phoenix-firestorm/indra/newview/gltf/animation.cpp

490 lines
11 KiB
C++

/**
* @file animation.cpp
* @brief LL GLTF Animation Implementation
*
* $LicenseInfo:firstyear=2024&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2024, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
#include "../llviewerprecompiledheaders.h"
#include "asset.h"
#include "buffer_util.h"
#include "../llskinningutil.h"
using namespace LL::GLTF;
using namespace boost::json;
bool Animation::prep(Asset& asset)
{
if (!mSamplers.empty())
{
mMinTime = FLT_MAX;
mMaxTime = -FLT_MAX;
for (auto& sampler : mSamplers)
{
if (!sampler.prep(asset))
{
return false;
}
mMinTime = llmin(sampler.mMinTime, mMinTime);
mMaxTime = llmax(sampler.mMaxTime, mMaxTime);
}
}
else
{
mMinTime = mMaxTime = 0.f;
}
for (auto& channel : mRotationChannels)
{
if (!channel.prep(asset, mSamplers[channel.mSampler]))
{
return false;
}
}
for (auto& channel : mTranslationChannels)
{
if (!channel.prep(asset, mSamplers[channel.mSampler]))
{
return false;
}
}
for (auto& channel : mScaleChannels)
{
if (!channel.prep(asset, mSamplers[channel.mSampler]))
{
return false;
}
}
return true;
}
void Animation::update(Asset& asset, F32 dt)
{
mTime += dt;
apply(asset, mTime);
}
void Animation::apply(Asset& asset, float time)
{
LL_PROFILE_ZONE_SCOPED_CATEGORY_GLTF;
// convert time to animation loop time
time = fmod(time, mMaxTime - mMinTime) + mMinTime;
// apply each channel
{
LL_PROFILE_ZONE_NAMED_CATEGORY_GLTF("gltfanim - rotation");
for (auto& channel : mRotationChannels)
{
channel.apply(asset, mSamplers[channel.mSampler], time);
}
}
{
LL_PROFILE_ZONE_NAMED_CATEGORY_GLTF("gltfanim - translation");
for (auto& channel : mTranslationChannels)
{
channel.apply(asset, mSamplers[channel.mSampler], time);
}
}
{
LL_PROFILE_ZONE_NAMED_CATEGORY_GLTF("gltfanim - scale");
for (auto& channel : mScaleChannels)
{
channel.apply(asset, mSamplers[channel.mSampler], time);
}
}
};
bool Animation::Sampler::prep(Asset& asset)
{
Accessor& accessor = asset.mAccessors[mInput];
mMinTime = accessor.mMin[0];
mMaxTime = accessor.mMax[0];
mFrameTimes.resize(accessor.mCount);
LLStrider<F32> frame_times = mFrameTimes.data();
copy(asset, accessor, frame_times);
return true;
}
void Animation::Sampler::serialize(object& obj) const
{
write(mInput, "input", obj, INVALID_INDEX);
write(mOutput, "output", obj, INVALID_INDEX);
write(mInterpolation, "interpolation", obj, std::string("LINEAR"));
write(mMinTime, "min_time", obj);
write(mMaxTime, "max_time", obj);
}
const Animation::Sampler& Animation::Sampler::operator=(const Value& src)
{
if (src.is_object())
{
copy(src, "input", mInput);
copy(src, "output", mOutput);
copy(src, "interpolation", mInterpolation);
copy(src, "min_time", mMinTime);
copy(src, "max_time", mMaxTime);
}
return *this;
}
bool Animation::Channel::Target::operator==(const Channel::Target& rhs) const
{
return mNode == rhs.mNode && mPath == rhs.mPath;
}
bool Animation::Channel::Target::operator!=(const Channel::Target& rhs) const
{
return !(*this == rhs);
}
