phoenix-firestorm/indra/llcommon/llmemory.cpp

363 lines
11 KiB
C++

/**
* @file llmemory.cpp
* @brief Very special memory allocation/deallocation stuff here
*
* $LicenseInfo:firstyear=2002&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2010, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
#include "linden_common.h"
#include "llthread.h"
#if defined(LL_WINDOWS)
# include <psapi.h>
#elif defined(LL_DARWIN)
# include <sys/types.h>
# include <mach/task.h>
# include <mach/mach_init.h>
#include <mach/mach_host.h>
#elif LL_LINUX
# include <unistd.h>
# include <sys/resource.h>
# include <sys/sysinfo.h>
#endif
#include "llmemory.h"
#include "llsys.h"
#include "llframetimer.h"
#include "lltrace.h"
#include "llerror.h"
//----------------------------------------------------------------------------
//static
U32Kilobytes LLMemory::sAvailPhysicalMemInKB(U32_MAX);
U32Kilobytes LLMemory::sMaxPhysicalMemInKB(0);
static LLTrace::SampleStatHandle<F64Megabytes> sAllocatedMem("allocated_mem", "active memory in use by application");
static LLTrace::SampleStatHandle<F64Megabytes> sVirtualMem("virtual_mem", "virtual memory assigned to application");
U32Kilobytes LLMemory::sAllocatedMemInKB(0);
U32Kilobytes LLMemory::sAllocatedPageSizeInKB(0);
U32Kilobytes LLMemory::sMaxHeapSizeInKB(U32_MAX);
void ll_assert_aligned_func(uintptr_t ptr,U32 alignment)
{
#if defined(LL_WINDOWS) && defined(LL_DEBUG_BUFFER_OVERRUN)
//do not check
return;
#else
#ifdef SHOW_ASSERT
// Redundant, place to set breakpoints.
if (ptr%alignment!=0)
{
LL_WARNS() << "alignment check failed" << LL_ENDL;
}
llassert(ptr%alignment==0);
#endif
#endif
}
//static
void LLMemory::initMaxHeapSizeGB(F32Gigabytes max_heap_size)
{
sMaxHeapSizeInKB = U32Kilobytes::convert(max_heap_size);
}
//static
void LLMemory::updateMemoryInfo()
{
LL_PROFILE_ZONE_SCOPED
U32Kilobytes avail_phys;
#if LL_WINDOWS
PROCESS_MEMORY_COUNTERS counters;
if (!GetProcessMemoryInfo(GetCurrentProcess(), &counters, sizeof(counters)))
{
LL_WARNS() << "GetProcessMemoryInfo failed" << LL_ENDL;
return ;
}
sAllocatedMemInKB = U32Kilobytes::convert(U64Bytes(counters.WorkingSetSize));
sAllocatedPageSizeInKB = U32Kilobytes::convert(U64Bytes(counters.PagefileUsage));
sample(sVirtualMem, sAllocatedPageSizeInKB);
U32Kilobytes avail_virtual;
LLMemoryInfo::getAvailableMemoryKB(avail_phys, avail_virtual) ;
#elif defined(LL_DARWIN)
task_vm_info info;
mach_msg_type_number_t infoCount = TASK_VM_INFO_COUNT;
// MACH_TASK_BASIC_INFO reports the same resident_size, but does not tell us the reusable bytes or phys_footprint.
if (task_info(mach_task_self(), TASK_VM_INFO, reinterpret_cast<task_info_t>(&info), &infoCount) == KERN_SUCCESS)
{
// Our Windows definition of PagefileUsage is documented by Microsoft as "the total amount of
// memory that the memory manager has committed for a running process", which is rss.
sAllocatedPageSizeInKB = U32Bytes(info.resident_size);
// Activity Monitor => Inspect Process => Real Memory Size appears to report resident_size
// Activity monitor => main window memory column appears to report phys_footprint, which spot checks as at least 30% less.
// I think that is because of compression, which isn't going to give us a consistent measurement. We want uncompressed totals.
