDrawPoolWLSky::resetDrawOrders()
{
}
//static
void LLDrawPoolWLSky::cleanupGL()
{
}
//static
void LLDrawPoolWLSky::restoreGL()
{
}