phoenix-firestorm/indra/llimage/llimage.cpp

2543 lines
78 KiB
C++

/**
* @file llimage.cpp
* @brief Base class for images.
*
* $LicenseInfo:firstyear=2001&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2010, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
#include "linden_common.h"
#include "llimageworker.h"
#include "llimage.h"
#include "llmath.h"
#include "v4coloru.h"
#include "v3color.h"
#include "llimagebmp.h"
#include "llimagetga.h"
#include "llimagej2c.h"
#include "llimagejpeg.h"
#include "llimagepng.h"
#include "llimagedxt.h"
#include "llmemory.h"
#include <boost/preprocessor.hpp>
//..................................................................................
//..................................................................................
// Helper macrose's for generate cycle unwrap templates
//..................................................................................
#define _UNROL_GEN_TPL_arg_0(arg)
#define _UNROL_GEN_TPL_arg_1(arg) arg
#define _UNROL_GEN_TPL_comma_0
#define _UNROL_GEN_TPL_comma_1 BOOST_PP_COMMA()
//..................................................................................
#define _UNROL_GEN_TPL_ARGS_macro(z,n,seq) \
BOOST_PP_CAT(_UNROL_GEN_TPL_arg_, BOOST_PP_MOD(n, 2))(BOOST_PP_SEQ_ELEM(n, seq)) BOOST_PP_CAT(_UNROL_GEN_TPL_comma_, BOOST_PP_AND(BOOST_PP_MOD(n, 2), BOOST_PP_NOT_EQUAL(BOOST_PP_INC(n), BOOST_PP_SEQ_SIZE(seq))))
#define _UNROL_GEN_TPL_ARGS(seq) \
BOOST_PP_REPEAT(BOOST_PP_SEQ_SIZE(seq), _UNROL_GEN_TPL_ARGS_macro, seq)
//..................................................................................
#define _UNROL_GEN_TPL_TYPE_ARGS_macro(z,n,seq) \
BOOST_PP_SEQ_ELEM(n, seq) BOOST_PP_CAT(_UNROL_GEN_TPL_comma_, BOOST_PP_AND(BOOST_PP_MOD(n, 2), BOOST_PP_NOT_EQUAL(BOOST_PP_INC(n), BOOST_PP_SEQ_SIZE(seq))))
#define _UNROL_GEN_TPL_TYPE_ARGS(seq) \
BOOST_PP_REPEAT(BOOST_PP_SEQ_SIZE(seq), _UNROL_GEN_TPL_TYPE_ARGS_macro, seq)
//..................................................................................
#define _UNROLL_GEN_TPL_foreach_ee(z, n, seq) \
executor<n>(_UNROL_GEN_TPL_ARGS(seq));
#define _UNROLL_GEN_TPL(name, args_seq, operation, spec) \
template<> struct name<spec> { \
private: \
template<S32 _idx> inline void executor(_UNROL_GEN_TPL_TYPE_ARGS(args_seq)) { \
BOOST_PP_SEQ_ENUM(operation) ; \
} \
public: \
inline void operator()(_UNROL_GEN_TPL_TYPE_ARGS(args_seq)) { \
BOOST_PP_REPEAT(spec, _UNROLL_GEN_TPL_foreach_ee, args_seq) \
} \
};
//..................................................................................
#define _UNROLL_GEN_TPL_foreach_seq_macro(r, data, elem) \
_UNROLL_GEN_TPL(BOOST_PP_SEQ_ELEM(0, data), BOOST_PP_SEQ_ELEM(1, data), BOOST_PP_SEQ_ELEM(2, data), elem)
#define UNROLL_GEN_TPL(name, args_seq, operation, spec_seq) \
/*general specialization - should not be implemented!*/ \
template<U8> struct name { inline void operator()(_UNROL_GEN_TPL_TYPE_ARGS(args_seq)) { /*static_assert(!"Should not be instantiated.");*/ } }; \
BOOST_PP_SEQ_FOR_EACH(_UNROLL_GEN_TPL_foreach_seq_macro, (name)(args_seq)(operation), spec_seq)
//..................................................................................
//..................................................................................
//..................................................................................
// Generated unrolling loop templates with specializations
//..................................................................................
//example: for(c = 0; c < ch; ++c) comp[c] = cx[0] = 0;
UNROLL_GEN_TPL(uroll_zeroze_cx_comp, (S32 *)(cx)(S32 *)(comp), (cx[_idx] = comp[_idx] = 0), (1)(3)(4));
//example: for(c = 0; c < ch; ++c) comp[c] >>= 4;
UNROLL_GEN_TPL(uroll_comp_rshftasgn_constval, (S32 *)(comp)(const S32)(cval), (comp[_idx] >>= cval), (1)(3)(4));
//example: for(c = 0; c < ch; ++c) comp[c] = (cx[c] >> 5) * yap;
UNROLL_GEN_TPL(uroll_comp_asgn_cx_rshft_cval_all_mul_val, (S32 *)(comp)(S32 *)(cx)(const S32)(cval)(S32)(val), (comp[_idx] = (cx[_idx] >> cval) * val), (1)(3)(4));
//example: for(c = 0; c < ch; ++c) comp[c] += (cx[c] >> 5) * Cy;
UNROLL_GEN_TPL(uroll_comp_plusasgn_cx_rshft_cval_all_mul_val, (S32 *)(comp)(S32 *)(cx)(const S32)(cval)(S32)(val), (comp[_idx] += (cx[_idx] >> cval) * val), (1)(3)(4));
//example: for(c = 0; c < ch; ++c) comp[c] += pix[c] * info.xapoints[x];
UNROLL_GEN_TPL(uroll_inp_plusasgn_pix_mul_val, (S32 *)(comp)(const U8 *)(pix)(S32)(val), (comp[_idx] += pix[_idx] * val), (1)(3)(4));
//example: for(c = 0; c < ch; ++c) cx[c] = pix[c] * info.xapoints[x];
UNROLL_GEN_TPL(uroll_inp_asgn_pix_mul_val, (S32 *)(comp)(const U8 *)(pix)(S32)(val), (comp[_idx] = pix[_idx] * val), (1)(3)(4));
//example: for(c = 0; c < ch; ++c) comp[c] = ((cx[c] * info.yapoints[y]) + (comp[c] * (256 - info.yapoints[y]))) >> 16;
UNROLL_GEN_TPL(uroll_comp_asgn_cx_mul_apoint_plus_comp_mul_inv_apoint_allshifted_16_r, (S32 *)(comp)(S32 *)(cx)(S32)(apoint), (comp[_idx] = ((cx[_idx] * apoint) + (comp[_idx] * (256 - apoint))) >> 16), (1)(3)(4));
//example: for(c = 0; c < ch; ++c) comp[c] = (comp[c] + pix[c] * info.yapoints[y]) >> 8;
UNROLL_GEN_TPL(uroll_comp_asgn_comp_plus_pix_mul_apoint_allshifted_8_r, (S32 *)(comp)(const U8 *)(pix)(S32)(apoint), (comp[_idx] = (comp[_idx] + pix[_idx] * apoint) >> 8), (1)(3)(4));
//example: for(c = 0; c < ch; ++c) comp[c] = ((comp[c]*(256 - info.xapoints[x])) + ((cx[c] * info.xapoints[x]))) >> 12;
UNROLL_GEN_TPL(uroll_comp_asgn_comp_mul_inv_apoint_plus_cx_mul_apoint_allshifted_12_r, (S32 *)(comp)(S32)(apoint)(S32 *)(cx), (comp[_idx] = ((comp[_idx] * (256-apoint)) + (cx[_idx] * apoint)) >> 12), (1)(3)(4));
//example: for(c = 0; c < ch; ++c) *dptr++ = comp[c]&0xff;
UNROLL_GEN_TPL(uroll_uref_dptr_inc_asgn_comp_and_ff, (U8 *&)(dptr)(S32 *)(comp), (*dptr++ = comp[_idx]&0xff), (1)(3)(4));
//example: for(c = 0; c < ch; ++c) *dptr++ = (sptr[info.xpoints[x]*ch + c])&0xff;
UNROLL_GEN_TPL(uroll_uref_dptr_inc_asgn_sptr_apoint_plus_idx_alland_ff, (U8 *&)(dptr)(const U8 *)(sptr)(S32)(apoint), (*dptr++ = sptr[apoint + _idx]&0xff), (1)(3)(4));
//example: for(c = 0; c < ch; ++c) *dptr++ = (comp[c]>>10)&0xff;
UNROLL_GEN_TPL(uroll_uref_dptr_inc_asgn_comp_rshft_cval_and_ff, (U8 *&)(dptr)(S32 *)(comp)(const S32)(cval), (*dptr++ = (comp[_idx]>>cval)&0xff), (1)(3)(4));
//..................................................................................
template<U8 ch>
struct scale_info
{
public:
std::vector<S32> xpoints;
std::vector<const U8*> ystrides;
std::vector<S32> xapoints, yapoints;
S32 xup_yup;
public:
//unrolling loop types declaration
typedef uroll_zeroze_cx_comp<ch> uroll_zeroze_cx_comp_t;
typedef uroll_comp_rshftasgn_constval<ch> uroll_comp_rshftasgn_constval_t;
typedef uroll_comp_asgn_cx_rshft_cval_all_mul_val<ch> uroll_comp_asgn_cx_rshft_cval_all_mul_val_t;
typedef uroll_comp_plusasgn_cx_rshft_cval_all_mul_val<ch> uroll_comp_plusasgn_cx_rshft_cval_all_mul_val_t;
typedef uroll_inp_plusasgn_pix_mul_val<ch> uroll_inp_plusasgn_pix_mul_val_t;
typedef uroll_inp_asgn_pix_mul_val<ch> uroll_inp_asgn_pix_mul_val_t;
typedef uroll_comp_asgn_cx_mul_apoint_plus_comp_mul_inv_apoint_allshifted_16_r<ch> uroll_comp_asgn_cx_mul_apoint_plus_comp_mul_inv_apoint_allshifted_16_r_t;
typedef uroll_comp_asgn_comp_plus_pix_mul_apoint_allshifted_8_r<ch> uroll_comp_asgn_comp_plus_pix_mul_apoint_allshifted_8_r_t;
typedef uroll_comp_asgn_comp_mul_inv_apoint_plus_cx_mul_apoint_allshifted_12_r<ch> uroll_comp_asgn_comp_mul_inv_apoint_plus_cx_mul_apoint_allshifted_12_r_t;
typedef uroll_uref_dptr_inc_asgn_comp_and_ff<ch> uroll_uref_dptr_inc_asgn_comp_and_ff_t;
typedef uroll_uref_dptr_inc_asgn_sptr_apoint_plus_idx_alland_ff<ch> uroll_uref_dptr_inc_asgn_sptr_apoint_plus_idx_alland_ff_t;
typedef uroll_uref_dptr_inc_asgn_comp_rshft_cval_and_ff<ch> uroll_uref_dptr_inc_asgn_comp_rshft_cval_and_ff_t;
public:
scale_info(const U8 *src, U32 srcW, U32 srcH, U32 dstW, U32 dstH, U32 srcStride)
: xup_yup((dstW >= srcW) + ((dstH >= srcH) << 1))
{
calc_x_points(srcW, dstW);
calc_y_strides(src, srcStride, srcH, dstH);
calc_aa_points(srcW, dstW, xup_yup&1, xapoints);
calc_aa_points(srcH, dstH, xup_yup&2, yapoints);
}
private:
//...........................................................................................
