phoenix-firestorm/indra/llcommon/llfasttimer.cpp

492 lines
15 KiB
C++

/**
* @file llfasttimer.cpp
* @brief Implementation of the fast timer.
*
* $LicenseInfo:firstyear=2004&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2010, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
#include "linden_common.h"
#include "llfasttimer.h"
#include "llmemory.h"
#include "llprocessor.h"
#include "llsingleton.h"
#include "lltreeiterators.h"
#include "llsdserialize.h"
#include "llunits.h"
#include "llsd.h"
#include "lltracerecording.h"
#include "lltracethreadrecorder.h"
#include <boost/bind.hpp>
#include <queue>
#if LL_WINDOWS
#include "lltimer.h"
#elif LL_LINUX
#include <sys/time.h>
#include <sched.h>
#include "lltimer.h"
#elif LL_DARWIN
#include <sys/time.h>
#include "lltimer.h" // get_clock_count()
#include <mach/mach_time.h>
#else
#error "architecture not supported"
#endif
namespace LLTrace
{
//////////////////////////////////////////////////////////////////////////////
// statics
bool BlockTimer::sLog = false;
std::string BlockTimer::sLogName = "";
bool BlockTimer::sMetricLog = false;
#ifdef LL_DARWIN
//AO: Added ability to test this separately from other OS's
#define USE_RDTSC 0
#else
#endif
#if LL_LINUX || LL_DARWIN // AO: Add LL_DARWIN to this list now
U64 BlockTimer::sClockResolution = 1000000000; // Nanosecond resolution
#else
U64 BlockTimer::sClockResolution = 1000000; // Microsecond resolution
#endif
static LLMutex* sLogLock = NULL;
static std::queue<LLSD> sLogQueue;
block_timer_tree_df_iterator_t begin_block_timer_tree_df(BlockTimerStatHandle& id)
{
return block_timer_tree_df_iterator_t(&id,
boost::bind(boost::mem_fn(&BlockTimerStatHandle::beginChildren), _1),
boost::bind(boost::mem_fn(&BlockTimerStatHandle::endChildren), _1));
}
block_timer_tree_df_iterator_t end_block_timer_tree_df()
{
return block_timer_tree_df_iterator_t();
}
block_timer_tree_df_post_iterator_t begin_block_timer_tree_df_post(BlockTimerStatHandle& id)
{
return block_timer_tree_df_post_iterator_t(&id,
boost::bind(boost::mem_fn(&BlockTimerStatHandle::beginChildren), _1),
boost::bind(boost::mem_fn(&BlockTimerStatHandle::endChildren), _1));
}
block_timer_tree_df_post_iterator_t end_block_timer_tree_df_post()
{
return block_timer_tree_df_post_iterator_t();
}
block_timer_tree_bf_iterator_t begin_block_timer_tree_bf(BlockTimerStatHandle& id)
{
return block_timer_tree_bf_iterator_t(&id,
boost::bind(boost::mem_fn(&BlockTimerStatHandle::beginChildren), _1),
boost::bind(boost::mem_fn(&BlockTimerStatHandle::endChildren), _1));
}
block_timer_tree_bf_iterator_t end_block_timer_tree_bf()
{
return block_timer_tree_bf_iterator_t();
}
block_timer_tree_df_iterator_t begin_timer_tree(BlockTimerStatHandle& id)
{
return block_timer_tree_df_iterator_t(&id,
boost::bind(boost::mem_fn(&BlockTimerStatHandle::beginChildren), _1),
boost::bind(boost::mem_fn(&BlockTimerStatHandle::endChildren), _1));
}
block_timer_tree_df_iterator_t end_timer_tree()
{
return block_timer_tree_df_iterator_t();
}
// sort child timers by name
struct SortTimerByName
{
bool operator()(const BlockTimerStatHandle* i1, const BlockTimerStatHandle* i2)
{
return i1->getName() < i2->getName();
}
};
static BlockTimerStatHandle sRootTimer("root", NULL);
BlockTimerStatHandle& BlockTimer::getRootTimeBlock()
{
return sRootTimer;
}
void BlockTimer::pushLog(LLSD log)
{
LLMutexLock lock(sLogLock);
sLogQueue.push(log);
}
void BlockTimer::setLogLock(LLMutex* lock)
{
sLogLock = lock;
}
//static
#if (LL_DARWIN || LL_LINUX) && !(defined(__i386__) || defined(__amd64__))
U64 BlockTimer::countsPerSecond()
{
return sClockResolution;
}
#else // windows or x86-mac or x86-linux
U64 BlockTimer::countsPerSecond()
{
#if LL_FASTTIMER_USE_RDTSC || !LL_WINDOWS
//getCPUFrequency returns MHz and sCPUClockFrequency wants to be in Hz
static LLUnit<U64, LLUnits::Hertz> sCPUClockFrequency = LLProcessorInfo().getCPUFrequency();
return sCPUClockFrequency.value();
#else
// If we're not using RDTSC, each fasttimer tick is just a performance counter tick.