void Animation::Channel::Target::serialize(object& obj) const
{
write(mNode, "node", obj, INVALID_INDEX);
write(mPath, "path", obj);
}
const Animation::Channel::Target& Animation::Channel::Target::operator=(const Value& src)
{
if (src.is_object())
{
copy(src, "node", mNode);
copy(src, "path", mPath);
}
return *this;
}
void Animation::Channel::serialize(object& obj) const
{
write(mSampler, "sampler", obj, INVALID_INDEX);
write(mTarget, "target", obj);
}
const Animation::Channel& Animation::Channel::operator=(const Value& src)
{
if (src.is_object())
{
copy(src, "sampler", mSampler);
copy(src, "target", mTarget);
}
return *this;
}
void Animation::Sampler::getFrameInfo(Asset& asset, F32 time, U32& frameIndex, F32& t)
{
LL_PROFILE_ZONE_SCOPED_CATEGORY_GLTF;
llassert(mFrameTimes.size() > 1); // if there is only one frame, there is no need to interpolate
if (time < mMinTime)
{
frameIndex = 0;
t = 0.0f;
return;
}
frameIndex = U32(mFrameTimes.size()) - 2;
t = 1.f;
if (time > mMaxTime)
{
return;
}
if (time < mLastFrameTime)
{
mLastFrameIndex = 0;
}
mLastFrameTime = time;
U32 idx = mLastFrameIndex;
for (U32 i = idx; i < (U32)mFrameTimes.size() - 1; i++)
{
if (time >= mFrameTimes[i] && time < mFrameTimes[i + 1])
{
frameIndex = i;
t = (time - mFrameTimes[i]) / (mFrameTimes[i + 1] - mFrameTimes[i]);
mLastFrameIndex = frameIndex;
return;
}
}
}
bool Animation::RotationChannel::prep(Asset& asset, Animation::Sampler& sampler)
{
Accessor& accessor = asset.mAccessors[sampler.mOutput];
copy(asset, accessor, mRotations);
return true;
}
void Animation::RotationChannel::apply(Asset& asset, Sampler& sampler, F32 time)
{
U32 frameIndex;
F32 t;
Node& node = asset.mNodes[mTarget.mNode];
if (sampler.mFrameTimes.size() < 2)
{
node.setRotation(mRotations[0]);
}
else
{
sampler.getFrameInfo(asset, time, frameIndex, t);
// interpolate
quat qf = glm::slerp(mRotations[frameIndex], mRotations[frameIndex + 1], t);
qf = glm::normalize(qf);
node.setRotation(qf);
}
}
bool Animation::TranslationChannel::prep(Asset& asset, Animation::Sampler& sampler)
{
Accessor& accessor = asset.mAccessors[sampler.mOutput];
copy(asset, accessor, mTranslations);
return true;
}
void Animation::TranslationChannel::apply(Asset& asset, Sampler& sampler, F32 time)
{
U32 frameIndex;
F32 t;
Node& node = asset.mNodes[mTarget.mNode];
if (sampler.mFrameTimes.size() < 2)
{
node.setTranslation(mTranslations[0]);
}
else
{
sampler.getFrameInfo(asset, time, frameIndex, t);
// interpolate
const vec3& v0 = mTranslations[frameIndex];
const vec3& v1 = mTranslations[frameIndex + 1];
vec3 vf = v0 + t * (v1 - v0);
node.setTranslation(vf);
}
}
bool Animation::ScaleChannel::prep(Asset& asset, Animation::Sampler& sampler)
{
Accessor& accessor = asset.mAccessors[sampler.mOutput];
copy(asset, accessor, mScales);
return true;
}
void Animation::ScaleChannel::apply(Asset& asset, Sampler& sampler, F32 time)
{
U32 frameIndex;
F32 t;
Node& node = asset.mNodes[mTarget.mNode];
if (sampler.mFrameTimes.size() < 2)
{
node.setScale(mScales[0]);
}
else
{
sampler.getFrameInfo(asset, time, frameIndex, t);