void calc_x_points(U32 srcW, U32 dstW)
{
xpoints.resize(dstW+1);
S32 val = dstW >= srcW ? 0x8000 * srcW / dstW - 0x8000 : 0;
S32 inc = (srcW << 16) / dstW;
for(U32 i = 0, j = 0; i < dstW; ++i, ++j, val += inc)
{
xpoints[j] = llmax(0, val >> 16);
}
}
//...........................................................................................
void calc_y_strides(const U8 *src, U32 srcStride, U32 srcH, U32 dstH)
{
ystrides.resize(dstH+1);
S32 val = dstH >= srcH ? 0x8000 * srcH / dstH - 0x8000 : 0;
S32 inc = (srcH << 16) / dstH;
for(U32 i = 0, j = 0; i < dstH; ++i, ++j, val += inc)
{
ystrides[j] = src + llmax(0, val >> 16) * srcStride;
}
}
//...........................................................................................
void calc_aa_points(U32 srcSz, U32 dstSz, bool scale_up, std::vector<S32> &vp)
{
vp.resize(dstSz);
if(scale_up)
{
S32 val = 0x8000 * srcSz / dstSz - 0x8000;
S32 inc = (srcSz << 16) / dstSz;
U32 pos;
for(U32 i = 0, j = 0; i < dstSz; ++i, ++j, val += inc)
{
pos = val >> 16;
if (pos >= (srcSz - 1))
vp[j] = 0;
else
vp[j] = (val >> 8) - ((val >> 8) & 0xffffff00);
}
}
else
{
S32 inc = (srcSz << 16) / dstSz;
S32 Cp = ((dstSz << 14) / srcSz) + 1;
S32 ap;
for(U32 i = 0, j = 0, val = 0; i < dstSz; ++i, ++j, val += inc)
{
ap = ((0x100 - ((val >> 8) & 0xff)) * Cp) >> 8;
vp[j] = ap | (Cp << 16);
}
}
}
};
template<U8 ch>
inline void bilinear_scale(
const U8 *src, U32 srcW, U32 srcH, U32 srcStride
, U8 *dst, U32 dstW, U32 dstH, U32 dstStride
)
{
typedef scale_info<ch> scale_info_t;
scale_info_t info(src, srcW, srcH, dstW, dstH, srcStride);
const U8 *sptr;
U8 *dptr;
U32 x, y;
const U8 *pix;
S32 cx[ch], comp[ch];
if(3 == info.xup_yup)
{ //scale x/y - up
for(y = 0; y < dstH; ++y)
{
dptr = dst + (y * dstStride);
sptr = info.ystrides[y];
if(0 < info.yapoints[y])
{
for(x = 0; x < dstW; ++x)
{
//for(c = 0; c < ch; ++c) cx[c] = comp[c] = 0;
typename scale_info_t::uroll_zeroze_cx_comp_t()(cx, comp);
if(0 < info.xapoints[x])
{
pix = info.ystrides[y] + info.xpoints[x] * ch;
//for(c = 0; c < ch; ++c) comp[c] = pix[c] * (256 - info.xapoints[x]);
typename scale_info_t::uroll_inp_asgn_pix_mul_val_t()(comp, pix, 256 - info.xapoints[x]);
pix += ch;
//for(c = 0; c < ch; ++c) comp[c] += pix[c] * info.xapoints[x];
typename scale_info_t::uroll_inp_plusasgn_pix_mul_val_t()(comp, pix, info.xapoints[x]);
pix += srcStride;
//for(c = 0; c < ch; ++c) cx[c] = pix[c] * info.xapoints[x];
typename scale_info_t::uroll_inp_asgn_pix_mul_val_t()(cx, pix, info.xapoints[x]);
pix -= ch;
//for(c = 0; c < ch; ++c) {
// cx[c] += pix[c] * (256 - info.xapoints[x]);
// comp[c] = ((cx[c] * info.yapoints[y]) + (comp[c] * (256 - info.yapoints[y]))) >> 16;
// *dptr++ = comp[c]&0xff;
//}
typename scale_info_t::uroll_inp_plusasgn_pix_mul_val_t()(cx, pix, 256 - info.xapoints[x]);
typename scale_info_t::uroll_comp_asgn_cx_mul_apoint_plus_comp_mul_inv_apoint_allshifted_16_r_t()(comp, cx, info.yapoints[y]);
typename scale_info_t::uroll_uref_dptr_inc_asgn_comp_and_ff_t()(dptr, comp);
}
else
{
pix = info.ystrides[y] + info.xpoints[x] * ch;
//for(c = 0; c < ch; ++c) comp[c] = pix[c] * (256 - info.yapoints[y]);
typename scale_info_t::uroll_inp_asgn_pix_mul_val_t()(comp, pix, 256-info.yapoints[y]);
pix += srcStride;
//for(c = 0; c < ch; ++c) {
// comp[c] = (comp[c] + pix[c] * info.yapoints[y]) >> 8;
// *dptr++ = comp[c]&0xff;
//}
typename scale_info_t::uroll_comp_asgn_comp_plus_pix_mul_apoint_allshifted_8_r_t()(comp, pix, info.yapoints[y]);
typename scale_info_t::uroll_uref_dptr_inc_asgn_comp_and_ff_t()(dptr, comp);
}
}
}
else
{
for(x = 0; x < dstW; ++x)
{
if(0 < info.xapoints[x])
{
pix = info.ystrides[y] + info.xpoints[x] * ch;
//for(c = 0; c < ch; ++c) {
// comp[c] = pix[c] * (256 - info.xapoints[x]);
// comp[c] = (comp[c] + pix[c] * info.xapoints[x]) >> 8;
// *dptr++ = comp[c]&0xff;
//}
typename scale_info_t::uroll_inp_asgn_pix_mul_val_t()(comp, pix, 256 - info.xapoints[x]);
typename scale_info_t::uroll_comp_asgn_comp_plus_pix_mul_apoint_allshifted_8_r_t()(comp, pix, info.xapoints[x]);
typename scale_info_t::uroll_uref_dptr_inc_asgn_comp_and_ff_t()(dptr, comp);
}
else
{
//for(c = 0; c < ch; ++c) *dptr++ = (sptr[info.xpoints[x]*ch + c])&0xff;
typename scale_info_t::uroll_uref_dptr_inc_asgn_sptr_apoint_plus_idx_alland_ff_t()(dptr, sptr, info.xpoints[x]*ch);
}
}
}
}
}
else if(info.xup_yup == 1)
{ //scaling down vertically
S32 Cy, j;
S32 yap;
for(y = 0; y < dstH; y++)
{
Cy = info.yapoints[y] >> 16;
yap = info.yapoints[y] & 0xffff;
dptr = dst + (y * dstStride);
for(x = 0; x < dstW; x++)
{
pix = info.ystrides[y] + info.xpoints[x] * ch;
//for(c = 0; c < ch; ++c) comp[c] = pix[c] * yap;
typename scale_info_t::uroll_inp_asgn_pix_mul_val_t()(comp, pix, yap);
pix += srcStride;
for(j = (1 << 14) - yap; j > Cy; j -= Cy, pix += srcStride)
{
//for(c = 0; c < ch; ++c) comp[c] += pix[c] * Cy;
typename scale_info_t::uroll_inp_plusasgn_pix_mul_val_t()(comp, pix, Cy);
}
if(j > 0)
{
//for(c = 0; c < ch; ++c) comp[c] += pix[c] * j;
typename scale_info_t::uroll_inp_plusasgn_pix_mul_val_t()(comp, pix, j);
}
if(info.xapoints[x] > 0)
{
pix = info.ystrides[y] + info.xpoints[x]*ch + ch;
//for(c = 0; c < ch; ++c) cx[c] = pix[c] * yap;
typename scale_info_t::uroll_inp_asgn_pix_mul_val_t()(cx, pix, yap);
pix += srcStride;
for(j = (1 << 14) - yap; j > Cy; j -= Cy)
{
//for(c = 0; c < ch; ++c) cx[c] += pix[c] * Cy;
typename scale_info_t::uroll_inp_plusasgn_pix_mul_val_t()(cx, pix, Cy);
pix += srcStride;
}
if(j > 0)
{
//for(c = 0; c < ch; ++c) cx[c] += pix[c] * j;
typename scale_info_t::uroll_inp_plusasgn_pix_mul_val_t()(cx, pix, j);
}
//for(c = 0; c < ch; ++c) comp[c] = ((comp[c]*(256 - info.xapoints[x])) + ((cx[c] * info.xapoints[x]))) >> 12;
typename scale_info_t::uroll_comp_asgn_comp_mul_inv_apoint_plus_cx_mul_apoint_allshifted_12_r_t()(comp, info.xapoints[x], cx);
}
else
{
//for(c = 0; c < ch; ++c) comp[c] >>= 4;
typename scale_info_t::uroll_comp_rshftasgn_constval_t()(comp, 4);
}
//for(c = 0; c < ch; ++c) *dptr++ = (comp[c]>>10)&0xff;
typename scale_info_t::uroll_uref_dptr_inc_asgn_comp_rshft_cval_and_ff_t()(dptr, comp, 10);
}
}
}
else if(info.xup_yup == 2)
{ // scaling down horizontally
S32 Cx, j;
S32 xap;
for(y = 0; y < dstH; y++)
{
dptr = dst + (y * dstStride);
for(x = 0; x < dstW; x++)
{
Cx = info.xapoints[x] >> 16;
xap = info.xapoints[x] & 0xffff;
pix = info.ystrides[y] + info.xpoints[x] * ch;
