phoenix-firestorm/indra/llcommon/lltracerecording.h

727 lines
27 KiB
C++

/**
* @file lltracerecording.h
* @brief Sampling object for collecting runtime statistics originating from lltrace.
*
* $LicenseInfo:firstyear=2001&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2012, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
#ifndef LL_LLTRACERECORDING_H
#define LL_LLTRACERECORDING_H
#include "stdtypes.h"
#include "llpreprocessor.h"
#include "lltimer.h"
#include "lltraceaccumulators.h"
#include "llpointer.h"
#include <limits>
#ifdef LL_WINDOWS
#pragma warning(push)
#pragma warning(disable : 4244) // possible loss of data on conversions
#endif
class LLStopWatchControlsMixinCommon
{
public:
virtual ~LLStopWatchControlsMixinCommon() {}
enum EPlayState
{
STOPPED,
PAUSED,
STARTED
};
void start(); // moves to started state, resetting if stopped
void stop(); // moves to stopped state
void pause(); // moves to paused state, unless stopped
void unpause(); // moves to started state if paused
void resume(); // moves to started state, without resetting
void restart(); // moves to started state, always resetting
void reset(); // resets
bool isStarted() const { return mPlayState == STARTED; }
bool isPaused() const { return mPlayState == PAUSED; }
bool isStopped() const { return mPlayState == STOPPED; }
EPlayState getPlayState() const { return mPlayState; }
// force play state to specific value by calling appropriate handle* methods
void setPlayState(EPlayState state);
protected:
LLStopWatchControlsMixinCommon()
: mPlayState(STOPPED)
{}
private:
// override these methods to provide started/stopped semantics
// activate behavior (without reset)
virtual void handleStart() = 0;
// deactivate behavior
virtual void handleStop() = 0;
// clear accumulated state, may be called while started
virtual void handleReset() = 0;
EPlayState mPlayState;
};
template<typename DERIVED>
class LLStopWatchControlsMixin
: public LLStopWatchControlsMixinCommon
{
public:
typedef LLStopWatchControlsMixin<DERIVED> self_t;
virtual void splitTo(DERIVED& other)
{
EPlayState play_state = getPlayState();
stop();
other.reset();
handleSplitTo(other);
other.setPlayState(play_state);
}
virtual void splitFrom(DERIVED& other)
{
static_cast<self_t&>(other).handleSplitTo(*static_cast<DERIVED*>(this));
}
private:
self_t& operator = (const self_t& other)
{
// don't do anything, derived class must implement logic
}
// atomically stop this object while starting the other
// no data can be missed in between stop and start
virtual void handleSplitTo(DERIVED& other) {};
};
namespace LLTrace
{
template<typename T>
class StatType;
template<typename T>
class CountStatHandle;
template<typename T>
class SampleStatHandle;
template<typename T>
class EventStatHandle;
template<typename T>
struct RelatedTypes
{
typedef F64 fractional_t;
typedef T sum_t;
};
template<typename T, typename UNIT_T>
struct RelatedTypes<LLUnit<T, UNIT_T> >
{
typedef LLUnit<typename RelatedTypes<T>::fractional_t, UNIT_T> fractional_t;
typedef LLUnit<typename RelatedTypes<T>::sum_t, UNIT_T> sum_t;
};
template<>
struct RelatedTypes<bool>
{
typedef F64 fractional_t;
typedef S32 sum_t;
};
class Recording
: public LLStopWatchControlsMixin<Recording>
{
public:
Recording(EPlayState state = LLStopWatchControlsMixinCommon::STOPPED);
Recording(const Recording& other);
~Recording();
Recording& operator = (const Recording& other);
// accumulate data from subsequent, non-overlapping recording
void appendRecording(Recording& other);
// grab latest recorded data
void update();
// ensure that buffers are exclusively owned by this recording
void makeUnique() { mBuffers.makeUnique(); }
// Timer accessors
