phoenix-firestorm/indra/newview/app_settings/shaders/class3/environment/waterF.glsl

350 lines
10 KiB
GLSL

/**
* @file waterF.glsl
*
* $LicenseInfo:firstyear=2022&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2022, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
// class3/environment/waterF.glsl
#define WATER_MINIMAL 1
out vec4 frag_color;
#ifdef HAS_SUN_SHADOW
float sampleDirectionalShadow(vec3 pos, vec3 norm, vec2 pos_screen);
#endif
vec3 scaleSoftClipFragLinear(vec3 l);
void calcAtmosphericVarsLinear(vec3 inPositionEye, vec3 norm, vec3 light_dir, out vec3 sunlit, out vec3 amblit, out vec3 atten, out vec3 additive);
vec4 applyWaterFogViewLinear(vec3 pos, vec4 color);
void mirrorClip(vec3 pos);
// PBR interface
vec2 BRDF(float NoV, float roughness);
void calcDiffuseSpecular(vec3 baseColor, float metallic, inout vec3 diffuseColor, inout vec3 specularColor);
void pbrIbl(vec3 diffuseColor,
vec3 specularColor,
vec3 radiance, // radiance map sample
vec3 irradiance, // irradiance map sample
float ao, // ambient occlusion factor
float nv, // normal dot view vector
float perceptualRoughness,
out vec3 diffuse,
out vec3 specular);
void pbrPunctual(vec3 diffuseColor, vec3 specularColor,
float perceptualRoughness,
float metallic,
vec3 n, // normal
vec3 v, // surface point to camera
vec3 l, // surface point to light
out float nl,
out vec3 diff,
out vec3 spec);
vec3 pbrBaseLight(vec3 diffuseColor,
vec3 specularColor,
float metallic,
vec3 pos,
vec3 norm,
float perceptualRoughness,
vec3 light_dir,
vec3 sunlit,
float scol,
vec3 radiance,
vec3 irradiance,
vec3 colorEmissive,
float ao,
vec3 additive,
vec3 atten);
uniform sampler2D bumpMap;
uniform sampler2D bumpMap2;
uniform float blend_factor;
#ifdef TRANSPARENT_WATER
uniform sampler2D screenTex;
uniform sampler2D depthMap;
#endif
uniform sampler2D exclusionTex;
uniform int classic_mode;
uniform vec3 lightDir;
uniform vec3 specular;
uniform float blurMultiplier;
uniform float refScale;
uniform float kd;
uniform vec3 normScale;
uniform float fresnelScale;
uniform float fresnelOffset;
//bigWave is (refCoord.w, view.w);
in vec4 refCoord;
in vec4 littleWave;
in vec4 view;
in vec3 vary_position;
in vec3 vary_normal;
in vec3 vary_tangent;
in vec3 vary_light_dir;
vec3 BlendNormal(vec3 bump1, vec3 bump2)
{
vec3 n = mix(bump1, bump2, blend_factor);
return n;
}
vec3 srgb_to_linear(vec3 col);
vec3 linear_to_srgb(vec3 col);
vec3 atmosLighting(vec3 light);
vec3 scaleSoftClip(vec3 light);
vec3 toneMapNoExposure(vec3 color);
vec3 vN, vT, vB;
vec3 transform_normal(vec3 vNt)
{
return normalize(vNt.x * vT + vNt.y * vB + vNt.z * vN);
}
void sampleReflectionProbesWater(inout vec3 ambenv, inout vec3 glossenv,
vec2 tc, vec3 pos, vec3 norm, float glossiness, vec3 amblit_linear);
void sampleReflectionProbes(inout vec3 ambenv, inout vec3 glossenv,
vec2 tc, vec3 pos, vec3 norm, float glossiness, bool transparent, vec3 amblit_linear);
void sampleReflectionProbesLegacy(inout vec3 ambenv, inout vec3 glossenv, inout vec3 legacyenv,
vec2 tc, vec3 pos, vec3 norm, float glossiness, float envIntensity, bool transparent, vec3 amblit);
vec3 getPositionWithNDC(vec3 ndc);
void generateWaveNormals(out vec3 wave1, out vec3 wave2, out vec3 wave3)
{
// Generate all of our wave normals.