//for(c = 0; c < ch; ++c) comp[c] = pix[c] * xap;
typename scale_info_t::uroll_inp_asgn_pix_mul_val_t()(comp, pix, xap);
pix+=ch;
for(j = (1 << 14) - xap; j > Cx; j -= Cx)
{
//for(c = 0; c < ch; ++c) comp[c] += pix[c] * Cx;
typename scale_info_t::uroll_inp_plusasgn_pix_mul_val_t()(comp, pix, Cx);
pix+=ch;
}
if(j > 0)
{
//for(c = 0; c < ch; ++c) comp[c] += pix[c] * j;
typename scale_info_t::uroll_inp_plusasgn_pix_mul_val_t()(comp, pix, j);
}
if(info.yapoints[y] > 0)
{
pix = info.ystrides[y] + info.xpoints[x]*ch + srcStride;
//for(c = 0; c < ch; ++c) cx[c] = pix[c] * xap;
typename scale_info_t::uroll_inp_asgn_pix_mul_val_t()(cx, pix, xap);
pix+=ch;
for(j = (1 << 14) - xap; j > Cx; j -= Cx)
{
//for(c = 0; c < ch; ++c) cx[c] += pix[c] * Cx;
typename scale_info_t::uroll_inp_plusasgn_pix_mul_val_t()(cx, pix, Cx);
pix+=ch;
}
if(j > 0)
{
//for(c = 0; c < ch; ++c) cx[c] += pix[c] * j;
typename scale_info_t::uroll_inp_plusasgn_pix_mul_val_t()(cx, pix, j);
}
//for(c = 0; c < ch; ++c) comp[c] = ((comp[c] * (256 - info.yapoints[y])) + ((cx[c] * info.yapoints[y]))) >> 12;
typename scale_info_t::uroll_comp_asgn_comp_mul_inv_apoint_plus_cx_mul_apoint_allshifted_12_r_t()(comp, info.yapoints[y], cx);
}
else
{
//for(c = 0; c < ch; ++c) comp[c] >>= 4;
typename scale_info_t::uroll_comp_rshftasgn_constval_t()(comp, 4);
}
//for(c = 0; c < ch; ++c) *dptr++ = (comp[c]>>10)&0xff;
typename scale_info_t::uroll_uref_dptr_inc_asgn_comp_rshft_cval_and_ff_t()(dptr, comp, 10);
}
}
}
else
{ //scale x/y - down
S32 Cx, Cy, i, j;
S32 xap, yap;
for(y = 0; y < dstH; y++)
{
Cy = info.yapoints[y] >> 16;
yap = info.yapoints[y] & 0xffff;
dptr = dst + (y * dstStride);
for(x = 0; x < dstW; x++)
{
Cx = info.xapoints[x] >> 16;
xap = info.xapoints[x] & 0xffff;
sptr = info.ystrides[y] + info.xpoints[x] * ch;
pix = sptr;
sptr += srcStride;
//for(c = 0; c < ch; ++c) cx[c] = pix[c] * xap;
typename scale_info_t::uroll_inp_asgn_pix_mul_val_t()(cx, pix, xap);
pix+=ch;
for(i = (1 << 14) - xap; i > Cx; i -= Cx)
{
//for(c = 0; c < ch; ++c) cx[c] += pix[c] * Cx;
typename scale_info_t::uroll_inp_plusasgn_pix_mul_val_t()(cx, pix, Cx);
pix+=ch;
}
if(i > 0)
{
//for(c = 0; c < ch; ++c) cx[c] += pix[c] * i;
typename scale_info_t::uroll_inp_plusasgn_pix_mul_val_t()(cx, pix, i);
}
//for(c = 0; c < ch; ++c) comp[c] = (cx[c] >> 5) * yap;
typename scale_info_t::uroll_comp_asgn_cx_rshft_cval_all_mul_val_t()(comp, cx, 5, yap);
for(j = (1 << 14) - yap; j > Cy; j -= Cy)
{
pix = sptr;
sptr += srcStride;
//for(c = 0; c < ch; ++c) cx[c] = pix[c] * xap;
typename scale_info_t::uroll_inp_asgn_pix_mul_val_t()(cx, pix, xap);
pix+=ch;
for(i = (1 << 14) - xap; i > Cx; i -= Cx)
{
//for(c = 0; c < ch; ++c) cx[c] += pix[c] * Cx;
typename scale_info_t::uroll_inp_plusasgn_pix_mul_val_t()(cx, pix, Cx);
pix+=ch;
}
if(i > 0)
{
//for(c = 0; c < ch; ++c) cx[c] += pix[c] * i;
typename scale_info_t::uroll_inp_plusasgn_pix_mul_val_t()(cx, pix, i);
}
//for(c = 0; c < ch; ++c) comp[c] += (cx[c] >> 5) * Cy;
typename scale_info_t::uroll_comp_plusasgn_cx_rshft_cval_all_mul_val_t()(comp, cx, 5, Cy);
}
if(j > 0)
{
pix = sptr;
sptr += srcStride;
//for(c = 0; c < ch; ++c) cx[c] = pix[c] * xap;
typename scale_info_t::uroll_inp_asgn_pix_mul_val_t()(cx, pix, xap);
pix+=ch;
for(i = (1 << 14) - xap; i > Cx; i -= Cx)
{
//for(c = 0; c < ch; ++c) cx[c] += pix[c] * Cx;
typename scale_info_t::uroll_inp_plusasgn_pix_mul_val_t()(cx, pix, Cx);
pix+=ch;
}
if(i > 0)
{
//for(c = 0; c < ch; ++c) cx[c] += pix[c] * i;
typename scale_info_t::uroll_inp_plusasgn_pix_mul_val_t()(cx, pix, i);
}
//for(c = 0; c < ch; ++c) comp[c] += (cx[c] >> 5) * j;
typename scale_info_t::uroll_comp_plusasgn_cx_rshft_cval_all_mul_val_t()(comp, cx, 5, j);
}
//for(c = 0; c < ch; ++c) *dptr++ = (comp[c]>>23)&0xff;
typename scale_info_t::uroll_uref_dptr_inc_asgn_comp_rshft_cval_and_ff_t()(dptr, comp, 23);
}
}
} //else
}
//wrapper
static void bilinear_scale(const U8 *src, U32 srcW, U32 srcH, U32 srcCh, U32 srcStride, U8 *dst, U32 dstW, U32 dstH, U32 dstCh, U32 dstStride)
{
llassert(srcCh == dstCh);
switch(srcCh)
{
case 1:
bilinear_scale<1>(src, srcW, srcH, srcStride, dst, dstW, dstH, dstStride);
break;
case 3:
bilinear_scale<3>(src, srcW, srcH, srcStride, dst, dstW, dstH, dstStride);
break;
case 4:
bilinear_scale<4>(src, srcW, srcH, srcStride, dst, dstW, dstH, dstStride);
break;
default:
llassert(!"Implement if need");
break;
}
}
//---------------------------------------------------------------------------
// LLImage
//---------------------------------------------------------------------------
//static
thread_local std::string LLImage::sLastThreadErrorMessage;
bool LLImage::sUseNewByteRange = false;
S32 LLImage::sMinimalReverseByteRangePercent = 75;
//static
void LLImage::initClass(bool use_new_byte_range, S32 minimal_reverse_byte_range_percent)
{
sUseNewByteRange = use_new_byte_range;
sMinimalReverseByteRangePercent = minimal_reverse_byte_range_percent;
}
//static
void LLImage::cleanupClass()
{
}
//static
const std::string& LLImage::getLastThreadError()
{
static const std::string noerr("No Error");
return sLastThreadErrorMessage.empty() ? noerr : sLastThreadErrorMessage;
}
//static
void LLImage::setLastError(const std::string& message)
{
sLastThreadErrorMessage = message;
}
//---------------------------------------------------------------------------
// LLImageBase
//---------------------------------------------------------------------------
LLImageBase::LLImageBase()
: mData(NULL),
mDataSize(0),
mWidth(0),
mHeight(0),
mComponents(0),
mBadBufferAllocation(false),
mAllowOverSize(false)
{}
// virtual
LLImageBase::~LLImageBase()
{
deleteData(); // virtual
}
// virtual
void LLImageBase::dump()
{
LL_INFOS() << "LLImageBase mComponents " << mComponents
<< " mData " << mData
<< " mDataSize " << mDataSize
<< " mWidth " << mWidth
<< " mHeight " << mHeight
<< LL_ENDL;
}
// virtual
void LLImageBase::sanityCheck()
{
if (mWidth > MAX_IMAGE_SIZE
|| mHeight > MAX_IMAGE_SIZE
|| mDataSize > (S32)MAX_IMAGE_DATA_SIZE
|| mComponents > (S8)MAX_IMAGE_COMPONENTS
)
{
LL_ERRS() << "Failed LLImageBase::sanityCheck "
<< "width " << mWidth
<< "height " << mHeight
<< "datasize " << mDataSize
<< "components " << mComponents
<< "data " << mData
<< LL_ENDL;
}
}
// virtual
void LLImageBase::deleteData()
{
ll_aligned_free_16(mData);
mDataSize = 0;
mData = NULL;
}
// virtual
U8* LLImageBase::allocateData(S32 size)
{
//make this function thread-safe.
