phoenix-firestorm/indra/llcommon/llmemory.cpp

1177 lines
26 KiB
C++

/**
* @file llmemory.cpp
* @brief Very special memory allocation/deallocation stuff here
*
* $LicenseInfo:firstyear=2002&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2010, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
#include "linden_common.h"
#include "llthread.h"
#if defined(LL_WINDOWS)
//# include <windows.h>
# include <psapi.h>
#elif defined(LL_DARWIN)
# include <sys/types.h>
# include <mach/task.h>
# include <mach/mach_init.h>
#elif LL_LINUX || LL_SOLARIS
# include <unistd.h>
#endif
#include "llmemory.h"
#include "llsys.h"
//----------------------------------------------------------------------------
//static
char* LLMemory::reserveMem = 0;
U32 LLMemory::sAvailPhysicalMemInKB = U32_MAX ;
U32 LLMemory::sMaxPhysicalMemInKB = 0;
U32 LLMemory::sAllocatedMemInKB = 0;
U32 LLMemory::sAllocatedPageSizeInKB = 0 ;
U32 LLMemory::sMaxHeapSizeInKB = U32_MAX ;
BOOL LLMemory::sEnableMemoryFailurePrevention = FALSE;
//static
void LLMemory::initClass()
{
if (!reserveMem)
{
reserveMem = new char[16*1024]; // reserve 16K for out of memory error handling
}
}
//static
void LLMemory::cleanupClass()
{
delete [] reserveMem;
reserveMem = NULL;
}
//static
void LLMemory::freeReserve()
{
delete [] reserveMem;
reserveMem = NULL;
}
//static
void LLMemory::initMaxHeapSizeGB(F32 max_heap_size_gb, BOOL prevent_heap_failure)
{
sMaxHeapSizeInKB = (U32)(max_heap_size_gb * 1024 * 1024) ;
sEnableMemoryFailurePrevention = prevent_heap_failure ;
}
//static
void LLMemory::updateMemoryInfo()
{
#if LL_WINDOWS
HANDLE self = GetCurrentProcess();
PROCESS_MEMORY_COUNTERS counters;
if (!GetProcessMemoryInfo(self, &counters, sizeof(counters)))
{
llwarns << "GetProcessMemoryInfo failed" << llendl;
return ;
}
sAllocatedMemInKB = (U32)(counters.WorkingSetSize / 1024) ;
sAllocatedPageSizeInKB = (U32)(counters.PagefileUsage / 1024) ;
sMaxPhysicalMemInKB = llmin(LLMemoryInfo::getAvailableMemoryKB() + sAllocatedMemInKB, sMaxHeapSizeInKB);
if(sMaxPhysicalMemInKB > sAllocatedMemInKB)
{
sAvailPhysicalMemInKB = sMaxPhysicalMemInKB - sAllocatedMemInKB ;
}
else
{
sAvailPhysicalMemInKB = 0 ;
}
#else
//not valid for other systems for now.
sAllocatedMemInKB = (U32)(LLMemory::getCurrentRSS() / 1024) ;
sMaxPhysicalMemInKB = U32_MAX ;
sAvailPhysicalMemInKB = U32_MAX ;
#endif
return ;
}
//
//this function is to test if there is enough space with the size in the virtual address space.
//it does not do any real allocation
//if success, it returns the address where the memory chunk can fit in;
//otherwise it returns NULL.
//
//static
void* LLMemory::tryToAlloc(void* address, U32 size)
{
#if LL_WINDOWS
address = VirtualAlloc(address, size, MEM_RESERVE | MEM_TOP_DOWN, PAGE_NOACCESS) ;
if(address)
{
if(!VirtualFree(address, 0, MEM_RELEASE))
{
llerrs << "error happens when free some memory reservation." << llendl ;
}
}
#else
#endif
return address ;
}
//static
void LLMemory::logMemoryInfo(BOOL update)
{
if(update)
{
updateMemoryInfo() ;
}
llinfos << "Current allocated physical memory(KB): " << sAllocatedMemInKB << llendl ;
llinfos << "Current allocated page size (KB): " << sAllocatedPageSizeInKB << llendl ;
llinfos << "Current availabe physical memory(KB): " << sAvailPhysicalMemInKB << llendl ;
llinfos << "Current max usable memory(KB): " << sMaxPhysicalMemInKB << llendl ;
}
//return 0: everything is normal;
//return 1: the memory pool is low, but not in danger;
//return -1: the memory pool is in danger, is about to crash.