// We layer these back and forth.
vec2 bigwave = vec2(refCoord.w, view.w);
vec3 wave1_a = texture(bumpMap, bigwave).xyz * 2.0 - 1.0;
vec3 wave2_a = texture(bumpMap, littleWave.xy).xyz * 2.0 - 1.0;
vec3 wave3_a = texture(bumpMap, littleWave.zw).xyz * 2.0 - 1.0;
vec3 wave1_b = texture(bumpMap2, bigwave).xyz * 2.0 - 1.0;
vec3 wave2_b = texture(bumpMap2, littleWave.xy).xyz * 2.0 - 1.0;
vec3 wave3_b = texture(bumpMap2, littleWave.zw).xyz * 2.0 - 1.0;
wave1 = BlendNormal(wave1_a, wave1_b);
wave2 = BlendNormal(wave2_a, wave2_b);
wave3 = BlendNormal(wave3_a, wave3_b);
}
void calculateFresnelFactors(out vec3 df3, out vec2 df2, vec3 viewVec, vec3 wave1, vec3 wave2, vec3 wave3, vec3 wavef)
{
// We calculate the fresnel here.
// We do this by getting the dot product for each sets of waves, and applying scale and offset.
df3 = max(vec3(0), vec3(
dot(viewVec, wave1),
dot(viewVec, (wave2 + wave3) * 0.5),
dot(viewVec, wave3)
) * fresnelScale + fresnelOffset);
df3 *= df3;
df2 = max(vec2(0), vec2(
df3.x + df3.y + df3.z,
dot(viewVec, wavef) * fresnelScale + fresnelOffset
));
}
void main()
{
mirrorClip(vary_position);
vN = vary_normal;
vT = vary_tangent;
vB = cross(vN, vT);
vec3 pos = vary_position.xyz;
float linear_depth = 1 / -pos.z;
float dist = length(pos.xyz);
//normalize view vector
vec3 viewVec = normalize(pos.xyz);
// Setup our waves.
vec3 wave1 = vec3(0, 0, 1);
vec3 wave2 = vec3(0, 0, 1);
vec3 wave3 = vec3(0, 0, 1);
generateWaveNormals(wave1, wave2, wave3);
float dmod = sqrt(dist);
vec2 distort = (refCoord.xy/refCoord.z) * 0.5 + 0.5;
vec3 wavef = (wave1 + wave2 * 0.4 + wave3 * 0.6) * 0.5;
vec3 df3 = vec3(0);
vec2 df2 = vec2(0);
vec3 sunlit;
vec3 amblit;
vec3 additive;
vec3 atten;
calcAtmosphericVarsLinear(pos.xyz, wavef, vary_light_dir, sunlit, amblit, additive, atten);
calculateFresnelFactors(df3, df2, normalize(view.xyz), wave1, wave2, wave3, wavef);
vec3 waver = wavef*3;
vec3 up = transform_normal(vec3(0,0,1));
float vdu = -dot(viewVec, up)*2;
vec3 wave_ibl = wavef * normScale;
wave_ibl.z *= 2.0;
wave_ibl = transform_normal(normalize(wave_ibl));
vec3 norm = transform_normal(normalize(wavef));
vdu = clamp(vdu, 0, 1);
//wavef.z *= max(vdu*vdu*vdu, 0.1);
wavef = normalize(wavef);
//wavef = vec3(0, 0, 1);
wavef = transform_normal(wavef);
float dist2 = dist;
dist = max(dist, 5.0);
//figure out distortion vector (ripply)
vec2 distort2 = distort + waver.xy * refScale / max(dmod, 1.0) * 2;
distort2 = clamp(distort2, vec2(0), vec2(0.999));
float shadow = 1.0f;
float water_mask = texture(exclusionTex, distort).r;
#ifdef HAS_SUN_SHADOW
shadow = sampleDirectionalShadow(pos.xyz, norm.xyz, distort);
#endif
vec3 sunlit_linear = sunlit;
float fade = 1;
#ifdef TRANSPARENT_WATER
float depth = texture(depthMap, distort).r;
vec3 refPos = getPositionWithNDC(vec3(distort*2.0-vec2(1.0), depth*2.0-1.0));
// Calculate some distance fade in the water to better assist with refraction blending and reducing the refraction texture's "disconnect".