static const U32 MAX_BUFFER_SIZE = 4096 * 4096 * 16; //256 MB
mBadBufferAllocation = false;
if (size < 0)
{
size = mWidth * mHeight * mComponents;
if (size <= 0)
{
LL_WARNS() << llformat("LLImageBase::allocateData called with bad dimensions: %dx%dx%d",mWidth,mHeight,(S32)mComponents) << LL_ENDL;
mBadBufferAllocation = true;
}
}
if (!mBadBufferAllocation && (size < 1 || size > MAX_BUFFER_SIZE))
{
LL_INFOS() << "width: " << mWidth << " height: " << mHeight << " components: " << mComponents << LL_ENDL ;
if(mAllowOverSize)
{
LL_INFOS() << "Oversize: " << size << LL_ENDL ;
}
else
{
LL_WARNS() << "LLImageBase::allocateData: bad size: " << size << LL_ENDL;
mBadBufferAllocation = true;
}
}
if (!mBadBufferAllocation && (!mData || size != mDataSize))
{
deleteData(); // virtual
mData = (U8*)ll_aligned_malloc_16(size);
if (!mData)
{
LL_WARNS() << "Failed to allocate image data size [" << size << "]" << LL_ENDL;
mBadBufferAllocation = true;
}
}
if (mBadBufferAllocation)
{
size = 0;
mWidth = mHeight = 0;
if (mData)
{
deleteData(); // virtual
mData = NULL;
}
}
mDataSize = size;
return mData;
}
// virtual
U8* LLImageBase::reallocateData(S32 size)
{
U8 *new_datap = (U8*)ll_aligned_malloc_16(size);
if (!new_datap)
{
LL_WARNS() << "Out of memory in LLImageBase::reallocateData" << LL_ENDL;
return 0;
}
if (mData)
{
S32 bytes = llmin(mDataSize, size);
memcpy(new_datap, mData, bytes); /* Flawfinder: ignore */
ll_aligned_free_16(mData) ;
}
mData = new_datap;
mDataSize = size;
mBadBufferAllocation = false;
return mData;
}
const U8* LLImageBase::getData() const
{
if(mBadBufferAllocation)
{
LL_WARNS() << "Bad memory allocation for the image buffer!" << LL_ENDL ;
return NULL;
}
return mData;
} // read only
U8* LLImageBase::getData()
{
if(mBadBufferAllocation)
{
LL_WARNS() << "Bad memory allocation for the image buffer!" << LL_ENDL;
return NULL;
}
return mData;
}
bool LLImageBase::isBufferInvalid() const
{
return mBadBufferAllocation || mData == NULL ;
}
void LLImageBase::setSize(S32 width, S32 height, S32 ncomponents)
{
mWidth = width;
mHeight = height;
mComponents = ncomponents;
}
U8* LLImageBase::allocateDataSize(S32 width, S32 height, S32 ncomponents, S32 size)
{
setSize(width, height, ncomponents);
return allocateData(size); // virtual
}
//---------------------------------------------------------------------------
// LLImageRaw
//---------------------------------------------------------------------------
S32 LLImageRaw::sRawImageCount = 0;
LLImageRaw::LLImageRaw()
: LLImageBase()
{
++sRawImageCount;
}
LLImageRaw::LLImageRaw(U16 width, U16 height, S8 components)
: LLImageBase()
{
//llassert( S32(width) * S32(height) * S32(components) <= MAX_IMAGE_DATA_SIZE );
allocateDataSize(width, height, components);
++sRawImageCount;
}
LLImageRaw::LLImageRaw(const U8* data, U16 width, U16 height, S8 components)
: LLImageBase()
{
if (allocateDataSize(width, height, components))
{
memcpy(getData(), data, width * height * components);
}
}
LLImageRaw::LLImageRaw(U8 *data, U16 width, U16 height, S8 components, bool no_copy)
: LLImageBase()
{
if(no_copy)
{
setDataAndSize(data, width, height, components);
}
else if(allocateDataSize(width, height, components))
{
memcpy(getData(), data, width*height*components);
}
++sRawImageCount;
}
//LLImageRaw::LLImageRaw(const std::string& filename, bool j2c_lowest_mip_only)
// : LLImageBase()
//{
// createFromFile(filename, j2c_lowest_mip_only);
//}
LLImageRaw::~LLImageRaw()
{
// NOTE: ~LLimageBase() call to deleteData() calls LLImageBase::deleteData()
// NOT LLImageRaw::deleteData()
deleteData();
--sRawImageCount;
}
// virtual
U8* LLImageRaw::allocateData(S32 size)
{
U8* res = LLImageBase::allocateData(size);
return res;
}
// virtual
U8* LLImageRaw::reallocateData(S32 size)
{
U8* res = LLImageBase::reallocateData(size);
return res;
}
void LLImageRaw::releaseData()
{
LLImageBase::setSize(0, 0, 0);
LLImageBase::setDataAndSize(nullptr, 0);
}
// virtual
void LLImageRaw::deleteData()
{
LLImageBase::deleteData();
}
void LLImageRaw::setDataAndSize(U8 *data, S32 width, S32 height, S8 components)
{
if(data == getData())
{
return ;
}
deleteData();
LLImageBase::setSize(width, height, components) ;
LLImageBase::setDataAndSize(data, width * height * components) ;
}
bool LLImageRaw::resize(U16 width, U16 height, S8 components)
{
if ((getWidth() == width) && (getHeight() == height) && (getComponents() == components) && !isBufferInvalid())
{
return true;
}
// Reallocate the data buffer.
deleteData();
allocateDataSize(width,height,components);
return !isBufferInvalid();
}
bool LLImageRaw::setSubImage(U32 x_pos, U32 y_pos, U32 width, U32 height,
const U8 *data, U32 stride, bool reverse_y)
{
if (!getData())
{
return false;
}
if (!data)
{
return false;
}
// Should do some simple bounds checking
U32 i;
for (i = 0; i < height; i++)
{
const U32 row = reverse_y ? height - 1 - i : i;
const U32 from_offset = row * ((stride == 0) ? width*getComponents() : stride);
const U32 to_offset = (y_pos + i)*getWidth() + x_pos;
memcpy(getData() + to_offset*getComponents(), /* Flawfinder: ignore */
data + from_offset, getComponents()*width);
}
return true;
}
void LLImageRaw::clear(U8 r, U8 g, U8 b, U8 a)
{
llassert( getComponents() <= 4 );
// This is fairly bogus, but it'll do for now.
if (isBufferInvalid())
{
LL_WARNS() << "Invalid image buffer" << LL_ENDL;
return;
}
U8 *pos = getData();
U32 x, y;
for (x = 0; x < getWidth(); x++)
{
for (y = 0; y < getHeight(); y++)
{
*pos = r;
pos++;
if (getComponents() == 1)
{
continue;
}
*pos = g;
pos++;
if (getComponents() == 2)
{
continue;
}
*pos = b;
pos++;
if (getComponents() == 3)
{
continue;
}
*pos = a;
pos++;
}
}
}
// Reverses the order of the rows in the image
void LLImageRaw::verticalFlip()
{
S32 row_bytes = getWidth() * getComponents();
llassert(row_bytes > 0);
std::vector<U8> line_buffer(row_bytes);
S32 mid_row = getHeight() / 2;
for( S32 row = 0; row < mid_row; row++ )
{
U8* row_a_data = getData() + row * row_bytes;
U8* row_b_data = getData() + (getHeight() - 1 - row) * row_bytes;
memcpy( &line_buffer[0], row_a_data, row_bytes );
memcpy( row_a_data, row_b_data, row_bytes );
memcpy( row_b_data, &line_buffer[0], row_bytes );
}
}
bool LLImageRaw::checkHasTransparentPixels()
{
if (getComponents() != 4)
{
return false;
}
U8* data = getData();
U32 pixels = getWidth() * getHeight();
// check alpha channel for all 255
for (U32 i = 0; i < pixels; ++i)
{
if (data[i * 4 + 3] != 255)
{
return true;
}
}
return false;
}
bool LLImageRaw::optimizeAwayAlpha()
{
if (getComponents() == 4)
{
U8* data = getData();
U32 pixels = getWidth() * getHeight();
// check alpha channel for all 255
for (U32 i = 0; i < pixels; ++i)
{
if (data[i * 4 + 3] != 255)
{
return false;
}
}
// alpha channel is all 255, make a new copy of data without alpha channel
U8* new_data = (U8*) ll_aligned_malloc_16(getWidth() * getHeight() * 3);
for (U32 i = 0; i < pixels; ++i)
{
U32 di = i * 3;
U32 si = i * 4;
for (U32 j = 0; j < 3; ++j)
{
new_data[di+j] = data[si+j];
}
}
setDataAndSize(new_data, getWidth(), getHeight(), 3);
return true;
}
return false;
}
bool LLImageRaw::makeAlpha()
{
if (getComponents() == 3)
{
U8* data = getData();
U32 pixels = getWidth() * getHeight();
// alpha channel doesn't exist, make a new copy of data with alpha channel
U8* new_data = (U8*) ll_aligned_malloc_16(getWidth() * getHeight() * 4);
for (U32 i = 0; i < pixels; ++i)
{
U32 di = i * 4;
U32 si = i * 3;
for (U32 j = 0; j < 3; ++j)
{
new_data[di+j] = data[si+j];
}
}
setDataAndSize(new_data, getWidth(), getHeight(), 3);
return true;
}
return false;
}
void LLImageRaw::expandToPowerOfTwo(S32 max_dim, bool scale_image)
{
// Find new sizes
S32 new_width = expandDimToPowerOfTwo(getWidth(), max_dim);
S32 new_height = expandDimToPowerOfTwo(getHeight(), max_dim);
scale( new_width, new_height, scale_image );
}
void LLImageRaw::contractToPowerOfTwo(S32 max_dim, bool scale_image)
{
// Find new sizes
S32 new_width = contractDimToPowerOfTwo(getWidth(), MIN_IMAGE_SIZE);
S32 new_height = contractDimToPowerOfTwo(getHeight(), MIN_IMAGE_SIZE);
scale( new_width, new_height, scale_image );
}
// static
S32 LLImageRaw::biasedDimToPowerOfTwo(S32 curr_dim, S32 max_dim)
{
// Strong bias towards rounding down (to save bandwidth)
// No bias would mean THRESHOLD == 1.5f;
const F32 THRESHOLD = 1.75f;
// Find new sizes
S32 larger_dim = max_dim; // 2^n >= curr_dim
S32 smaller_dim = max_dim; // 2^(n-1) <= curr_dim
while( (smaller_dim > curr_dim) && (smaller_dim > MIN_IMAGE_SIZE) )
{
larger_dim = smaller_dim;
smaller_dim >>= 1;
}
return ( ((F32)curr_dim / (F32)smaller_dim) > THRESHOLD ) ? larger_dim : smaller_dim;
}
// static
S32 LLImageRaw::expandDimToPowerOfTwo(S32 curr_dim, S32 max_dim)
{
S32 new_dim = MIN_IMAGE_SIZE;
while( (new_dim < curr_dim) && (new_dim < max_dim) )
{
new_dim <<= 1;
}
return new_dim;
}
// static
S32 LLImageRaw::contractDimToPowerOfTwo(S32 curr_dim, S32 min_dim)
{
S32 new_dim = MAX_IMAGE_SIZE;
while( (new_dim > curr_dim) && (new_dim > min_dim) )
{
new_dim >>= 1;
}
return new_dim;
}
void LLImageRaw::biasedScaleToPowerOfTwo(S32 max_dim)
{
// Find new sizes
S32 new_width = biasedDimToPowerOfTwo(getWidth(),max_dim);
S32 new_height = biasedDimToPowerOfTwo(getHeight(),max_dim);
scale( new_width, new_height );
}
// Calculates (U8)(255*(a/255.f)*(b/255.f) + 0.5f). Thanks, Jim Blinn!