bool hasValue(const StatType<TimeBlockAccumulator>& stat);
F64Seconds getSum(const StatType<TimeBlockAccumulator>& stat);
F64Seconds getSum(const StatType<TimeBlockAccumulator::SelfTimeFacet>& stat);
S32 getSum(const StatType<TimeBlockAccumulator::CallCountFacet>& stat);
F64Seconds getPerSec(const StatType<TimeBlockAccumulator>& stat);
F64Seconds getPerSec(const StatType<TimeBlockAccumulator::SelfTimeFacet>& stat);
F32 getPerSec(const StatType<TimeBlockAccumulator::CallCountFacet>& stat);
// CountStatHandle accessors
bool hasValue(const StatType<CountAccumulator>& stat);
F64 getSum(const StatType<CountAccumulator>& stat);
template <typename T>
typename RelatedTypes<T>::sum_t getSum(const CountStatHandle<T>& stat)
{
return (typename RelatedTypes<T>::sum_t)getSum(static_cast<const StatType<CountAccumulator>&> (stat));
}
F64 getPerSec(const StatType<CountAccumulator>& stat);
template <typename T>
typename RelatedTypes<T>::fractional_t getPerSec(const CountStatHandle<T>& stat)
{
return (typename RelatedTypes<T>::fractional_t)getPerSec(static_cast<const StatType<CountAccumulator>&> (stat));
}
S32 getSampleCount(const StatType<CountAccumulator>& stat);
// SampleStatHandle accessors
bool hasValue(const StatType<SampleAccumulator>& stat);
F64 getMin(const StatType<SampleAccumulator>& stat);
template <typename T>
T getMin(const SampleStatHandle<T>& stat)
{
return (T)getMin(static_cast<const StatType<SampleAccumulator>&> (stat));
}
F64 getMax(const StatType<SampleAccumulator>& stat);
template <typename T>
T getMax(const SampleStatHandle<T>& stat)
{
return (T)getMax(static_cast<const StatType<SampleAccumulator>&> (stat));
}
F64 getMean(const StatType<SampleAccumulator>& stat);
template <typename T>
typename RelatedTypes<T>::fractional_t getMean(SampleStatHandle<T>& stat)
{
return (typename RelatedTypes<T>::fractional_t)getMean(static_cast<const StatType<SampleAccumulator>&> (stat));
}
F64 getStandardDeviation(const StatType<SampleAccumulator>& stat);
template <typename T>
typename RelatedTypes<T>::fractional_t getStandardDeviation(const SampleStatHandle<T>& stat)
{
return (typename RelatedTypes<T>::fractional_t)getStandardDeviation(static_cast<const StatType<SampleAccumulator>&> (stat));
}
F64 getLastValue(const StatType<SampleAccumulator>& stat);
template <typename T>
T getLastValue(const SampleStatHandle<T>& stat)
{
return (T)getLastValue(static_cast<const StatType<SampleAccumulator>&> (stat));
}
S32 getSampleCount(const StatType<SampleAccumulator>& stat);
// EventStatHandle accessors
bool hasValue(const StatType<EventAccumulator>& stat);
F64 getSum(const StatType<EventAccumulator>& stat);
template <typename T>
typename RelatedTypes<T>::sum_t getSum(const EventStatHandle<T>& stat)
{
return (typename RelatedTypes<T>::sum_t)getSum(static_cast<const StatType<EventAccumulator>&> (stat));
}
F64 getMin(const StatType<EventAccumulator>& stat);
template <typename T>
T getMin(const EventStatHandle<T>& stat)
{
return (T)getMin(static_cast<const StatType<EventAccumulator>&> (stat));
}
F64 getMax(const StatType<EventAccumulator>& stat);
template <typename T>
T getMax(const EventStatHandle<T>& stat)
{
return (T)getMax(static_cast<const StatType<EventAccumulator>&> (stat));
}
F64 getMean(const StatType<EventAccumulator>& stat);
template <typename T>
typename RelatedTypes<T>::fractional_t getMean(EventStatHandle<T>& stat)
{
return (typename RelatedTypes<T>::fractional_t)getMean(static_cast<const StatType<EventAccumulator>&> (stat));
}
F64 getStandardDeviation(const StatType<EventAccumulator>& stat);
template <typename T>
typename RelatedTypes<T>::fractional_t getStandardDeviation(const EventStatHandle<T>& stat)
{