#ifdef SHORELINE_FADE
fade = max(0,min(1, (pos.z - refPos.z) / 10))
#else
fade = 1 * water_mask;
#endif
distort2 = mix(distort, distort2, min(1, fade * 10));
depth = texture(depthMap, distort2).r;
refPos = getPositionWithNDC(vec3(distort2 * 2.0 - vec2(1.0), depth * 2.0 - 1.0));
if (pos.z < refPos.z - 0.05)
{
distort2 = distort;
}
vec4 fb = texture(screenTex, distort2);
#else
vec4 fb = applyWaterFogViewLinear(viewVec*2048.0, vec4(1.0));
if (water_mask < 1)
discard;
#endif
float metallic = 1.0;
float perceptualRoughness = blurMultiplier;
float gloss = 1 - perceptualRoughness;
vec3 irradiance = vec3(0);
vec3 radiance = vec3(0);
vec3 legacyenv = vec3(0);
// TODO: Make this an option.
#ifdef WATER_MINIMAL
sampleReflectionProbesWater(irradiance, radiance, distort2, pos.xyz, wave_ibl.xyz, gloss, amblit);
#elif WATER_MINIMAL_PLUS
sampleReflectionProbes(irradiance, radiance, distort2, pos.xyz, wave_ibl.xyz, gloss, false, amblit);
#endif
vec3 diffuseColor = vec3(0);
vec3 specularColor = vec3(0);
vec3 specular_linear = srgb_to_linear(specular);
calcDiffuseSpecular(specular_linear, metallic, diffuseColor, specularColor);
vec3 v = -normalize(pos.xyz);
vec3 colorEmissive = vec3(0);
float ao = 1.0;
vec3 light_dir = transform_normal(lightDir);
float NdotV = clamp(abs(dot(norm, v)), 0.001, 1.0);
float nl = 0;
vec3 diffPunc = vec3(0);
vec3 specPunc = vec3(0);
pbrPunctual(diffuseColor, specularColor, perceptualRoughness, metallic, normalize(wavef+up*max(dist, 32.0)/32.0*(1.0-vdu)), v, normalize(light_dir), nl, diffPunc, specPunc);
vec3 punctual = clamp(nl * (diffPunc + specPunc), vec3(0), vec3(10)) * sunlit_linear * shadow * atten;
radiance *= df2.y;
//radiance = toneMapNoExposure(radiance);
vec3 color = vec3(0);
color = mix(fb.rgb, radiance, min(1, df2.x)) + punctual.rgb;
float water_haze_scale = 4;
if (classic_mode > 0)
water_haze_scale = 1;
// This looks super janky, but we do this to restore water haze in the distance.
// These values were finagled in to try and bring back some of the distant brightening on legacy water. Also works reasonably well on PBR skies such as PBR midday.
// color = mix(color, additive * water_haze_scale, (1 - atten));
// We shorten the fade here at the shoreline so it doesn't appear too soft from a distance.
fade *= 60;
fade = min(1, fade);
color = mix(fb.rgb, color, fade);
float spec = min(max(max(punctual.r, punctual.g), punctual.b), 0);
frag_color = min(vec4(1),max(vec4(color.rgb, spec * water_mask), vec4(0)));
}