inline U8 LLImageRaw::fastFractionalMult( U8 a, U8 b )
{
U32 i = a * b + 128;
return U8((i + (i>>8)) >> 8);
}
void LLImageRaw::composite( LLImageRaw* src )
{
LLImageRaw* dst = this; // Just for clarity.
if (!validateSrcAndDst("LLImageRaw::composite", src, dst))
{
return;
}
llassert((3 == src->getComponents()) || (4 == src->getComponents()));
llassert(3 == dst->getComponents());
if( 3 == dst->getComponents() )
{
if( (src->getWidth() == dst->getWidth()) && (src->getHeight() == dst->getHeight()) )
{
// No scaling needed
if( 3 == src->getComponents() )
{
copyUnscaled( src ); // alpha is one so just copy the data.
}
else
{
compositeUnscaled4onto3( src );
}
}
else
{
if( 3 == src->getComponents() )
{
copyScaled( src ); // alpha is one so just copy the data.
}
else
{
compositeScaled4onto3( src );
}
}
}
}
// Src and dst can be any size. Src has 4 components. Dst has 3 components.
void LLImageRaw::compositeScaled4onto3(LLImageRaw* src)
{
LL_INFOS() << "compositeScaled4onto3" << LL_ENDL;
LLImageRaw* dst = this; // Just for clarity.
llassert( (4 == src->getComponents()) && (3 == dst->getComponents()) );
S32 temp_data_size = src->getWidth() * dst->getHeight() * src->getComponents();
llassert_always(temp_data_size > 0);
std::vector<U8> temp_buffer(temp_data_size);
// Vertical: scale but no composite
for( S32 col = 0; col < src->getWidth(); col++ )
{
copyLineScaled( src->getData() + (src->getComponents() * col), &temp_buffer[0] + (src->getComponents() * col), src->getHeight(), dst->getHeight(), src->getWidth(), src->getWidth() );
}
// Horizontal: scale and composite
for( S32 row = 0; row < dst->getHeight(); row++ )
{
compositeRowScaled4onto3( &temp_buffer[0] + (src->getComponents() * src->getWidth() * row), dst->getData() + (dst->getComponents() * dst->getWidth() * row), src->getWidth(), dst->getWidth() );
}
}
// Src and dst are same size. Src has 4 components. Dst has 3 components.
void LLImageRaw::compositeUnscaled4onto3( LLImageRaw* src )
{
LLImageRaw* dst = this; // Just for clarity.
llassert( (3 == src->getComponents()) || (4 == src->getComponents()) );
llassert( (src->getWidth() == dst->getWidth()) && (src->getHeight() == dst->getHeight()) );
U8* src_data = src->getData();
U8* dst_data = dst->getData();
S32 pixels = getWidth() * getHeight();
while( pixels-- )
{
U8 alpha = src_data[3];
if( alpha )
{
if( 255 == alpha )
{
dst_data[0] = src_data[0];
dst_data[1] = src_data[1];
dst_data[2] = src_data[2];
}
else
{
U8 transparency = 255 - alpha;
dst_data[0] = fastFractionalMult( dst_data[0], transparency ) + fastFractionalMult( src_data[0], alpha );
dst_data[1] = fastFractionalMult( dst_data[1], transparency ) + fastFractionalMult( src_data[1], alpha );
dst_data[2] = fastFractionalMult( dst_data[2], transparency ) + fastFractionalMult( src_data[2], alpha );
}
}
src_data += 4;
dst_data += 3;
}
}
void LLImageRaw::copyUnscaledAlphaMask( LLImageRaw* src, const LLColor4U& fill)
{
LLImageRaw* dst = this; // Just for clarity.
if (!validateSrcAndDst("LLImageRaw::copyUnscaledAlphaMask", src, dst))
{
return;
}
llassert( 1 == src->getComponents() );
llassert( 4 == dst->getComponents() );
llassert( (src->getWidth() == dst->getWidth()) && (src->getHeight() == dst->getHeight()) );
S32 pixels = getWidth() * getHeight();
U8* src_data = src->getData();
U8* dst_data = dst->getData();
for ( S32 i = 0; i < pixels; i++ )
{
dst_data[0] = fill.mV[0];
dst_data[1] = fill.mV[1];
dst_data[2] = fill.mV[2];
dst_data[3] = src_data[0];
src_data += 1;
dst_data += 4;
}
}
// Fill the buffer with a constant color
void LLImageRaw::fill( const LLColor4U& color )
{
if (isBufferInvalid())
{
LL_WARNS() << "Invalid image buffer" << LL_ENDL;
return;
}
S32 pixels = getWidth() * getHeight();
if( 4 == getComponents() )
{
U32* data = (U32*) getData();
U32 rgbaColor = color.asRGBA();
for( S32 i = 0; i < pixels; i++ )
{
data[ i ] = rgbaColor;
}
}
else
if( 3 == getComponents() )
{
U8* data = getData();
for( S32 i = 0; i < pixels; i++ )
{
data[0] = color.mV[0];
data[1] = color.mV[1];
data[2] = color.mV[2];
data += 3;
}
}
}
void LLImageRaw::tint( const LLColor3& color )
{
llassert( (3 == getComponents()) || (4 == getComponents()) );
if (isBufferInvalid())
{
LL_WARNS() << "Invalid image buffer" << LL_ENDL;
return;
}
S32 pixels = getWidth() * getHeight();
const S32 components = getComponents();
U8* data = getData();
for( S32 i = 0; i < pixels; i++ )
{
const float c0 = data[0] * color.mV[0];
const float c1 = data[1] * color.mV[1];
const float c2 = data[2] * color.mV[2];
data[0] = llclamp((U8)c0, 0, 255);
data[1] = llclamp((U8)c1, 0, 255);
data[2] = llclamp((U8)c2, 0, 255);
data += components;
}
}
LLPointer<LLImageRaw> LLImageRaw::duplicate()
{
if(getNumRefs() < 2)
{
return this; //nobody else refences to this image, no need to duplicate.
}
//make a duplicate
LLPointer<LLImageRaw> dup = new LLImageRaw(getData(), getWidth(), getHeight(), getComponents());
return dup;
}
// Src and dst can be any size. Src and dst can each have 3 or 4 components.
void LLImageRaw::copy(LLImageRaw* src)
{
LLImageRaw* dst = this; // Just for clarity.
if (!validateSrcAndDst("LLImageRaw::copy", src, dst))
{
return;
}
if( (src->getWidth() == dst->getWidth()) && (src->getHeight() == dst->getHeight()) )
{
// No scaling needed
if( src->getComponents() == dst->getComponents() )
{
copyUnscaled( src );
}
else
if( 3 == src->getComponents() )
{
copyUnscaled3onto4( src );
}
else
{
// 4 == src->getComponents()
copyUnscaled4onto3( src );
}
}
else
{
// Scaling needed
// No scaling needed
if( src->getComponents() == dst->getComponents() )
{
copyScaled( src );
}
else
if( 3 == src->getComponents() )
{
copyScaled3onto4( src );
}
else
{
// 4 == src->getComponents()
copyScaled4onto3( src );
}
}
}
// Src and dst are same size. Src and dst have same number of components.
void LLImageRaw::copyUnscaled(LLImageRaw* src)
{
LLImageRaw* dst = this; // Just for clarity.
llassert( (1 == src->getComponents()) || (3 == src->getComponents()) || (4 == src->getComponents()) );
llassert( src->getComponents() == dst->getComponents() );
llassert( (src->getWidth() == dst->getWidth()) && (src->getHeight() == dst->getHeight()) );
memcpy( dst->getData(), src->getData(), getWidth() * getHeight() * getComponents() ); /* Flawfinder: ignore */
}
// Src and dst can be any size. Src has 3 components. Dst has 4 components.
void LLImageRaw::copyScaled3onto4(LLImageRaw* src)
{
llassert( (3 == src->getComponents()) && (4 == getComponents()) );
// Slow, but simple. Optimize later if needed.
LLImageRaw temp( src->getWidth(), src->getHeight(), 4);
temp.copyUnscaled3onto4( src );
copyScaled( &temp );
}
// Src and dst can be any size. Src has 4 components. Dst has 3 components.
void LLImageRaw::copyScaled4onto3(LLImageRaw* src)
{
llassert( (4 == src->getComponents()) && (3 == getComponents()) );
// Slow, but simple. Optimize later if needed.
