phoenix-firestorm/indra/newview/lllegacyatmospherics.cpp

801 lines
20 KiB
C++

/**
* @file lllegacyatmospherics.cpp
* @brief LLAtmospherics class implementation
*
* $LicenseInfo:firstyear=2001&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2010, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
#include "llviewerprecompiledheaders.h"
#include "lllegacyatmospherics.h"
#include "llfeaturemanager.h"
#include "llviewercontrol.h"
#include "llframetimer.h"
#include "llagent.h"
#include "llagentcamera.h"
#include "lldrawable.h"
#include "llface.h"
#include "llglheaders.h"
#include "llsky.h"
#include "llviewercamera.h"
#include "llviewertexturelist.h"
#include "llviewerobjectlist.h"
#include "llviewerregion.h"
#include "llworld.h"
#include "pipeline.h"
#include "v3colorutil.h"
#include "llsettingssky.h"
#include "llenvironment.h"
#include "lldrawpoolwater.h"
class LLFastLn
{
public:
LLFastLn()
{
mTable[0] = 0;
for( S32 i = 1; i < 257; i++ )
{
mTable[i] = log((F32)i);
}
}
F32 ln( F32 x )
{
const F32 OO_255 = 0.003921568627450980392156862745098f;
const F32 LN_255 = 5.5412635451584261462455391880218f;
if( x < OO_255 )
{
return log(x);
}
else
if( x < 1 )
{
x *= 255.f;
S32 index = llfloor(x);
F32 t = x - index;
F32 low = mTable[index];
F32 high = mTable[index + 1];
return low + t * (high - low) - LN_255;
}
else
if( x <= 255 )
{
S32 index = llfloor(x);
F32 t = x - index;
F32 low = mTable[index];
F32 high = mTable[index + 1];
return low + t * (high - low);
}
else
{
return log( x );
}
}
F32 pow( F32 x, F32 y )
{
return (F32)LL_FAST_EXP(y * ln(x));
}
private:
F32 mTable[257]; // index 0 is unused
};
static LLFastLn gFastLn;
// Functions used a lot.
inline F32 LLHaze::calcPhase(const F32 cos_theta) const
{
const F32 g2 = mG * mG;
const F32 den = 1 + g2 - 2 * mG * cos_theta;
return (1 - g2) * gFastLn.pow(den, -1.5);
}
inline void color_pow(LLColor3 &col, const F32 e)
{
col.mV[0] = gFastLn.pow(col.mV[0], e);
col.mV[1] = gFastLn.pow(col.mV[1], e);
col.mV[2] = gFastLn.pow(col.mV[2], e);
}
inline LLColor3 color_norm(const LLColor3 &col)
{
const F32 m = color_max(col);
if (m > 1.f)
{
return 1.f/m * col;
}
else return col;
}
inline void color_gamma_correct(LLColor3 &col)
{
const F32 gamma_inv = 1.f/1.2f;
if (col.mV[0] != 0.f)
{
col.mV[0] = gFastLn.pow(col.mV[0], gamma_inv);
}
if (col.mV[1] != 0.f)
{
col.mV[1] = gFastLn.pow(col.mV[1], gamma_inv);
}
if (col.mV[2] != 0.f)
{
col.mV[2] = gFastLn.pow(col.mV[2], gamma_inv);
}
}
static LLColor3 calc_air_sca_sea_level()
{
static LLColor3 WAVE_LEN(675, 520, 445);
static LLColor3 refr_ind = refr_ind_calc(WAVE_LEN);
static LLColor3 n21 = refr_ind * refr_ind - LLColor3(1, 1, 1);
static LLColor3 n4 = n21 * n21;
static LLColor3 wl2 = WAVE_LEN * WAVE_LEN * 1e-6f;
static LLColor3 wl4 = wl2 * wl2;
static LLColor3 mult_const = fsigma * 2.0f/ 3.0f * 1e24f * (F_PI * F_PI) * n4;
static F32 dens_div_N = F32( ATM_SEA_LEVEL_NDENS / Ndens2);
return dens_div_N * mult_const.divide(wl4);
}
// static constants.