// Not redefining the clock frequency itself (in llprocessor.cpp/calculate_cpu_frequency())
// since that would change displayed MHz stats for CPUs
static bool firstcall = true;
static U64 sCPUClockFrequency;
if (firstcall)
{
QueryPerformanceFrequency((LARGE_INTEGER*)&sCPUClockFrequency);
firstcall = false;
}
return sCPUClockFrequency.value();
#endif
}
#endif
BlockTimerStatHandle::BlockTimerStatHandle(const char* name, const char* description)
: StatType<TimeBlockAccumulator>(name, description)
{}
TimeBlockTreeNode& BlockTimerStatHandle::getTreeNode() const
{
TimeBlockTreeNode* nodep = LLTrace::get_thread_recorder()->getTimeBlockTreeNode(getIndex());
llassert(nodep);
return *nodep;
}
void BlockTimer::bootstrapTimerTree()
{
for (auto& base : BlockTimerStatHandle::instance_snapshot())
{
// because of indirect derivation from LLInstanceTracker, have to downcast
BlockTimerStatHandle& timer = static_cast<BlockTimerStatHandle&>(base);
if (&timer == &BlockTimer::getRootTimeBlock()) continue;
// bootstrap tree construction by attaching to last timer to be on stack
// when this timer was called
if (timer.getParent() == &BlockTimer::getRootTimeBlock())
{
TimeBlockAccumulator& accumulator = timer.getCurrentAccumulator();
if (accumulator.mLastCaller)
{
timer.setParent(accumulator.mLastCaller);
accumulator.mParent = accumulator.mLastCaller;
}
// no need to push up tree on first use, flag can be set spuriously
accumulator.mMoveUpTree = false;
}
}
}
// bump timers up tree if they have been flagged as being in the wrong place
// do this in a bottom up order to promote descendants first before promoting ancestors
// this preserves partial order derived from current frame's observations
void BlockTimer::incrementalUpdateTimerTree()
{
for(block_timer_tree_df_post_iterator_t it = begin_block_timer_tree_df_post(BlockTimer::getRootTimeBlock());
it != end_block_timer_tree_df_post();
++it)
{
BlockTimerStatHandle* timerp = *it;
// sort timers by time last called, so call graph makes sense
TimeBlockTreeNode& tree_node = timerp->getTreeNode();
if (tree_node.mNeedsSorting)
{
std::sort(tree_node.mChildren.begin(), tree_node.mChildren.end(), SortTimerByName());
}
// skip root timer
if (timerp != &BlockTimer::getRootTimeBlock())
{
TimeBlockAccumulator& accumulator = timerp->getCurrentAccumulator();
if (accumulator.mMoveUpTree)
{
// since ancestors have already been visited, re-parenting won't affect tree traversal
//step up tree, bringing our descendants with us
LL_DEBUGS("FastTimers") << "Moving " << timerp->getName() << " from child of " << timerp->getParent()->getName() <<
" to child of " << timerp->getParent()->getParent()->getName() << LL_ENDL;
timerp->setParent(timerp->getParent()->getParent());
accumulator.mParent = timerp->getParent();
accumulator.mMoveUpTree = false;
// don't bubble up any ancestors until descendants are done bubbling up
// as ancestors may call this timer only on certain paths, so we want to resolve
// child-most block locations before their parents
it.skipAncestors();
}
}
}
}
void BlockTimer::updateTimes()
{
// walk up stack of active timers and accumulate current time while leaving timing structures active