LLImageRaw temp( src->getWidth(), src->getHeight(), 3);
temp.copyUnscaled4onto3( src );
copyScaled( &temp );
}
// Src and dst are same size. Src has 4 components. Dst has 3 components.
void LLImageRaw::copyUnscaled4onto3( LLImageRaw* src )
{
LLImageRaw* dst = this; // Just for clarity.
llassert( (3 == dst->getComponents()) && (4 == src->getComponents()) );
llassert( (src->getWidth() == dst->getWidth()) && (src->getHeight() == dst->getHeight()) );
S32 pixels = getWidth() * getHeight();
U8* src_data = src->getData();
U8* dst_data = dst->getData();
for( S32 i=0; i<pixels; i++ )
{
dst_data[0] = src_data[0];
dst_data[1] = src_data[1];
dst_data[2] = src_data[2];
src_data += 4;
dst_data += 3;
}
}
// Src and dst are same size. Src has 3 components. Dst has 4 components.
void LLImageRaw::copyUnscaled3onto4( LLImageRaw* src )
{
LLImageRaw* dst = this; // Just for clarity.
llassert( 3 == src->getComponents() );
llassert( 4 == dst->getComponents() );
llassert( (src->getWidth() == dst->getWidth()) && (src->getHeight() == dst->getHeight()) );
S32 pixels = getWidth() * getHeight();
U8* src_data = src->getData();
U8* dst_data = dst->getData();
for( S32 i=0; i<pixels; i++ )
{
dst_data[0] = src_data[0];
dst_data[1] = src_data[1];
dst_data[2] = src_data[2];
dst_data[3] = 255;
src_data += 3;
dst_data += 4;
}
}
// Src and dst can be any size. Src and dst have same number of components.
void LLImageRaw::copyScaled( LLImageRaw* src )
{
LLImageRaw* dst = this; // Just for clarity.
if (!validateSrcAndDst("LLImageRaw::copyScaled", src, dst))
{
return;
}
llassert_always( (1 == src->getComponents()) || (3 == src->getComponents()) || (4 == src->getComponents()) );
llassert_always( src->getComponents() == dst->getComponents() );
if( (src->getWidth() == dst->getWidth()) && (src->getHeight() == dst->getHeight()) )
{
memcpy( dst->getData(), src->getData(), getWidth() * getHeight() * getComponents() ); /* Flawfinder: ignore */
return;
}
bilinear_scale(
src->getData(), src->getWidth(), src->getHeight(), src->getComponents(), src->getWidth()*src->getComponents()
, dst->getData(), dst->getWidth(), dst->getHeight(), dst->getComponents(), dst->getWidth()*dst->getComponents()
);
/*
S32 temp_data_size = src->getWidth() * dst->getHeight() * getComponents();
llassert_always(temp_data_size > 0);
std::vector<U8> temp_buffer(temp_data_size);
// Vertical
for( S32 col = 0; col < src->getWidth(); col++ )
{
copyLineScaled( src->getData() + (getComponents() * col), &temp_buffer[0] + (getComponents() * col), src->getHeight(), dst->getHeight(), src->getWidth(), src->getWidth() );
}
// Horizontal
for( S32 row = 0; row < dst->getHeight(); row++ )
{
copyLineScaled( &temp_buffer[0] + (getComponents() * src->getWidth() * row), dst->getData() + (getComponents() * dst->getWidth() * row), src->getWidth(), dst->getWidth(), 1, 1 );
}
*/
}
bool LLImageRaw::scale( S32 new_width, S32 new_height, bool scale_image_data )
{
S32 components = getComponents();
if (components != 1 && components != 3 && components != 4)
{
LL_WARNS() << "Invalid getComponents value (" << components << ")" << LL_ENDL;
return false;
}
if (isBufferInvalid())
{
LL_WARNS() << "Invalid image buffer" << LL_ENDL;
return false;
}
S32 old_width = getWidth();
S32 old_height = getHeight();
if( (old_width == new_width) && (old_height == new_height) )
{
return true; // Nothing to do.
}
// Reallocate the data buffer.
if (scale_image_data)
{
S32 new_data_size = new_width * new_height * components;
if (new_data_size > 0)
{
U8 *new_data = (U8*)ll_aligned_malloc_16(new_data_size);
if(NULL == new_data)
{
return false;
}
bilinear_scale(getData(), old_width, old_height, components, old_width*components, new_data, new_width, new_height, components, new_width*components);
setDataAndSize(new_data, new_width, new_height, components);
}
}
else try
{
// copy out existing image data
S32 temp_data_size = old_width * old_height * components;
std::vector<U8> temp_buffer(temp_data_size);
memcpy(&temp_buffer[0], getData(), temp_data_size);
// allocate new image data, will delete old data
U8* new_buffer = allocateDataSize(new_width, new_height, components);
if (!new_buffer)
{
LL_WARNS() << "Failed to allocate new image data buffer" << LL_ENDL;
return false;
}
for( S32 row = 0; row < new_height; row++ )
{
if (row < old_height)
{
memcpy(new_buffer + (new_width * row * components), &temp_buffer[0] + (old_width * row * components), components * llmin(old_width, new_width));
if (old_width < new_width)
{
// pad out rest of row with black
memset(new_buffer + (components * ((new_width * row) + old_width)), 0, components * (new_width - old_width));
}
}
else
{
// pad remaining rows with black
memset(new_buffer + (new_width * row * components), 0, new_width * components);
}
}
}
catch (std::bad_alloc&) // for temp_buffer
{
LL_WARNS() << "Failed to allocate temporary image buffer" << LL_ENDL;
return false;
}
return true ;
}
LLPointer<LLImageRaw> LLImageRaw::scaled(S32 new_width, S32 new_height)
{
LLPointer<LLImageRaw> result;
S32 components = getComponents();
if (components != 1 && components != 3 && components != 4)
{
LL_WARNS() << "Invalid getComponents value (" << components << ")" << LL_ENDL;
return result;
}
if (isBufferInvalid())
{
LL_WARNS() << "Invalid image buffer" << LL_ENDL;
return result;
}
S32 old_width = getWidth();
S32 old_height = getHeight();
if ((old_width == new_width) && (old_height == new_height))
{
result = new LLImageRaw(old_width, old_height, components);
if (!result || result->isBufferInvalid())
{
LL_WARNS() << "Failed to allocate new image" << LL_ENDL;
return result;
}
memcpy(result->getData(), getData(), getDataSize());
}
else
{
S32 new_data_size = new_width * new_height * components;
if (new_data_size > 0)
{
result = new LLImageRaw(new_width, new_height, components);
if (!result || result->isBufferInvalid())
{
LL_WARNS() << "Failed to allocate new image" << LL_ENDL;
return result;
}
bilinear_scale(getData(), old_width, old_height, components, old_width*components, result->getData(), new_width, new_height, components, new_width*components);
}
}
return result;
}
void LLImageRaw::copyLineScaled( U8* in, U8* out, S32 in_pixel_len, S32 out_pixel_len, S32 in_pixel_step, S32 out_pixel_step )
{
const S32 components = getComponents();
llassert( components >= 1 && components <= 4 );
const F32 ratio = F32(in_pixel_len) / out_pixel_len; // ratio of old to new
const F32 norm_factor = 1.f / ratio;
S32 goff = components >= 2 ? 1 : 0;
S32 boff = components >= 3 ? 2 : 0;
for( S32 x = 0; x < out_pixel_len; x++ )
{
// Sample input pixels in range from sample0 to sample1.
// Avoid floating point accumulation error... don't just add ratio each time. JC
const F32 sample0 = x * ratio;
const F32 sample1 = (x+1) * ratio;
const S32 index0 = llfloor(sample0); // left integer (floor)
const S32 index1 = llfloor(sample1); // right integer (floor)
const F32 fract0 = 1.f - (sample0 - F32(index0)); // spill over on left
const F32 fract1 = sample1 - F32(index1); // spill-over on right
if( index0 == index1 )
{
// Interval is embedded in one input pixel
S32 t0 = x * out_pixel_step * components;
S32 t1 = index0 * in_pixel_step * components;
U8* outp = out + t0;
U8* inp = in + t1;
for (S32 i = 0; i < components; ++i)
{
*outp = *inp;
++outp;
++inp;
}
}
else
{
// Left straddle
S32 t1 = index0 * in_pixel_step * components;
F32 r = in[t1 + 0] * fract0;
F32 g = in[t1 + goff] * fract0;
F32 b = in[t1 + boff] * fract0;
F32 a = 0;
if( components == 4)
{
a = in[t1 + 3] * fract0;
}
// Central interval
if (components < 4)
{
for( S32 u = index0 + 1; u < index1; u++ )
{
S32 t2 = u * in_pixel_step * components;
r += in[t2 + 0];
g += in[t2 + goff];
b += in[t2 + boff];
}
}
else
{
for( S32 u = index0 + 1; u < index1; u++ )
{
S32 t2 = u * in_pixel_step * components;
r += in[t2 + 0];
g += in[t2 + 1];
b += in[t2 + 2];
a += in[t2 + 3];
}
}
// right straddle
// Watch out for reading off of end of input array.
if( fract1 && index1 < in_pixel_len )
{
S32 t3 = index1 * in_pixel_step * components;
if (components < 4)
{
U8 in0 = in[t3 + 0];
U8 in1 = in[t3 + goff];
U8 in2 = in[t3 + boff];
r += in0 * fract1;
g += in1 * fract1;
b += in2 * fract1;
}
else
{
U8 in0 = in[t3 + 0];
U8 in1 = in[t3 + 1];
U8 in2 = in[t3 + 2];
U8 in3 = in[t3 + 3];
r += in0 * fract1;
g += in1 * fract1;
b += in2 * fract1;
a += in3 * fract1;
}
}
r *= norm_factor;
g *= norm_factor;
b *= norm_factor;
a *= norm_factor; // skip conditional
S32 t4 = x * out_pixel_step * components;
out[t4 + 0] = U8(ll_round(r));
if (components >= 2)
out[t4 + 1] = U8(ll_round(g));
if (components >= 3)
out[t4 + 2] = U8(ll_round(b));
if( components == 4)
out[t4 + 3] = U8(ll_round(a));
}
}
}
void LLImageRaw::compositeRowScaled4onto3( U8* in, U8* out, S32 in_pixel_len, S32 out_pixel_len )
{
llassert( getComponents() == 3 );
const S32 IN_COMPONENTS = 4;
const S32 OUT_COMPONENTS = 3;
const F32 ratio = F32(in_pixel_len) / out_pixel_len; // ratio of old to new
const F32 norm_factor = 1.f / ratio;
for( S32 x = 0; x < out_pixel_len; x++ )
{
// Sample input pixels in range from sample0 to sample1.