LLColor3 const LLHaze::sAirScaSeaLevel = calc_air_sca_sea_level();
F32 const LLHaze::sAirScaIntense = color_intens(LLHaze::sAirScaSeaLevel);
F32 const LLHaze::sAirScaAvg = LLHaze::sAirScaIntense / 3.f;
/***************************************
Atmospherics
***************************************/
LLAtmospherics::LLAtmospherics()
: mCloudDensity(0.2f),
mWind(0.f),
mWorldScale(1.f)
{
/// WL PARAMS
mInitialized = FALSE;
mAmbientScale = gSavedSettings.getF32("SkyAmbientScale");
mNightColorShift = gSavedSettings.getColor3("SkyNightColorShift");
mFogColor.mV[VRED] = mFogColor.mV[VGREEN] = mFogColor.mV[VBLUE] = 0.5f;
mFogColor.mV[VALPHA] = 0.0f;
mFogRatio = 1.2f;
mHazeConcentration = 0.f;
mInterpVal = 0.f;
}
LLAtmospherics::~LLAtmospherics()
{
}
void LLAtmospherics::init()
{
const F32 haze_int = color_intens(mHaze.calcSigSca(0));
mHazeConcentration = haze_int / (color_intens(mHaze.calcAirSca(0)) + haze_int);
mInitialized = true;
}
// This cubemap is used as "environmentMap" in indra/newview/app_settings/shaders/class2/deferred/softenLightF.glsl
LLColor4 LLAtmospherics::calcSkyColorInDir(const LLSettingsSky::ptr_t &psky, AtmosphericsVars& vars, const LLVector3 &dir, bool isShiny, bool low_end)
{
const F32 sky_saturation = 0.25f;
const F32 land_saturation = 0.1f;
if (isShiny && dir.mV[VZ] < -0.02f)
{
LLColor4 col;
LLColor3 desat_fog = LLColor3(mFogColor);
F32 brightness = desat_fog.brightness();// NOTE: Linear brightness!
// So that shiny somewhat shows up at night.
if (brightness < 0.15f)
{
brightness = 0.15f;
desat_fog = smear(0.15f);
}
F32 greyscale_sat = brightness * (1.0f - land_saturation);
desat_fog = desat_fog * land_saturation + smear(greyscale_sat);
if (low_end)
{
col = LLColor4(desat_fog, 0.f);
}
else
{
col = LLColor4(desat_fog * 0.5f, 0.f);
}
float x = 1.0f-fabsf(-0.1f-dir.mV[VZ]);
x *= x;
col.mV[0] *= x*x;
col.mV[1] *= powf(x, 2.5f);
col.mV[2] *= x*x*x;
return col;
}
// undo OGL_TO_CFR_ROTATION and negate vertical direction.
LLVector3 Pn = LLVector3(-dir[1] , -dir[2], -dir[0]);
//calculates hazeColor
calcSkyColorWLVert(psky, Pn, vars);
if (isShiny)
{
F32 brightness = vars.hazeColor.brightness();
F32 greyscale_sat = brightness * (1.0f - sky_saturation);
LLColor3 sky_color = vars.hazeColor * sky_saturation + smear(greyscale_sat);
//sky_color *= (0.5f + 0.5f * brightness); // SL-12574 EEP sky is being attenuated too much
return LLColor4(sky_color, 0.0f);
}
LLColor3 sky_color = low_end ? vars.hazeColor * 2.0f : psky->gammaCorrect(vars.hazeColor * 2.0f, vars.gamma);
return LLColor4(sky_color, 0.0f);
}
// NOTE: Keep these in sync!