BlockTimerStackRecord* stack_record = LLThreadLocalSingletonPointer<BlockTimerStackRecord>::getInstance();
if (!stack_record) return;
U64 cur_time = getCPUClockCount64();
BlockTimer* cur_timer = stack_record->mActiveTimer;
TimeBlockAccumulator* accumulator = &stack_record->mTimeBlock->getCurrentAccumulator();
while(cur_timer
&& cur_timer->mParentTimerData.mActiveTimer != cur_timer) // root defined by parent pointing to self
{
U64 cumulative_time_delta = cur_time - cur_timer->mStartTime;
cur_timer->mStartTime = cur_time;
accumulator->mTotalTimeCounter += cumulative_time_delta;
accumulator->mSelfTimeCounter += cumulative_time_delta - stack_record->mChildTime;
stack_record->mChildTime = 0;
stack_record = &cur_timer->mParentTimerData;
accumulator = &stack_record->mTimeBlock->getCurrentAccumulator();
cur_timer = stack_record->mActiveTimer;
stack_record->mChildTime += cumulative_time_delta;
}
}
static LLTrace::BlockTimerStatHandle FTM_PROCESS_TIMES("Process FastTimer Times");
// not thread safe, so only call on main thread
//static
void BlockTimer::processTimes()
{
#if LL_TRACE_ENABLED
LL_RECORD_BLOCK_TIME(FTM_PROCESS_TIMES);
get_clock_count(); // good place to calculate clock frequency
// set up initial tree
bootstrapTimerTree();
incrementalUpdateTimerTree();
updateTimes();
// reset for next frame
for (auto& base : BlockTimerStatHandle::instance_snapshot())
{
// because of indirect derivation from LLInstanceTracker, have to downcast
BlockTimerStatHandle& timer = static_cast<BlockTimerStatHandle&>(base);
TimeBlockAccumulator& accumulator = timer.getCurrentAccumulator();
accumulator.mLastCaller = NULL;
accumulator.mMoveUpTree = false;
}
#endif
}
std::vector<BlockTimerStatHandle*>::iterator BlockTimerStatHandle::beginChildren()
{
return getTreeNode().mChildren.begin();
}
std::vector<BlockTimerStatHandle*>::iterator BlockTimerStatHandle::endChildren()
{
return getTreeNode().mChildren.end();
}
std::vector<BlockTimerStatHandle*>& BlockTimerStatHandle::getChildren()
{
return getTreeNode().mChildren;
}
bool BlockTimerStatHandle::hasChildren()
{
return ! getTreeNode().mChildren.empty();
}
// static
void BlockTimer::logStats()
{
// get ready for next frame
if (sLog)
{ //output current frame counts to performance log
static S32 call_count = 0;
if (call_count % 100 == 0)
{
LL_DEBUGS("FastTimers") << "countsPerSecond: " << countsPerSecond() << LL_ENDL;
LL_DEBUGS("FastTimers") << "LLProcessorInfo().getCPUFrequency() " << LLProcessorInfo().getCPUFrequency() << LL_ENDL;
LL_DEBUGS("FastTimers") << "getCPUClockCount32() " << getCPUClockCount32() << LL_ENDL;
LL_DEBUGS("FastTimers") << "getCPUClockCount64() " << getCPUClockCount64() << LL_ENDL;
LL_DEBUGS("FastTimers") << "elapsed sec " << ((F64)getCPUClockCount64() / (F64HertzImplicit)LLProcessorInfo().getCPUFrequency()) << LL_ENDL;
}
call_count++;
F64Seconds total_time(0);
LLSD sd;
{
for (auto& base : BlockTimerStatHandle::instance_snapshot())
{
// because of indirect derivation from LLInstanceTracker, have to downcast
BlockTimerStatHandle& timer = static_cast<BlockTimerStatHandle&>(base);
LLTrace::PeriodicRecording& frame_recording = LLTrace::get_frame_recording();