// Avoid floating point accumulation error... don't just add ratio each time. JC
const F32 sample0 = x * ratio;
const F32 sample1 = (x+1) * ratio;
const S32 index0 = S32(sample0); // left integer (floor)
const S32 index1 = S32(sample1); // right integer (floor)
const F32 fract0 = 1.f - (sample0 - F32(index0)); // spill over on left
const F32 fract1 = sample1 - F32(index1); // spill-over on right
U8 in_scaled_r;
U8 in_scaled_g;
U8 in_scaled_b;
U8 in_scaled_a;
if( index0 == index1 )
{
// Interval is embedded in one input pixel
S32 t1 = index0 * IN_COMPONENTS;
in_scaled_r = in[t1 + 0];
in_scaled_g = in[t1 + 0];
in_scaled_b = in[t1 + 0];
in_scaled_a = in[t1 + 0];
}
else
{
// Left straddle
S32 t1 = index0 * IN_COMPONENTS;
F32 r = in[t1 + 0] * fract0;
F32 g = in[t1 + 1] * fract0;
F32 b = in[t1 + 2] * fract0;
F32 a = in[t1 + 3] * fract0;
// Central interval
for( S32 u = index0 + 1; u < index1; u++ )
{
S32 t2 = u * IN_COMPONENTS;
r += in[t2 + 0];
g += in[t2 + 1];
b += in[t2 + 2];
a += in[t2 + 3];
}
// right straddle
// Watch out for reading off of end of input array.
if( fract1 && index1 < in_pixel_len )
{
S32 t3 = index1 * IN_COMPONENTS;
r += in[t3 + 0] * fract1;
g += in[t3 + 1] * fract1;
b += in[t3 + 2] * fract1;
a += in[t3 + 3] * fract1;
}
r *= norm_factor;
g *= norm_factor;
b *= norm_factor;
a *= norm_factor;
in_scaled_r = U8(ll_round(r));
in_scaled_g = U8(ll_round(g));
in_scaled_b = U8(ll_round(b));
in_scaled_a = U8(ll_round(a));
}
if( in_scaled_a )
{
if( 255 == in_scaled_a )
{
out[0] = in_scaled_r;
out[1] = in_scaled_g;
out[2] = in_scaled_b;
}
else
{
U8 transparency = 255 - in_scaled_a;
out[0] = fastFractionalMult( out[0], transparency ) + fastFractionalMult( in_scaled_r, in_scaled_a );
out[1] = fastFractionalMult( out[1], transparency ) + fastFractionalMult( in_scaled_g, in_scaled_a );
out[2] = fastFractionalMult( out[2], transparency ) + fastFractionalMult( in_scaled_b, in_scaled_a );
}
}
out += OUT_COMPONENTS;
}
}
void LLImageRaw::addEmissive(LLImageRaw* src)
{
LLImageRaw* dst = this; // Just for clarity.
if (!validateSrcAndDst(__FUNCTION__, src, dst))
{
return;
}
llassert((3 == src->getComponents()) || (4 == src->getComponents()));
llassert(3 == dst->getComponents());
if( 3 == dst->getComponents() )
{
if( (src->getWidth() == dst->getWidth()) && (src->getHeight() == dst->getHeight()) )
{
addEmissiveUnscaled(src);
}
else
{
addEmissiveScaled(src);
}
}
}
void LLImageRaw::addEmissiveUnscaled(LLImageRaw* src)
{
LLImageRaw* dst = this; // Just for clarity.
llassert((3 == src->getComponents()) || (4 == src->getComponents()));
llassert((3 == dst->getComponents()) || (4 == dst->getComponents()));
llassert( (src->getWidth() == dst->getWidth()) && (src->getHeight() == dst->getHeight()) );
U8* const src_data = src->getData();
U8* const dst_data = dst->getData();
for(S32 y = 0; y < dst->getHeight(); ++y)
{
const S32 src_row_offset = src->getComponents() * src->getWidth() * y;
const S32 dst_row_offset = dst->getComponents() * dst->getWidth() * y;
for (S32 x = 0; x < dst->getWidth(); ++x)
{
const S32 src_offset = src_row_offset + (x * src->getComponents());
const S32 dst_offset = dst_row_offset + (x * dst->getComponents());
U8* const src_pixel = src_data + src_offset;
U8* const dst_pixel = dst_data + dst_offset;
dst_pixel[0] = llmin(255, dst_pixel[0] + src_pixel[0]);
dst_pixel[1] = llmin(255, dst_pixel[1] + src_pixel[1]);
dst_pixel[2] = llmin(255, dst_pixel[2] + src_pixel[2]);
}
}
}
void LLImageRaw::addEmissiveScaled(LLImageRaw* src)
{
LLImageRaw* dst = this; // Just for clarity.
llassert( (4 == src->getComponents()) && (3 == dst->getComponents()) );
LLImageRaw temp(dst->getWidth(), dst->getHeight(), dst->getComponents());
llassert_always(temp.getDataSize() > 0);
temp.copyScaled(src);
dst->addEmissiveUnscaled(&temp);
}
bool LLImageRaw::validateSrcAndDst(std::string func, LLImageRaw* src, LLImageRaw* dst)
{
if (!src || !dst || src->isBufferInvalid() || dst->isBufferInvalid())
{
LL_WARNS() << func << ": Source: ";
if (!src) LL_CONT << "Null pointer";
else if (src->isBufferInvalid()) LL_CONT << "Invalid buffer";
else LL_CONT << "OK";
LL_CONT << "; Destination: ";
if (!dst) LL_CONT << "Null pointer";
else if (dst->isBufferInvalid()) LL_CONT << "Invalid buffer";
else LL_CONT << "OK";
LL_CONT << "." << LL_ENDL;
return false;
}
return true;
}
//----------------------------------------------------------------------------
static struct
{
const char* exten;
EImageCodec codec;
}
file_extensions[] =
{
{ "bmp", IMG_CODEC_BMP },
{ "tga", IMG_CODEC_TGA },
{ "j2c", IMG_CODEC_J2C },
{ "jp2", IMG_CODEC_J2C },
{ "texture", IMG_CODEC_J2C },
{ "jpg", IMG_CODEC_JPEG },
{ "jpeg", IMG_CODEC_JPEG },
{ "mip", IMG_CODEC_DXT },
{ "dxt", IMG_CODEC_DXT },
{ "png", IMG_CODEC_PNG }
};
#define NUM_FILE_EXTENSIONS LL_ARRAY_SIZE(file_extensions)
#if 0
static std::string find_file(std::string &name, S8 *codec)
{
std::string tname;
for (int i=0; i<(int)(NUM_FILE_EXTENSIONS); i++)
{
tname = name + "." + std::string(file_extensions[i].exten);
llifstream ifs(tname.c_str(), llifstream::binary);
if (ifs.is_open())
{
ifs.close();
if (codec)
*codec = file_extensions[i].codec;
return std::string(file_extensions[i].exten);
}
}
return std::string("");
}
#endif
EImageCodec LLImageBase::getCodecFromExtension(const std::string& exten)
{
if (!exten.empty())
{
for (int i = 0; i < (int)(NUM_FILE_EXTENSIONS); i++)
{
if (exten == file_extensions[i].exten)
return file_extensions[i].codec;
}
}
return IMG_CODEC_INVALID;
}
#if 0
bool LLImageRaw::createFromFile(const std::string &filename, bool j2c_lowest_mip_only)
{
std::string name = filename;
size_t dotidx = name.rfind('.');
S8 codec = IMG_CODEC_INVALID;
std::string exten;
deleteData(); // delete any existing data
if (dotidx != std::string::npos)
{
exten = name.substr(dotidx+1);
LLStringUtil::toLower(exten);
codec = getCodecFromExtension(exten);
}
else
{
exten = find_file(name, &codec);
name = name + "." + exten;
}
if (codec == IMG_CODEC_INVALID)
{
return false; // format not recognized
}
llifstream ifs(name.c_str(), llifstream::binary);
if (!ifs.is_open())
{
// SJB: changed from LL_INFOS() to LL_DEBUGS() to reduce spam
LL_DEBUGS() << "Unable to open image file: " << name << LL_ENDL;
return false;
}
ifs.seekg (0, std::ios::end);
int length = ifs.tellg();
if (j2c_lowest_mip_only && length > 2048)
{
length = 2048;
}
ifs.seekg (0, std::ios::beg);
if (!length)
{
LL_INFOS() << "Zero length file file: " << name << LL_ENDL;
return false;
}
LLPointer<LLImageFormatted> image = LLImageFormatted::createFromType(codec);
llassert(image.notNull());
U8 *buffer = image->allocateData(length);
ifs.read ((char*)buffer, length);
ifs.close();
bool success;
success = image->updateData();
if (success)
{
if (j2c_lowest_mip_only && codec == IMG_CODEC_J2C)
{
S32 width = image->getWidth();
S32 height = image->getHeight();
S32 discard_level = 0;
while (width > 1 && height > 1 && discard_level < MAX_DISCARD_LEVEL)
{
width >>= 1;
height >>= 1;
discard_level++;
}
((LLImageJ2C *)((LLImageFormatted*)image))->setDiscardLevel(discard_level);
}
success = image->decode(this, 100000.0f);
}
image = NULL; // deletes image
if (!success)
{
deleteData();
LL_WARNS() << "Unable to decode image" << name << LL_ENDL;
return false;
}
return true;
}
#endif
//---------------------------------------------------------------------------
// LLImageFormatted
//---------------------------------------------------------------------------
//static
S32 LLImageFormatted::sGlobalFormattedMemory = 0;
LLImageFormatted::LLImageFormatted(S8 codec)
: LLImageBase(),
mCodec(codec),
mDecoding(0),
mDecoded(0),
mDiscardLevel(-1),
mLevels(0)
{
}
// virtual
LLImageFormatted::~LLImageFormatted()
{
// NOTE: ~LLimageBase() call to deleteData() calls LLImageBase::deleteData()
// NOT LLImageFormatted::deleteData()
deleteData();
}
//----------------------------------------------------------------------------
//virtual
void LLImageFormatted::resetLastError()
{
LLImage::setLastError("");
}
//virtual
void LLImageFormatted::setLastError(const std::string& message, const std::string& filename)
{
std::string error = message;
if (!filename.empty())
error += std::string(" FILE: ") + filename;
LLImage::setLastError(error);
}
//----------------------------------------------------------------------------
// static
LLImageFormatted* LLImageFormatted::createFromType(S8 codec)
{
LLImageFormatted* image;
switch(codec)
{
case IMG_CODEC_BMP:
image = new LLImageBMP();
break;
case IMG_CODEC_TGA:
image = new LLImageTGA();
break;
case IMG_CODEC_JPEG:
image = new LLImageJPEG();
break;
case IMG_CODEC_PNG:
image = new LLImagePNG();
break;
case IMG_CODEC_J2C:
image = new LLImageJ2C();
break;
case IMG_CODEC_DXT:
image = new LLImageDXT();
break;
default:
image = NULL;
break;
}
return image;
}
// static
LLImageFormatted* LLImageFormatted::createFromExtension(const std::string& instring)
{
std::string exten;
size_t dotidx = instring.rfind('.');
if (dotidx != std::string::npos)
{
exten = instring.substr(dotidx+1);
}
else
{
exten = instring;
}
S8 codec = getCodecFromExtension(exten);
return createFromType(codec);
}
//----------------------------------------------------------------------------
// virtual
void LLImageFormatted::dump()
{
LLImageBase::dump();
LL_INFOS() << "LLImageFormatted"
<< " mDecoding " << mDecoding
<< " mCodec " << S32(mCodec)
<< " mDecoded " << mDecoded
<< LL_ENDL;
}
//----------------------------------------------------------------------------
S32 LLImageFormatted::calcDataSize(S32 discard_level)
{
if (discard_level < 0)
{
discard_level = mDiscardLevel;
}
S32 w = getWidth() >> discard_level;
S32 h = getHeight() >> discard_level;
w = llmax(w, 1);
h = llmax(h, 1);
return w * h * getComponents();
}
S32 LLImageFormatted::calcDiscardLevelBytes(S32 bytes)
{
llassert(bytes >= 0);
S32 discard_level = 0;
while (1)
{
S32 bytes_needed = calcDataSize(discard_level); // virtual
if (bytes_needed <= bytes)
{
break;
}
discard_level++;
if (discard_level > MAX_IMAGE_MIP)
{
return -1;
}
}
return discard_level;
}
//----------------------------------------------------------------------------
// Subclasses that can handle more than 4 channels should override this function.