return (typename RelatedTypes<T>::fractional_t)getStandardDeviation(static_cast<const StatType<EventAccumulator>&> (stat));
}
F64 getLastValue(const StatType<EventAccumulator>& stat);
template <typename T>
T getLastValue(const EventStatHandle<T>& stat)
{
return (T)getLastValue(static_cast<const StatType<EventAccumulator>&> (stat));
}
S32 getSampleCount(const StatType<EventAccumulator>& stat);
F64Seconds getDuration() const { return mElapsedSeconds; }
protected:
friend class ThreadRecorder;
// implementation for LLStopWatchControlsMixin
/*virtual*/ void handleStart();
/*virtual*/ void handleStop();
/*virtual*/ void handleReset();
/*virtual*/ void handleSplitTo(Recording& other);
// returns data for current thread
class ThreadRecorder* getThreadRecorder();
LLTimer mSamplingTimer;
F64Seconds mElapsedSeconds;
LLCopyOnWritePointer<AccumulatorBufferGroup> mBuffers;
AccumulatorBufferGroup* mActiveBuffers;
};
class LL_COMMON_API PeriodicRecording
: public LLStopWatchControlsMixin<PeriodicRecording>
{
public:
PeriodicRecording(size_t num_periods, EPlayState state = STOPPED);
~PeriodicRecording();
void nextPeriod();
auto getNumRecordedPeriods()
{
// current period counts if not active
return mNumRecordedPeriods + (isStarted() ? 0 : 1);
}
F64Seconds getDuration() const;
void appendPeriodicRecording(PeriodicRecording& other);
void appendRecording(Recording& recording);
Recording& getLastRecording();
const Recording& getLastRecording() const;
Recording& getCurRecording();
const Recording& getCurRecording() const;
Recording& getPrevRecording(size_t offset);
const Recording& getPrevRecording(size_t offset) const;
Recording snapshotCurRecording() const;
template <typename T>
auto getSampleCount(const StatType<T>& stat, size_t num_periods = std::numeric_limits<size_t>::max())
{
LL_PROFILE_ZONE_SCOPED_CATEGORY_STATS;
num_periods = llmin(num_periods, getNumRecordedPeriods());
size_t num_samples = 0;
for (size_t i = 1; i <= num_periods; i++)
{
Recording& recording = getPrevRecording(i);
num_samples += recording.getSampleCount(stat);
}
return num_samples;
}
//
// PERIODIC MIN
//
// catch all for stats that have a defined sum
template <typename T>
typename T::value_t getPeriodMin(const StatType<T>& stat, size_t num_periods = std::numeric_limits<size_t>::max())
{
LL_PROFILE_ZONE_SCOPED_CATEGORY_STATS;
num_periods = llmin(num_periods, getNumRecordedPeriods());
bool has_value = false;
typename T::value_t min_val(std::numeric_limits<typename T::value_t>::max());
for (size_t i = 1; i <= num_periods; i++)
{
Recording& recording = getPrevRecording(i);
if (recording.hasValue(stat))
{
min_val = llmin(min_val, recording.getSum(stat));
has_value = true;
}
}
return has_value
? min_val
: T::getDefaultValue();
}
template<typename T>
T getPeriodMin(const CountStatHandle<T>& stat, size_t num_periods = std::numeric_limits<size_t>::max())
{
LL_PROFILE_ZONE_SCOPED_CATEGORY_STATS;
return T(getPeriodMin(static_cast<const StatType<CountAccumulator>&>(stat), num_periods));
}
F64 getPeriodMin(const StatType<SampleAccumulator>& stat, size_t num_periods = std::numeric_limits<size_t>::max());
template<typename T>
T getPeriodMin(const SampleStatHandle<T>& stat, size_t num_periods = std::numeric_limits<size_t>::max())
{
LL_PROFILE_ZONE_SCOPED_CATEGORY_STATS;
return T(getPeriodMin(static_cast<const StatType<SampleAccumulator>&>(stat), num_periods));
}
F64 getPeriodMin(const StatType<EventAccumulator>& stat, size_t num_periods = std::numeric_limits<size_t>::max());
template<typename T>
T getPeriodMin(const EventStatHandle<T>& stat, size_t num_periods = std::numeric_limits<size_t>::max())
{
LL_PROFILE_ZONE_SCOPED_CATEGORY_STATS;
return T(getPeriodMin(static_cast<const StatType<EventAccumulator>&>(stat), num_periods));
}
template <typename T>