//
// In between is resident_size - reusable. This is what Chrome source code uses, with source comments saying it is 'the "Real Memory" value
// reported for the app by the Memory Monitor in Instruments.' It is still about 8% bigger than phys_footprint.
//
// (On Windows, we use WorkingSetSize.)
sAllocatedMemInKB = U32Bytes(info.resident_size - info.reusable);
}
else
{
LL_WARNS() << "task_info failed" << LL_ENDL;
}
// Total installed and available physical memory are properties of the host, not just our process.
vm_statistics64_data_t vmstat;
mach_msg_type_number_t count = HOST_VM_INFO64_COUNT;
mach_port_t host = mach_host_self();
vm_size_t page_size;
host_page_size(host, &page_size);
kern_return_t result = host_statistics64(host, HOST_VM_INFO64, reinterpret_cast<host_info_t>(&vmstat), &count);
if (result == KERN_SUCCESS) {
// This is what Chrome reports as 'the "Physical Memory Free" value reported by the Memory Monitor in Instruments.'
// Note though that inactive pages are not included here and not yet free, but could become so under memory pressure.
avail_phys = U32Bytes(vmstat.free_count * page_size);
sMaxHeapSizeInKB = LLMemoryInfo::getHardwareMemSize();
}
else
{
LL_WARNS() << "task_info failed" << LL_ENDL;
}
#elif defined(LL_LINUX)
// Use sysinfo() to get the total physical memory.
struct sysinfo info;
sysinfo(&info);
sMaxHeapSizeInKB = U32Kilobytes::convert((U64Bytes)info.totalram); // Total RAM in system
avail_phys = U32Kilobytes::convert((U64Bytes)info.freeram); // Total Free RAM in system
sAllocatedMemInKB = U32Kilobytes::convert(U64Bytes(LLMemory::getCurrentRSS())); // represents the RAM allocated by this process only (in line with the windows implementation)
#else
//not valid for other systems for now.
LL_WARNS() << "LLMemory::updateMemoryInfo() not implemented for this platform." << LL_ENDL;
sAllocatedMemInKB = U64Bytes(LLMemory::getCurrentRSS());
sMaxPhysicalMemInKB = U64Bytes(U32_MAX);
sAvailPhysicalMemInKB = U64Bytes(U32_MAX);
#endif
sample(sAllocatedMem, sAllocatedMemInKB);
// sMaxPhysicalMem - max this process can use = the lesser of (what we already have + what's available) or MaxHeap
sMaxPhysicalMemInKB = llmin(avail_phys + sAllocatedMemInKB, sMaxHeapSizeInKB);
if(sMaxPhysicalMemInKB > sAllocatedMemInKB)
{
sAvailPhysicalMemInKB = sMaxPhysicalMemInKB - sAllocatedMemInKB ;
}
else
{
sAvailPhysicalMemInKB = U32Kilobytes(0);
}
return ;
}
//
//this function is to test if there is enough space with the size in the virtual address space.
//it does not do any real allocation
//if success, it returns the address where the memory chunk can fit in;
//otherwise it returns NULL.