//static
S32 LLMemory::isMemoryPoolLow()
{
static const U32 LOW_MEMEOY_POOL_THRESHOLD_KB = 64 * 1024 ; //64 MB for emergency use
if(!sEnableMemoryFailurePrevention)
{
return 0 ; //no memory failure prevention.
}
if(sAvailPhysicalMemInKB < (LOW_MEMEOY_POOL_THRESHOLD_KB >> 2)) //out of physical memory
{
return -1 ;
}
if(sAllocatedPageSizeInKB + (LOW_MEMEOY_POOL_THRESHOLD_KB >> 2) > sMaxHeapSizeInKB) //out of virtual address space.
{
return -1 ;
}
return (S32)(sAvailPhysicalMemInKB < LOW_MEMEOY_POOL_THRESHOLD_KB ||
sAllocatedPageSizeInKB + LOW_MEMEOY_POOL_THRESHOLD_KB > sMaxHeapSizeInKB) ;
}
//static
U32 LLMemory::getAvailableMemKB()
{
return sAvailPhysicalMemInKB ;
}
//static
U32 LLMemory::getMaxMemKB()
{
return sMaxPhysicalMemInKB ;
}
//static
U32 LLMemory::getAllocatedMemKB()
{
return sAllocatedMemInKB ;
}
void* ll_allocate (size_t size)
{
if (size == 0)
{
llwarns << "Null allocation" << llendl;
}
void *p = malloc(size);
if (p == NULL)
{
LLMemory::freeReserve();
llerrs << "Out of memory Error" << llendl;
}
return p;
}
void ll_release (void *p)
{
free(p);
}
//----------------------------------------------------------------------------
#if defined(LL_WINDOWS)
U64 LLMemory::getCurrentRSS()
{
HANDLE self = GetCurrentProcess();
PROCESS_MEMORY_COUNTERS counters;
if (!GetProcessMemoryInfo(self, &counters, sizeof(counters)))
{
llwarns << "GetProcessMemoryInfo failed" << llendl;
return 0;
}
return counters.WorkingSetSize;
}
#elif defined(LL_DARWIN)
/*
The API used here is not capable of dealing with 64-bit memory sizes, but is available before 10.4.
Once we start requiring 10.4, we can use the updated API, which looks like this:
task_basic_info_64_data_t basicInfo;
mach_msg_type_number_t basicInfoCount = TASK_BASIC_INFO_64_COUNT;
if (task_info(mach_task_self(), TASK_BASIC_INFO_64, (task_info_t)&basicInfo, &basicInfoCount) == KERN_SUCCESS)
Of course, this doesn't gain us anything unless we start building the viewer as a 64-bit executable, since that's the only way
for our memory allocation to exceed 2^32.
*/
// if (sysctl(ctl, 2, &page_size, &size, NULL, 0) == -1)
// {
// llwarns << "Couldn't get page size" << llendl;
// return 0;
// } else {
// return page_size;
// }
// }
U64 LLMemory::getCurrentRSS()
{
U64 residentSize = 0;
task_basic_info_data_t basicInfo;
mach_msg_type_number_t basicInfoCount = TASK_BASIC_INFO_COUNT;
if (task_info(mach_task_self(), TASK_BASIC_INFO, (task_info_t)&basicInfo, &basicInfoCount) == KERN_SUCCESS)
{
residentSize = basicInfo.resident_size;
// If we ever wanted it, the process virtual size is also available as:
// virtualSize = basicInfo.virtual_size;
// llinfos << "resident size is " << residentSize << llendl;
}
else
{
llwarns << "task_info failed" << llendl;
}
return residentSize;
}
#elif defined(LL_LINUX)
U64 LLMemory::getCurrentRSS()
{
static const char statPath[] = "/proc/self/stat";
LLFILE *fp = LLFile::fopen(statPath, "r");
U64 rss = 0;
if (fp == NULL)
{
llwarns << "couldn't open " << statPath << llendl;
goto bail;
}
// Eee-yew! See Documentation/filesystems/proc.txt in your
// nearest friendly kernel tree for details.