sd[timer.getName()]["Time"] = (LLSD::Real) (frame_recording.getLastRecording().getSum(timer).value());
sd[timer.getName()]["Calls"] = (LLSD::Integer) (frame_recording.getLastRecording().getSum(timer.callCount()));
// computing total time here because getting the root timer's getCountHistory
// doesn't work correctly on the first frame
total_time += frame_recording.getLastRecording().getSum(timer);
}
}
sd["Total"]["Time"] = (LLSD::Real) total_time.value();
sd["Total"]["Calls"] = (LLSD::Integer) 1;
{
LLMutexLock lock(sLogLock);
sLogQueue.push(sd);
}
}
}
//static
void BlockTimer::dumpCurTimes()
{
LLTrace::PeriodicRecording& frame_recording = LLTrace::get_frame_recording();
LLTrace::Recording& last_frame_recording = frame_recording.getLastRecording();
// walk over timers in depth order and output timings
for(block_timer_tree_df_iterator_t it = begin_timer_tree(BlockTimer::getRootTimeBlock());
it != end_timer_tree();
++it)
{
BlockTimerStatHandle* timerp = (*it);
F64Seconds total_time = last_frame_recording.getSum(*timerp);
U32 num_calls = last_frame_recording.getSum(timerp->callCount());
// Don't bother with really brief times, keep output concise
if (total_time < F32Milliseconds(0.1f)) continue;
std::ostringstream out_str;
BlockTimerStatHandle* parent_timerp = timerp;
while(parent_timerp && parent_timerp != parent_timerp->getParent())
{
out_str << "\t";
parent_timerp = parent_timerp->getParent();
}
out_str << timerp->getName() << " "
<< std::setprecision(3) << total_time.valueInUnits<LLUnits::Milliseconds>() << " ms, "
<< num_calls << " calls";
LL_INFOS() << out_str.str() << LL_ENDL;
}
}
//static
void BlockTimer::writeLog(std::ostream& os)
{
while (!sLogQueue.empty())
{
LLSD& sd = sLogQueue.front();
LLSDSerialize::toXML(sd, os);
LLMutexLock lock(sLogLock);
sLogQueue.pop();
}
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// TimeBlockAccumulator
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
TimeBlockAccumulator::TimeBlockAccumulator()
: mTotalTimeCounter(0),
mSelfTimeCounter(0),
mCalls(0),
mLastCaller(NULL),
mActiveCount(0),
mMoveUpTree(false),
mParent(NULL)
{}
void TimeBlockAccumulator::addSamples( const TimeBlockAccumulator& other, EBufferAppendType append_type )
{
#if LL_TRACE_ENABLED
// we can't merge two unrelated time block samples, as that will screw with the nested timings
// due to the call hierarchy of each thread
llassert(append_type == SEQUENTIAL);
mTotalTimeCounter += other.mTotalTimeCounter;
mSelfTimeCounter += other.mSelfTimeCounter;
mCalls += other.mCalls;
mLastCaller = other.mLastCaller;
mActiveCount = other.mActiveCount;
mMoveUpTree = other.mMoveUpTree;
mParent = other.mParent;
#endif
}
void TimeBlockAccumulator::reset( const TimeBlockAccumulator* other )
{
mCalls = 0;
mSelfTimeCounter = 0;
mTotalTimeCounter = 0;
if (other)
{
mLastCaller = other->mLastCaller;
mActiveCount = other->mActiveCount;
mMoveUpTree = other->mMoveUpTree;
mParent = other->mParent;
}
}
F64Seconds BlockTimer::getElapsedTime()
{
U64 total_time = getCPUClockCount64() - mStartTime;
return F64Seconds((F64)total_time / (F64)BlockTimer::countsPerSecond());
}
} // namespace LLTrace