//
//static
void* LLMemory::tryToAlloc(void* address, U32 size)
{
#if LL_WINDOWS
address = VirtualAlloc(address, size, MEM_RESERVE | MEM_TOP_DOWN, PAGE_NOACCESS) ;
if(address)
{
if(!VirtualFree(address, 0, MEM_RELEASE))
{
LL_ERRS() << "error happens when free some memory reservation." << LL_ENDL ;
}
}
return address ;
#else
return (void*)0x01 ; //skip checking
#endif
}
//static
void LLMemory::logMemoryInfo(bool update)
{
LL_PROFILE_ZONE_SCOPED
if(update)
{
updateMemoryInfo() ;
}
LL_INFOS() << "Current allocated physical memory(KB): " << sAllocatedMemInKB << LL_ENDL ;
LL_INFOS() << "Current allocated page size (KB): " << sAllocatedPageSizeInKB << LL_ENDL ;
LL_INFOS() << "Current available physical memory(KB): " << sAvailPhysicalMemInKB << LL_ENDL ;
LL_INFOS() << "Current max usable memory(KB): " << sMaxPhysicalMemInKB << LL_ENDL ;
}
//static
U32Kilobytes LLMemory::getAvailableMemKB()
{
return sAvailPhysicalMemInKB ;
}
//static
U32Kilobytes LLMemory::getMaxMemKB()
{
return sMaxPhysicalMemInKB ;
}
//static
U32Kilobytes LLMemory::getAllocatedMemKB()
{
return sAllocatedMemInKB ;
}
//----------------------------------------------------------------------------
#if defined(LL_WINDOWS)
//static
U64 LLMemory::getCurrentRSS()
{
PROCESS_MEMORY_COUNTERS counters;
if (!GetProcessMemoryInfo(GetCurrentProcess(), &counters, sizeof(counters)))
{
LL_WARNS() << "GetProcessMemoryInfo failed" << LL_ENDL;
return 0;
}
return counters.WorkingSetSize;
}
#elif defined(LL_DARWIN)
// if (sysctl(ctl, 2, &page_size, &size, NULL, 0) == -1)
// {
// LL_WARNS() << "Couldn't get page size" << LL_ENDL;
// return 0;
// } else {
// return page_size;
// }
// }
U64 LLMemory::getCurrentRSS()
{
U64 residentSize = 0;
mach_task_basic_info_data_t basicInfo;
mach_msg_type_number_t basicInfoCount = MACH_TASK_BASIC_INFO_COUNT;
if (task_info(mach_task_self(), MACH_TASK_BASIC_INFO, (task_info_t)&basicInfo, &basicInfoCount) == KERN_SUCCESS)
{
residentSize = basicInfo.resident_size;
// 64-bit macos apps allocate 32 GB or more at startup, and this is reflected in virtual_size.
// basicInfo.virtual_size is not what we want.
}
else
{
LL_WARNS() << "task_info failed" << LL_ENDL;
}
return residentSize;
}
#elif defined(LL_LINUX)
U64 LLMemory::getCurrentRSS()
{
struct rusage usage;
if (getrusage(RUSAGE_SELF, &usage) != 0) {
// Error handling code could be here
return 0;
}
// ru_maxrss (since Linux 2.6.32)
// This is the maximum resident set size used (in kilobytes).
return usage.ru_maxrss * 1024;
}
#else
U64 LLMemory::getCurrentRSS()
{
return 0;
}
#endif
//--------------------------------------------------------------------
#if defined(LL_WINDOWS) && defined(LL_DEBUG_BUFFER_OVERRUN)
#include <map>
struct mem_info {
std::map<void*, void*> memory_info;
LLMutex mutex;
static mem_info& get() {
static mem_info instance;
return instance;
}
private:
mem_info(){}
};
void* ll_aligned_malloc_fallback( size_t size, int align )
{
SYSTEM_INFO sysinfo;
GetSystemInfo(&sysinfo);
unsigned int for_alloc = (size/sysinfo.dwPageSize + !!(size%sysinfo.dwPageSize)) * sysinfo.dwPageSize;
void *p = VirtualAlloc(NULL, for_alloc+sysinfo.dwPageSize, MEM_COMMIT|MEM_RESERVE, PAGE_READWRITE);
if(NULL == p) {
// call debugger
__asm int 3;
}
DWORD old;
bool Res = VirtualProtect((void*)((char*)p + for_alloc), sysinfo.dwPageSize, PAGE_NOACCESS, &old);
if(false == Res) {
// call debugger
__asm int 3;
}
void* ret = (void*)((char*)p + for_alloc-size);
{
LLMutexLock lock(&mem_info::get().mutex);
mem_info::get().memory_info.insert(std::pair<void*, void*>(ret, p));
}
return ret;
}
void ll_aligned_free_fallback( void* ptr )
{
LLMutexLock lock(&mem_info::get().mutex);
VirtualFree(mem_info::get().memory_info.find(ptr)->second, 0, MEM_RELEASE);
mem_info::get().memory_info.erase(ptr);
}
#endif