typename RelatedTypes<typename T::value_t>::fractional_t getPeriodMinPerSec(const StatType<T>& stat, size_t num_periods = std::numeric_limits<size_t>::max())
{
LL_PROFILE_ZONE_SCOPED_CATEGORY_STATS;
num_periods = llmin(num_periods, getNumRecordedPeriods());
typename RelatedTypes<typename T::value_t>::fractional_t min_val(std::numeric_limits<F64>::max());
for (size_t i = 1; i <= num_periods; i++)
{
Recording& recording = getPrevRecording(i);
min_val = llmin(min_val, recording.getPerSec(stat));
}
return (typename RelatedTypes<typename T::value_t>::fractional_t) min_val;
}
template<typename T>
typename RelatedTypes<T>::fractional_t getPeriodMinPerSec(const CountStatHandle<T>& stat, size_t num_periods = std::numeric_limits<size_t>::max())
{
LL_PROFILE_ZONE_SCOPED_CATEGORY_STATS;
return typename RelatedTypes<T>::fractional_t(getPeriodMinPerSec(static_cast<const StatType<CountAccumulator>&>(stat), num_periods));
}
//
// PERIODIC MAX
//
// catch all for stats that have a defined sum
template <typename T>
typename T::value_t getPeriodMax(const StatType<T>& stat, size_t num_periods = std::numeric_limits<size_t>::max())
{
LL_PROFILE_ZONE_SCOPED_CATEGORY_STATS;
num_periods = llmin(num_periods, getNumRecordedPeriods());
bool has_value = false;
typename T::value_t max_val(std::numeric_limits<typename T::value_t>::min());
for (size_t i = 1; i <= num_periods; i++)
{
Recording& recording = getPrevRecording(i);
if (recording.hasValue(stat))
{
max_val = llmax(max_val, recording.getSum(stat));
has_value = true;
}
}
return has_value
? max_val
: T::getDefaultValue();
}
template<typename T>
T getPeriodMax(const CountStatHandle<T>& stat, size_t num_periods = std::numeric_limits<size_t>::max())
{
LL_PROFILE_ZONE_SCOPED_CATEGORY_STATS;
return T(getPeriodMax(static_cast<const StatType<CountAccumulator>&>(stat), num_periods));
}
F64 getPeriodMax(const StatType<SampleAccumulator>& stat, size_t num_periods = std::numeric_limits<size_t>::max());
template<typename T>
T getPeriodMax(const SampleStatHandle<T>& stat, size_t num_periods = std::numeric_limits<size_t>::max())
{
LL_PROFILE_ZONE_SCOPED_CATEGORY_STATS;
return T(getPeriodMax(static_cast<const StatType<SampleAccumulator>&>(stat), num_periods));
}
F64 getPeriodMax(const StatType<EventAccumulator>& stat, size_t num_periods = std::numeric_limits<size_t>::max());
template<typename T>
T getPeriodMax(const EventStatHandle<T>& stat, size_t num_periods = std::numeric_limits<size_t>::max())
{
LL_PROFILE_ZONE_SCOPED_CATEGORY_STATS;
return T(getPeriodMax(static_cast<const StatType<EventAccumulator>&>(stat), num_periods));
}
template <typename T>
typename RelatedTypes<typename T::value_t>::fractional_t getPeriodMaxPerSec(const StatType<T>& stat, size_t num_periods = std::numeric_limits<size_t>::max())
{
LL_PROFILE_ZONE_SCOPED_CATEGORY_STATS;
num_periods = llmin(num_periods, getNumRecordedPeriods());
F64 max_val = std::numeric_limits<F64>::min();
for (size_t i = 1; i <= num_periods; i++)
{
Recording& recording = getPrevRecording(i);
max_val = llmax(max_val, recording.getPerSec(stat));
}
return (typename RelatedTypes<typename T::value_t>::fractional_t)max_val;
}
template<typename T>
typename RelatedTypes<T>::fractional_t getPeriodMaxPerSec(const CountStatHandle<T>& stat, size_t num_periods = std::numeric_limits<size_t>::max())
{
LL_PROFILE_ZONE_SCOPED_CATEGORY_STATS;
return typename RelatedTypes<T>::fractional_t(getPeriodMaxPerSec(static_cast<const StatType<CountAccumulator>&>(stat), num_periods));
}
//
// PERIODIC MEAN
//
// catch all for stats that have a defined sum
template <typename T>
typename RelatedTypes<typename T::value_t>::fractional_t getPeriodMean(const StatType<T >& stat, size_t num_periods = std::numeric_limits<size_t>::max())