// indra\newview\app_settings\shaders\class1\deferred\skyV.glsl
// indra\newview\app_settings\shaders\class1\deferred\cloudsV.glsl
// indra\newview\lllegacyatmospherics.cpp
void LLAtmospherics::calcSkyColorWLVert(const LLSettingsSky::ptr_t &psky, LLVector3 & Pn, AtmosphericsVars& vars)
{
const LLColor3 blue_density = vars.blue_density;
const LLColor3 blue_horizon = vars.blue_horizon;
const F32 haze_horizon = vars.haze_horizon;
const F32 haze_density = vars.haze_density;
const F32 density_multiplier = vars.density_multiplier;
F32 max_y = vars.max_y;
LLVector4 sun_norm = vars.sun_norm;
// project the direction ray onto the sky dome.
F32 phi = acos(Pn[1]);
F32 sinA = sin(F_PI - phi);
if (fabsf(sinA) < 0.01f)
{ //avoid division by zero
sinA = 0.01f;
}
F32 Plen = vars.dome_radius * sin(F_PI + phi + asin(vars.dome_offset * sinA)) / sinA;
Pn *= Plen;
// Set altitude
if (Pn[1] > 0.f)
{
Pn *= (max_y / Pn[1]);
}
else
{
Pn *= (-32000.f / Pn[1]);
}
Plen = Pn.length();
Pn /= Plen;
// Initialize temp variables
LLColor3 sunlight = vars.sunlight;
LLColor3 ambient = vars.ambient;
LLColor3 glow = vars.glow;
F32 cloud_shadow = vars.cloud_shadow;
// Sunlight attenuation effect (hue and brightness) due to atmosphere
// this is used later for sunlight modulation at various altitudes
LLColor3 light_atten = vars.light_atten;
LLColor3 light_transmittance = psky->getLightTransmittanceFast(vars.total_density, vars.density_multiplier, Plen);
(void)light_transmittance; // silence Clang warn-error
// Calculate relative weights
LLColor3 temp2(0.f, 0.f, 0.f);
LLColor3 temp1 = vars.total_density;
LLColor3 blue_weight = componentDiv(blue_density, temp1);
LLColor3 blue_factor = blue_horizon * blue_weight;
LLColor3 haze_weight = componentDiv(smear(haze_density), temp1);
LLColor3 haze_factor = haze_horizon * haze_weight;
// Compute sunlight from P & lightnorm (for long rays like sky)
temp2.mV[1] = llmax(F_APPROXIMATELY_ZERO, llmax(0.f, Pn[1]) * 1.0f + sun_norm.mV[1] );
temp2.mV[1] = 1.f / temp2.mV[1];
componentMultBy(sunlight, componentExp((light_atten * -1.f) * temp2.mV[1]));
componentMultBy(sunlight, light_transmittance);
// Distance
temp2.mV[2] = Plen * density_multiplier;
// Transparency (-> temp1)
temp1 = componentExp((temp1 * -1.f) * temp2.mV[2]);
// Compute haze glow
temp2.mV[0] = Pn * LLVector3(sun_norm);
temp2.mV[0] = 1.f - temp2.mV[0];
// temp2.x is 0 at the sun and increases away from sun
temp2.mV[0] = llmax(temp2.mV[0], .001f);
// Set a minimum "angle" (smaller glow.y allows tighter, brighter hotspot)
// Higher glow.x gives dimmer glow (because next step is 1 / "angle")
temp2.mV[0] *= glow.mV[0];
temp2.mV[0] = pow(temp2.mV[0], glow.mV[2]);
// glow.z should be negative, so we're doing a sort of (1 / "angle") function
// Add "minimum anti-solar illumination"
temp2.mV[0] += .25f;
// Haze color above cloud
vars.hazeColor = (blue_factor * (sunlight + ambient) + componentMult(haze_factor, sunlight * temp2.mV[0] + ambient));
// Increase ambient when there are more clouds
LLColor3 tmpAmbient = ambient + (LLColor3::white - ambient) * cloud_shadow * 0.5f;
// Dim sunlight by cloud shadow percentage
sunlight *= (1.f - cloud_shadow);
// Haze color below cloud
vars.hazeColorBelowCloud = (blue_factor * (sunlight + tmpAmbient) + componentMult(haze_factor, sunlight * temp2.mV[0] + tmpAmbient));