{
int ret = fscanf(fp, "%*d (%*[^)]) %*c %*d %*d %*d %*d %*d %*d %*d "
"%*d %*d %*d %*d %*d %*d %*d %*d %*d %*d %*d %Lu",
&rss);
if (ret != 1)
{
llwarns << "couldn't parse contents of " << statPath << llendl;
rss = 0;
}
}
fclose(fp);
bail:
return rss;
}
#elif LL_SOLARIS
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#define _STRUCTURED_PROC 1
#include <sys/procfs.h>
U64 LLMemory::getCurrentRSS()
{
char path [LL_MAX_PATH]; /* Flawfinder: ignore */
sprintf(path, "/proc/%d/psinfo", (int)getpid());
int proc_fd = -1;
if((proc_fd = open(path, O_RDONLY)) == -1){
llwarns << "LLmemory::getCurrentRSS() unable to open " << path << ". Returning 0 RSS!" << llendl;
return 0;
}
psinfo_t proc_psinfo;
if(read(proc_fd, &proc_psinfo, sizeof(psinfo_t)) != sizeof(psinfo_t)){
llwarns << "LLmemory::getCurrentRSS() Unable to read from " << path << ". Returning 0 RSS!" << llendl;
close(proc_fd);
return 0;
}
close(proc_fd);
return((U64)proc_psinfo.pr_rssize * 1024);
}
#else
U64 LLMemory::getCurrentRSS()
{
return 0;
}
#endif
//-------------------------------------------------------------
//class LLPrivateMemoryPool::LLMemoryBlock
//-------------------------------------------------------------
//
//each memory block could fit for two page sizes: 0.75 * mSlotSize, which starts from the beginning of the memory chunk and grow towards the end of the
//the block; another is mSlotSize, which starts from the end of the block and grows towards the beginning of the block.
//
LLPrivateMemoryPool::LLMemoryBlock::LLMemoryBlock()
{
//empty
}
LLPrivateMemoryPool::LLMemoryBlock::~LLMemoryBlock()
{
//empty
}
void LLPrivateMemoryPool::LLMemoryBlock::init(char* buffer, U32 buffer_size, U32 slot_size)
{
mBuffer = buffer ;
mBufferSize = buffer_size ;
mSlotSize = slot_size ;
mTotalSlots = buffer_size / mSlotSize ;
llassert_always(mTotalSlots < 256) ; //max number is 256
mAllocatedSlots = 0 ;
//mark free bits
S32 usage_bit_len = (mTotalSlots + 31) / 32 ;
mDummySize = usage_bit_len - 1 ;
if(mDummySize > 0) //extra space to store mUsageBits
{
mTotalSlots -= (mDummySize * sizeof(mUsageBits) + mSlotSize - 1) / mSlotSize ;
usage_bit_len = (mTotalSlots + 31) / 32 ;
mDummySize = usage_bit_len - 1 ;
if(mDummySize > 0)
{
mUsageBits = 0 ;
for(S32 i = 0 ; i < mDummySize ; i++)
{
*((U32*)mBuffer + i) = 0 ;
}
if(mTotalSlots & 31)
{
*((U32*)mBuffer + mDummySize - 1) = (0xffffffff << (mTotalSlots & 31)) ;
}
}
}
if(mDummySize < 1)
{
mUsageBits = 0 ;
if(mTotalSlots & 31)
{
mUsageBits = (0xffffffff << (mTotalSlots & 31)) ;
}
}
mSelf = NULL ;
mNext = NULL ;
}
void LLPrivateMemoryPool::LLMemoryBlock::setBuffer(char* buffer, U32 buffer_size)
{
mBuffer = buffer ;
mBufferSize = buffer_size ;
mTotalSlots = 0 ; //set the block is free.