bool LLImageFormatted::decodeChannels(LLImageRaw* raw_image,F32 decode_time, S32 first_channel, S32 max_channel)
{
llassert( (first_channel == 0) && (max_channel == 4) );
return decode( raw_image, decode_time ); // Loads first 4 channels by default.
}
//----------------------------------------------------------------------------
// virtual
U8* LLImageFormatted::allocateData(S32 size)
{
U8* res = LLImageBase::allocateData(size); // calls deleteData()
sGlobalFormattedMemory += getDataSize();
return res;
}
// virtual
U8* LLImageFormatted::reallocateData(S32 size)
{
sGlobalFormattedMemory -= getDataSize();
U8* res = LLImageBase::reallocateData(size);
sGlobalFormattedMemory += getDataSize();
return res;
}
// virtual
void LLImageFormatted::deleteData()
{
sGlobalFormattedMemory -= getDataSize();
LLImageBase::deleteData();
}
//----------------------------------------------------------------------------
// virtual
void LLImageFormatted::sanityCheck()
{
LLImageBase::sanityCheck();
if (mCodec >= IMG_CODEC_EOF)
{
LL_ERRS() << "Failed LLImageFormatted::sanityCheck "
<< "decoding " << S32(mDecoding)
<< "decoded " << S32(mDecoded)
<< "codec " << S32(mCodec)
<< LL_ENDL;
}
}
//----------------------------------------------------------------------------
bool LLImageFormatted::copyData(U8 *data, S32 size)
{
if ( data && ((data != getData()) || (size != getDataSize())) )
{
deleteData();
allocateData(size);
memcpy(getData(), data, size); /* Flawfinder: ignore */
}
return true;
}
// LLImageFormatted becomes the owner of data
void LLImageFormatted::setData(U8 *data, S32 size)
{
if (data && data != getData())
{
deleteData();
setDataAndSize(data, size); // Access private LLImageBase members
sGlobalFormattedMemory += getDataSize();
}
}
void LLImageFormatted::appendData(U8 *data, S32 size)
{
if (data)
{
if (!getData())
{
setData(data, size);
}
else
{
S32 cursize = getDataSize();
S32 newsize = cursize + size;
reallocateData(newsize);
memcpy(getData() + cursize, data, size);
ll_aligned_free_16(data);
}
}
}
//----------------------------------------------------------------------------
bool LLImageFormatted::load(const std::string &filename, int load_size)
{
resetLastError();
S32 file_size = 0;
LLAPRFile infile ;
infile.open(filename, LL_APR_RB, NULL, &file_size);
apr_file_t* apr_file = infile.getFileHandle();
if (!apr_file)
{
setLastError("Unable to open file for reading", filename);
return false;
}
if (file_size == 0)
{
setLastError("File is empty",filename);
return false;
}
// Constrain the load size to acceptable values
if ((load_size == 0) || (load_size > file_size))
{
load_size = file_size;
}
bool res;
U8 *data = allocateData(load_size);
if (data)
{
apr_size_t bytes_read = load_size;
apr_status_t s = apr_file_read(apr_file, data, &bytes_read); // modifies bytes_read
if (s != APR_SUCCESS || (S32) bytes_read != load_size)
{
deleteData();
setLastError("Unable to read file",filename);
res = false;
}
else
{
res = updateData();
}
}
else
{
setLastError("Allocation failure", filename);
res = false;
}
return res;
}
bool LLImageFormatted::save(const std::string &filename)
{
resetLastError();
LLAPRFile outfile ;
outfile.open(filename, LL_APR_WB);
if (!outfile.getFileHandle())
{
setLastError("Unable to open file for writing", filename);
return false;
}
S32 result = outfile.write(getData(), getDataSize());
outfile.close() ;
return (result != 0);
}
S8 LLImageFormatted::getCodec() const
{
return mCodec;
}
static void avg4_colors4(const U8* a, const U8* b, const U8* c, const U8* d, U8* dst)
{
dst[0] = (U8)(((U32)(a[0]) + b[0] + c[0] + d[0])>>2);
dst[1] = (U8)(((U32)(a[1]) + b[1] + c[1] + d[1])>>2);
dst[2] = (U8)(((U32)(a[2]) + b[2] + c[2] + d[2])>>2);
dst[3] = (U8)(((U32)(a[3]) + b[3] + c[3] + d[3])>>2);
}
static void avg4_colors3(const U8* a, const U8* b, const U8* c, const U8* d, U8* dst)
{
dst[0] = (U8)(((U32)(a[0]) + b[0] + c[0] + d[0])>>2);
dst[1] = (U8)(((U32)(a[1]) + b[1] + c[1] + d[1])>>2);
dst[2] = (U8)(((U32)(a[2]) + b[2] + c[2] + d[2])>>2);
}
static void avg4_colors2(const U8* a, const U8* b, const U8* c, const U8* d, U8* dst)
{
dst[0] = (U8)(((U32)(a[0]) + b[0] + c[0] + d[0])>>2);
dst[1] = (U8)(((U32)(a[1]) + b[1] + c[1] + d[1])>>2);
}
void LLImageBase::setDataAndSize(U8 *data, S32 size)
{
ll_assert_aligned(data, 16);
mData = data;
mDataSize = size;
}
//static
void LLImageBase::generateMip(const U8* indata, U8* mipdata, S32 width, S32 height, S32 nchannels)
{
llassert(width > 0 && height > 0);
U8* data = mipdata;
S32 in_width = width*2;
for (S32 h=0; h<height; h++)
{
for (S32 w=0; w<width; w++)
{
switch(nchannels)
{
case 4:
avg4_colors4(indata, indata+4, indata+4*in_width, indata+4*in_width+4, data);
break;
case 3:
avg4_colors3(indata, indata+3, indata+3*in_width, indata+3*in_width+3, data);
break;
case 2:
avg4_colors2(indata, indata+2, indata+2*in_width, indata+2*in_width+2, data);
break;
case 1:
*(U8*)data = (U8)(((U32)(indata[0]) + indata[1] + indata[in_width] + indata[in_width+1])>>2);
break;
default:
LL_ERRS() << "generateMmip called with bad num channels" << LL_ENDL;
}
indata += nchannels*2;
data += nchannels;
}
indata += nchannels*in_width; // skip odd lines
}
}
//============================================================================
//static
F32 LLImageBase::calc_download_priority(F32 virtual_size, F32 visible_pixels, S32 bytes_sent)
{
F32 w_priority;
F32 bytes_weight = 1.f;
if (!bytes_sent)
{
bytes_weight = 20.f;
}
else if (bytes_sent < 1000)
{
bytes_weight = 1.f;
}
else if (bytes_sent < 2000)
{
bytes_weight = 1.f/1.5f;
}
else if (bytes_sent < 4000)
{
bytes_weight = 1.f/3.f;
}
else if (bytes_sent < 8000)
{
bytes_weight = 1.f/6.f;
}
else if (bytes_sent < 16000)
{
bytes_weight = 1.f/12.f;
}
else if (bytes_sent < 32000)
{
bytes_weight = 1.f/20.f;
}
else if (bytes_sent < 64000)
{
bytes_weight = 1.f/32.f;
}
else
{
bytes_weight = 1.f/64.f;
}
bytes_weight *= bytes_weight;
//LL_INFOS() << "VS: " << virtual_size << LL_ENDL;
F32 virtual_size_factor = virtual_size / (10.f*10.f);
// The goal is for weighted priority to be <= 0 when we've reached a point where
// we've sent enough data.
//LL_INFOS() << "BytesSent: " << bytes_sent << LL_ENDL;
//LL_INFOS() << "BytesWeight: " << bytes_weight << LL_ENDL;
//LL_INFOS() << "PreLog: " << bytes_weight * virtual_size_factor << LL_ENDL;
w_priority = (F32)log10(bytes_weight * virtual_size_factor);
//LL_INFOS() << "PreScale: " << w_priority << LL_ENDL;
// We don't want to affect how MANY bytes we send based on the visible pixels, but the order
// in which they're sent. We post-multiply so we don't change the zero point.
if (w_priority > 0.f)
{
F32 pixel_weight = (F32)log10(visible_pixels + 1)*3.0f;
w_priority *= pixel_weight;
}
return w_priority;
}
//============================================================================