{
LL_PROFILE_ZONE_SCOPED_CATEGORY_STATS;
num_periods = llmin(num_periods, getNumRecordedPeriods());
typename RelatedTypes<typename T::value_t>::fractional_t mean(0);
for (size_t i = 1; i <= num_periods; i++)
{
Recording& recording = getPrevRecording(i);
if (recording.getDuration() > (F32Seconds)0.f)
{
mean += recording.getSum(stat);
}
}
return (num_periods
? typename RelatedTypes<typename T::value_t>::fractional_t(mean / num_periods)
: typename RelatedTypes<typename T::value_t>::fractional_t(NaN));
}
template<typename T>
typename RelatedTypes<T>::fractional_t getPeriodMean(const CountStatHandle<T>& stat, size_t num_periods = std::numeric_limits<size_t>::max())
{
LL_PROFILE_ZONE_SCOPED_CATEGORY_STATS;
return typename RelatedTypes<T>::fractional_t(getPeriodMean(static_cast<const StatType<CountAccumulator>&>(stat), num_periods));
}
F64 getPeriodMean(const StatType<SampleAccumulator>& stat, size_t num_periods = std::numeric_limits<size_t>::max());
template<typename T>
typename RelatedTypes<T>::fractional_t getPeriodMean(const SampleStatHandle<T>& stat, size_t num_periods = std::numeric_limits<size_t>::max())
{
LL_PROFILE_ZONE_SCOPED_CATEGORY_STATS;
return typename RelatedTypes<T>::fractional_t(getPeriodMean(static_cast<const StatType<SampleAccumulator>&>(stat), num_periods));
}
F64 getPeriodMean(const StatType<EventAccumulator>& stat, size_t num_periods = std::numeric_limits<size_t>::max());
template<typename T>
typename RelatedTypes<T>::fractional_t getPeriodMean(const EventStatHandle<T>& stat, size_t num_periods = std::numeric_limits<size_t>::max())
{
LL_PROFILE_ZONE_SCOPED_CATEGORY_STATS;
return typename RelatedTypes<T>::fractional_t(getPeriodMean(static_cast<const StatType<EventAccumulator>&>(stat), num_periods));
}
template <typename T>
typename RelatedTypes<typename T::value_t>::fractional_t getPeriodMeanPerSec(const StatType<T>& stat, size_t num_periods = std::numeric_limits<size_t>::max())
{
LL_PROFILE_ZONE_SCOPED_CATEGORY_STATS;
num_periods = llmin(num_periods, getNumRecordedPeriods());
typename RelatedTypes<typename T::value_t>::fractional_t mean = 0;
for (size_t i = 1; i <= num_periods; i++)
{
Recording& recording = getPrevRecording(i);
if (recording.getDuration() > (F32Seconds)0.f)
{
mean += recording.getPerSec(stat);
}
}
return (num_periods
? typename RelatedTypes<typename T::value_t>::fractional_t(mean / num_periods)
: typename RelatedTypes<typename T::value_t>::fractional_t(NaN));
}
template<typename T>
typename RelatedTypes<T>::fractional_t getPeriodMeanPerSec(const CountStatHandle<T>& stat, size_t num_periods = std::numeric_limits<size_t>::max())
{
LL_PROFILE_ZONE_SCOPED_CATEGORY_STATS;
return typename RelatedTypes<T>::fractional_t(getPeriodMeanPerSec(static_cast<const StatType<CountAccumulator>&>(stat), num_periods));
}
F64 getPeriodMedian( const StatType<SampleAccumulator>& stat, size_t num_periods = std::numeric_limits<size_t>::max());
template <typename T>
typename RelatedTypes<typename T::value_t>::fractional_t getPeriodMedianPerSec(const StatType<T>& stat, size_t num_periods = std::numeric_limits<size_t>::max())
{
LL_PROFILE_ZONE_SCOPED_CATEGORY_STATS;
num_periods = llmin(num_periods, getNumRecordedPeriods());
std::vector <typename RelatedTypes<typename T::value_t>::fractional_t> buf;
for (size_t i = 1; i <= num_periods; i++)
{
Recording& recording = getPrevRecording(i);
if (recording.getDuration() > (F32Seconds)0.f)
{
buf.push_back(recording.getPerSec(stat));
}
}
std::sort(buf.begin(), buf.end());
return typename RelatedTypes<T>::fractional_t((buf.size() % 2 == 0) ? (buf[buf.size() / 2 - 1] + buf[buf.size() / 2]) / 2 : buf[buf.size() / 2]);
}
template<typename T>