// Final atmosphere additive
componentMultBy(vars.hazeColor, LLColor3::white - temp1);
/*
// SL-12574
// Attenuate cloud color by atmosphere
temp1 = componentSqrt(temp1); //less atmos opacity (more transparency) below clouds
// At horizon, blend high altitude sky color towards the darker color below the clouds
vars.hazeColor += componentMult(vars.hazeColorBelowCloud - vars.hazeColor, LLColor3::white - componentSqrt(temp1));
*/
}
void LLAtmospherics::updateFog(const F32 distance, const LLVector3& tosun_in)
{
LLVector3 tosun = tosun_in;
if (!gPipeline.hasRenderDebugFeatureMask(LLPipeline::RENDER_DEBUG_FEATURE_FOG))
{
return;
}
LLColor4 target_fog(0.f, 0.2f, 0.5f, 0.f);
const F32 water_height = gAgent.getRegion() ? gAgent.getRegion()->getWaterHeight() : 0.f;
// LLWorld::getInstance()->getWaterHeight();
F32 camera_height = gAgentCamera.getCameraPositionAgent().mV[2];
F32 near_clip_height = LLViewerCamera::getInstance()->getAtAxis().mV[VZ] * LLViewerCamera::getInstance()->getNear();
camera_height += near_clip_height;
F32 fog_distance = 0.f;
LLColor3 res_color[3];
LLColor3 sky_fog_color = LLColor3::white;
LLColor3 render_fog_color = LLColor3::white;
const F32 tosun_z = tosun.mV[VZ];
tosun.mV[VZ] = 0.f;
tosun.normalize();
LLVector3 perp_tosun;
perp_tosun.mV[VX] = -tosun.mV[VY];
perp_tosun.mV[VY] = tosun.mV[VX];
LLVector3 tosun_45 = tosun + perp_tosun;
tosun_45.normalize();
F32 delta = 0.06f;
tosun.mV[VZ] = delta;
perp_tosun.mV[VZ] = delta;
tosun_45.mV[VZ] = delta;
tosun.normalize();
perp_tosun.normalize();
tosun_45.normalize();
// Sky colors, just slightly above the horizon in the direction of the sun, perpendicular to the sun, and at a 45 degree angle to the sun.
AtmosphericsVars vars;
LLSettingsSky::ptr_t psky = LLEnvironment::instance().getCurrentSky();
// NOTE: This is very similar to LLVOSky::cacheEnvironment()
// Differences:
// vars.sun_norm
// vars.sunlight
// invariants across whole sky tex process...
vars.blue_density = psky->getBlueDensity();
vars.blue_horizon = psky->getBlueHorizon();
vars.haze_density = psky->getHazeDensity();
vars.haze_horizon = psky->getHazeHorizon();
vars.density_multiplier = psky->getDensityMultiplier();
vars.distance_multiplier = psky->getDistanceMultiplier();
vars.max_y = psky->getMaxY();
vars.sun_norm = LLEnvironment::instance().getSunDirectionCFR();
vars.sunlight = psky->getSunlightColor();
vars.ambient = psky->getAmbientColor();
vars.glow = psky->getGlow();
vars.cloud_shadow = psky->getCloudShadow();
vars.dome_radius = psky->getDomeRadius();
vars.dome_offset = psky->getDomeOffset();
vars.light_atten = psky->getLightAttenuation(vars.max_y);
vars.light_transmittance = psky->getLightTransmittance(vars.max_y);
vars.total_density = psky->getTotalDensity();
vars.gamma = psky->getGamma();
res_color[0] = calcSkyColorInDir(psky, vars, tosun);
res_color[1] = calcSkyColorInDir(psky, vars, perp_tosun);
res_color[2] = calcSkyColorInDir(psky, vars, tosun_45);
sky_fog_color = color_norm(res_color[0] + res_color[1] + res_color[2]);
F32 full_off = -0.25f;
F32 full_on = 0.00f;
F32 on = (tosun_z - full_off) / (full_on - full_off);
on = llclamp(on, 0.01f, 1.f);
sky_fog_color *= 0.5f * on;
// We need to clamp these to non-zero, in order for the gamma correction to work. 0^y = ???