// interpolate
const vec3& v0 = mScales[frameIndex];
const vec3& v1 = mScales[frameIndex + 1];
vec3 vf = v0 + t * (v1 - v0);
node.setScale(vf);
}
}
void Animation::serialize(object& obj) const
{
write(mName, "name", obj);
write(mSamplers, "samplers", obj);
std::vector<Channel> channels;
channels.insert(channels.end(), mRotationChannels.begin(), mRotationChannels.end());
channels.insert(channels.end(), mTranslationChannels.begin(), mTranslationChannels.end());
channels.insert(channels.end(), mScaleChannels.begin(), mScaleChannels.end());
write(channels, "channels", obj);
}
const Animation& Animation::operator=(const Value& src)
{
if (src.is_object())
{
const object& obj = src.as_object();
copy(obj, "name", mName);
copy(obj, "samplers", mSamplers);
// make a temporory copy of generic channels
std::vector<Channel> channels;
copy(obj, "channels", channels);
// break up into channel specific implementations
for (auto& channel: channels)
{
if (channel.mTarget.mPath == "rotation")
{
mRotationChannels.push_back(channel);
}
else if (channel.mTarget.mPath == "translation")
{
mTranslationChannels.push_back(channel);
}
else if (channel.mTarget.mPath == "scale")
{
mScaleChannels.push_back(channel);
}
}
}
return *this;
}
Skin::~Skin()
{
if (mUBO)
{
glDeleteBuffers(1, &mUBO);
}
}
void Skin::uploadMatrixPalette(Asset& asset)
{
// prepare matrix palette
LL_PROFILE_ZONE_SCOPED_CATEGORY_GLTF;
U32 max_joints = LLSkinningUtil::getMaxGLTFJointCount();
if (mUBO == 0)
{
glGenBuffers(1, &mUBO);
}
size_t joint_count = llmin<size_t>(max_joints, mJoints.size());
std::vector<mat4> t_mp;
t_mp.resize(joint_count);
for (U32 i = 0; i < joint_count; ++i)
{
Node& joint = asset.mNodes[mJoints[i]];
// build matrix palette in asset space
t_mp[i] = joint.mAssetMatrix * mInverseBindMatricesData[i];
}
std::vector<F32> glmp;
glmp.resize(joint_count * 12);
F32* mp = glmp.data();
for (U32 i = 0; i < joint_count; ++i)
{
F32* m = glm::value_ptr(t_mp[i]);
U32 idx = i * 12;
mp[idx + 0] = m[0];
mp[idx + 1] = m[1];
mp[idx + 2] = m[2];
mp[idx + 3] = m[12];
mp[idx + 4] = m[4];
mp[idx + 5] = m[5];
mp[idx + 6] = m[6];
mp[idx + 7] = m[13];
mp[idx + 8] = m[8];
mp[idx + 9] = m[9];
mp[idx + 10] = m[10];
mp[idx + 11] = m[14];
}
glBindBuffer(GL_UNIFORM_BUFFER, mUBO);
glBufferData(GL_UNIFORM_BUFFER, glmp.size() * sizeof(F32), glmp.data(), GL_STREAM_DRAW);
glBindBuffer(GL_UNIFORM_BUFFER, 0);
}
bool Skin::prep(Asset& asset)
{
if (mInverseBindMatrices != INVALID_INDEX)
{
Accessor& accessor = asset.mAccessors[mInverseBindMatrices];
copy(asset, accessor, mInverseBindMatricesData);
}
return true;
}
const Skin& Skin::operator=(const Value& src)
{
if (src.is_object())
{
copy(src, "name", mName);
copy(src, "skeleton", mSkeleton);
copy(src, "inverseBindMatrices", mInverseBindMatrices);
copy(src, "joints", mJoints);
}
return *this;
}
void Skin::serialize(object& obj) const
{
write(mInverseBindMatrices, "inverseBindMatrices", obj, INVALID_INDEX);
write(mJoints, "joints", obj);
write(mName, "name", obj);
write(mSkeleton, "skeleton", obj, INVALID_INDEX);
}