typename RelatedTypes<T>::fractional_t getPeriodMedianPerSec(const CountStatHandle<T>& stat, size_t num_periods = std::numeric_limits<size_t>::max())
{
LL_PROFILE_ZONE_SCOPED_CATEGORY_STATS;
return typename RelatedTypes<T>::fractional_t(getPeriodMedianPerSec(static_cast<const StatType<CountAccumulator>&>(stat), num_periods));
}
//
// PERIODIC STANDARD DEVIATION
//
F64 getPeriodStandardDeviation(const StatType<SampleAccumulator>& stat, size_t num_periods = std::numeric_limits<size_t>::max());
template<typename T>
typename RelatedTypes<T>::fractional_t getPeriodStandardDeviation(const SampleStatHandle<T>& stat, size_t num_periods = std::numeric_limits<size_t>::max())
{
LL_PROFILE_ZONE_SCOPED_CATEGORY_STATS;
return typename RelatedTypes<T>::fractional_t(getPeriodStandardDeviation(static_cast<const StatType<SampleAccumulator>&>(stat), num_periods));
}
F64 getPeriodStandardDeviation(const StatType<EventAccumulator>& stat, size_t num_periods = std::numeric_limits<size_t>::max());
template<typename T>
typename RelatedTypes<T>::fractional_t getPeriodStandardDeviation(const EventStatHandle<T>& stat, size_t num_periods = std::numeric_limits<size_t>::max())
{
LL_PROFILE_ZONE_SCOPED_CATEGORY_STATS;
return typename RelatedTypes<T>::fractional_t(getPeriodStandardDeviation(static_cast<const StatType<EventAccumulator>&>(stat), num_periods));
}
private:
// implementation for LLStopWatchControlsMixin
/*virtual*/ void handleStart();
/*virtual*/ void handleStop();
/*virtual*/ void handleReset();
/*virtual*/ void handleSplitTo(PeriodicRecording& other);
// helper methods for wraparound ring-buffer arithmetic
inline
size_t wrapi(size_t i) const
{
return i % mRecordingPeriods.size();
}
inline
size_t nexti(size_t i, size_t offset=1) const
{
return wrapi(i + offset);
}
inline
size_t previ(size_t i, size_t offset=1) const
{
auto num_periods = mRecordingPeriods.size();
// constrain offset
offset = llclamp(offset, 0, num_periods - 1);
// add size() so expression can't go (unsigned) "negative"
return wrapi(i + num_periods - offset);
}
inline
void inci(size_t& i, size_t offset=1) const
{
i = nexti(i, offset);
}
private:
std::vector<Recording> mRecordingPeriods;
const bool mAutoResize;
size_t mCurPeriod;
size_t mNumRecordedPeriods;
};
PeriodicRecording& get_frame_recording();
class ExtendableRecording
: public LLStopWatchControlsMixin<ExtendableRecording>
{
public:
void extend();
Recording& getAcceptedRecording() { return mAcceptedRecording; }
const Recording& getAcceptedRecording() const {return mAcceptedRecording;}
Recording& getPotentialRecording() { return mPotentialRecording; }
const Recording& getPotentialRecording() const { return mPotentialRecording;}
private:
// implementation for LLStopWatchControlsMixin
/*virtual*/ void handleStart();
/*virtual*/ void handleStop();
/*virtual*/ void handleReset();
/*virtual*/ void handleSplitTo(ExtendableRecording& other);
private:
Recording mAcceptedRecording;
Recording mPotentialRecording;
};
class ExtendablePeriodicRecording
: public LLStopWatchControlsMixin<ExtendablePeriodicRecording>
{
public:
ExtendablePeriodicRecording();
void extend();
PeriodicRecording& getResults() { return mAcceptedRecording; }
const PeriodicRecording& getResults() const {return mAcceptedRecording;}
void nextPeriod() { mPotentialRecording.nextPeriod(); }
private:
// implementation for LLStopWatchControlsMixin
/*virtual*/ void handleStart();
/*virtual*/ void handleStop();
/*virtual*/ void handleReset();
/*virtual*/ void handleSplitTo(ExtendablePeriodicRecording& other);
private:
PeriodicRecording mAcceptedRecording;
PeriodicRecording mPotentialRecording;
};
}
#ifdef LL_WINDOWS
#pragma warning(pop)
#endif
#endif // LL_LLTRACERECORDING_H