S32 i;
for (i = 0; i < 3; i++)
{
sky_fog_color.mV[i] = llmax(0.0001f, sky_fog_color.mV[i]);
}
color_gamma_correct(sky_fog_color);
render_fog_color = sky_fog_color;
fog_distance = mFogRatio * distance;
if (camera_height > water_height)
{
LLColor4 fog(render_fog_color);
mGLFogCol = fog;
}
else
{
LLSettingsWater::ptr_t pwater = LLEnvironment::instance().getCurrentWater();
F32 depth = water_height - camera_height;
LLColor4 water_fog_color(pwater->getWaterFogColor());
// adjust the color based on depth. We're doing linear approximations
float depth_scale = gSavedSettings.getF32("WaterGLFogDepthScale");
float depth_modifier = 1.0f - llmin(llmax(depth / depth_scale, 0.01f),
gSavedSettings.getF32("WaterGLFogDepthFloor"));
LLColor4 fogCol = water_fog_color * depth_modifier;
fogCol.setAlpha(1);
// set the gl fog color
mGLFogCol = fogCol;
}
mFogColor = sky_fog_color;
mFogColor.setAlpha(1);
LLDrawPoolWater::sWaterFogEnd = fog_distance*2.2f;
stop_glerror();
}
// Functions used a lot.
F32 color_norm_pow(LLColor3& col, F32 e, BOOL postmultiply)
{
F32 mv = color_max(col);
if (0 == mv)
{
return 0;
}
col *= 1.f / mv;
color_pow(col, e);
if (postmultiply)
{
col *= mv;
}
return mv;
}
// Returns angle (RADIANs) between the horizontal projection of "v" and the x_axis.
// Range of output is 0.0f to 2pi //359.99999...f
// Returns 0.0f when "v" = +/- z_axis.
F32 azimuth(const LLVector3 &v)
{
F32 azimuth = 0.0f;
if (v.mV[VX] == 0.0f)
{
if (v.mV[VY] > 0.0f)
{
azimuth = F_PI * 0.5f;
}
else if (v.mV[VY] < 0.0f)
{
azimuth = F_PI * 1.5f;// 270.f;
}
}
else
{
azimuth = (F32) atan(v.mV[VY] / v.mV[VX]);
if (v.mV[VX] < 0.0f)
{
azimuth += F_PI;
}
else if (v.mV[VY] < 0.0f)
{
azimuth += F_PI * 2;
}
}
return azimuth;
}
bool operator==(const AtmosphericsVars& a, const AtmosphericsVars& b)
{
if (a.hazeColor != b.hazeColor)
{
return false;
}
if (a.hazeColorBelowCloud != b.hazeColorBelowCloud)
{
return false;
}
if (a.cloudColorSun != b.cloudColorSun)
{
return false;
}
if (a.cloudColorAmbient != b.cloudColorAmbient)
{
return false;
}
if (a.cloudDensity != b.cloudDensity)
{
return false;
}
if (a.density_multiplier != b.density_multiplier)
{
return false;
}
if (a.haze_horizon != b.haze_horizon)
{
return false;
}
if (a.haze_density != b.haze_density)
{
return false;
}
if (a.blue_horizon != b.blue_horizon)
{
return false;
}
if (a.blue_density != b.blue_density)
{
return false;
}
if (a.dome_offset != b.dome_offset)
{
return false;
}
if (a.dome_radius != b.dome_radius)
{
return false;
}
if (a.cloud_shadow != b.cloud_shadow)
{
return false;
}
if (a.glow != b.glow)
{
return false;
}
if (a.ambient != b.ambient)
{
return false;
}
if (a.sunlight != b.sunlight)
{
return false;
}
if (a.sun_norm != b.sun_norm)
{
return false;
}
if (a.gamma != b.gamma)
{
return false;
}
if (a.max_y != b.max_y)
{
return false;
}
if (a.distance_multiplier != b.distance_multiplier)
{
return false;
}
// light_atten, light_transmittance, total_density
// are ignored as they always change when the values above do
// they're just shared calc across the sky map generation to save cycles
return true;
}
bool approximatelyEqual(const F32 &a, const F32 &b, const F32 &fraction_treshold)
{
F32 diff = fabs(a - b);
if (diff < F_APPROXIMATELY_ZERO || diff < llmax(fabs(a), fabs(b)) * fraction_treshold)
{
return true;
}
return false;
}
bool approximatelyEqual(const LLColor3 &a, const LLColor3 &b, const F32 &fraction_treshold)
{
return approximatelyEqual(a.mV[0], b.mV[0], fraction_treshold)
&& approximatelyEqual(a.mV[1], b.mV[1], fraction_treshold)
&& approximatelyEqual(a.mV[2], b.mV[2], fraction_treshold);
}
bool approximatelyEqual(const LLVector4 &a, const LLVector4 &b, const F32 &fraction_treshold)
{
return approximatelyEqual(a.mV[0], b.mV[0], fraction_treshold)
&& approximatelyEqual(a.mV[1], b.mV[1], fraction_treshold)
&& approximatelyEqual(a.mV[2], b.mV[2], fraction_treshold)
&& approximatelyEqual(a.mV[3], b.mV[3], fraction_treshold);
}
bool approximatelyEqual(const AtmosphericsVars& a, const AtmosphericsVars& b, const F32 fraction_treshold)
{
if (!approximatelyEqual(a.hazeColor, b.hazeColor, fraction_treshold))
{
return false;
}
if (!approximatelyEqual(a.hazeColorBelowCloud, b.hazeColorBelowCloud, fraction_treshold))
{
return false;
}
if (!approximatelyEqual(a.cloudColorSun, b.cloudColorSun, fraction_treshold))
{
return false;
}
if (!approximatelyEqual(a.cloudColorAmbient, b.cloudColorAmbient, fraction_treshold))
{
return false;
}
if (!approximatelyEqual(a.cloudDensity, b.cloudDensity, fraction_treshold))
{
return false;
}
if (!approximatelyEqual(a.density_multiplier, b.density_multiplier, fraction_treshold))
{
return false;
}
if (!approximatelyEqual(a.haze_horizon, b.haze_horizon, fraction_treshold))
{
return false;
}
if (!approximatelyEqual(a.haze_density, b.haze_density, fraction_treshold))
{
return false;
}
if (!approximatelyEqual(a.blue_horizon, b.blue_horizon, fraction_treshold))
{
return false;
}
if (!approximatelyEqual(a.blue_density, b.blue_density, fraction_treshold))
{
return false;
}
if (!approximatelyEqual(a.dome_offset, b.dome_offset, fraction_treshold))
{
return false;
}
if (!approximatelyEqual(a.dome_radius, b.dome_radius, fraction_treshold))
{
return false;
}
if (!approximatelyEqual(a.cloud_shadow, b.cloud_shadow, fraction_treshold))
{
return false;
}
if (!approximatelyEqual(a.glow, b.glow, fraction_treshold))
{
return false;
}
if (!approximatelyEqual(a.ambient, b.ambient, fraction_treshold))
{
return false;
}
if (!approximatelyEqual(a.sunlight, b.sunlight, fraction_treshold))
{
return false;
}
if (!approximatelyEqual(a.sun_norm, b.sun_norm, fraction_treshold))
{
return false;
}
if (!approximatelyEqual(a.gamma, b.gamma, fraction_treshold))
{
return false;
}
if (!approximatelyEqual(a.max_y, b.max_y, fraction_treshold))
{
return false;
}
if (!approximatelyEqual(a.distance_multiplier, b.distance_multiplier, fraction_treshold))
{
return false;
}
// light_atten, light_transmittance, total_density
// are ignored as they always change when the values above do
// they're just shared calc across the sky map generation to save cycles
return true;
}