}
char* LLPrivateMemoryPool::LLMemoryBlock::allocate()
{
llassert_always(mAllocatedSlots < mTotalSlots) ;
//find a free slot
U32* bits = NULL ;
U32 k = 0 ;
if(mUsageBits != 0xffffffff)
{
bits = &mUsageBits ;
}
else if(mDummySize > 0)//go to extra space
{
for(S32 i = 0 ; i < mDummySize; i++)
{
if(*((U32*)mBuffer + i) != 0xffffffff)
{
bits = (U32*)mBuffer + i ;
k = i + 1 ;
break ;
}
}
}
S32 idx = 0 ;
U32 tmp = *bits ;
for(; tmp & 1 ; tmp >>= 1, idx++) ;
//set the slot reserved
if(!idx)
{
*bits |= 1 ;
}
else
{
*bits |= (1 << idx) ;
}
mAllocatedSlots++ ;
return mBuffer + mDummySize * sizeof(U32) + (k * 32 + idx) * mSlotSize ;
}
void LLPrivateMemoryPool::LLMemoryBlock::free(void* addr)
{
U32 idx = ((char*) addr - mBuffer - mDummySize * sizeof(U32)) / mSlotSize ;
U32* bits = &mUsageBits ;
if(idx > 32)
{
bits = (U32*)mBuffer + (idx - 32) / 32 ;
}
if(idx & 31)
{
*bits &= ~(1 << (idx & 31)) ;
}
else
{
*bits &= ~1 ;
}
mAllocatedSlots-- ;
}
//-------------------------------------------------------------------
//class LLMemoryChunk
//--------------------------------------------------------------------
LLPrivateMemoryPool::LLMemoryChunk::LLMemoryChunk()
{
//empty
}
LLPrivateMemoryPool::LLMemoryChunk::~LLMemoryChunk()
{
//empty
}
void LLPrivateMemoryPool::LLMemoryChunk::init(char* buffer, U32 buffer_size, U32 min_slot_size, U32 max_slot_size, U32 min_block_size, U32 max_block_size)
{
mBuffer = buffer ;
mBufferSize = buffer_size ;
mMetaBuffer = mBuffer + sizeof(LLMemoryChunk) ;
mMinBlockSize = min_block_size;
mMaxBlockSize = max_block_size;
mMinSlotSize = min_slot_size;
mBlockLevels = max_block_size / min_block_size ;
mPartitionLevels = mMaxBlockSize / mMinBlockSize + 1 ;
S32 max_num_blocks = (buffer_size - sizeof(LLMemoryChunk) - mBlockLevels * sizeof(LLMemoryBlock*) - mPartitionLevels * sizeof(LLMemoryBlock*)) /
(mMinBlockSize + sizeof(LLMemoryBlock)) ;
//meta data space
mBlocks = (LLMemoryBlock*)mMetaBuffer ;
mAvailBlockList = (LLMemoryBlock**)((char*)mBlocks + sizeof(LLMemoryBlock) * max_num_blocks) ;
mFreeSpaceList = (LLMemoryBlock**)((char*)mAvailBlockList + sizeof(LLMemoryBlock*) * mBlockLevels) ;
//data buffer
mDataBuffer = (char*)mFreeSpaceList + sizeof(LLMemoryBlock*) * mPartitionLevels ;
//init
for(U32 i = 0 ; i < mBlockLevels; i++)
{
mAvailBlockList[i] = NULL ;
}
for(U32 i = 0 ; i < mPartitionLevels ; i++)
{
mFreeSpaceList[i] = NULL ;
}
mBlocks[0].setBuffer(mDataBuffer, buffer_size - (mDataBuffer - mBuffer)) ;
addToFreeSpace(&mBlocks[0]) ;
mKey = (U32)mBuffer ;
mNext = NULL ;
mPrev = NULL ;
}
//static
U32 LLPrivateMemoryPool::LLMemoryChunk::getMaxOverhead(U32 data_buffer_size, U32 min_page_size)
{
return 2048 +
sizeof(LLMemoryBlock) * (data_buffer_size / min_page_size) ;
}
char* LLPrivateMemoryPool::LLMemoryChunk::allocate(U32 size)
{
char* p = NULL ;
U32 blk_idx = size / mMinSlotSize ;
if(mMinSlotSize * blk_idx < size)
{
blk_idx++ ;
}
//check if there is free block available
if(mAvailBlockList[blk_idx])
{
LLMemoryBlock* blk = mAvailBlockList[blk_idx] ;
p = blk->allocate() ;
if(blk->isFull())
{
//removeFromFreelist
popAvailBlockList(blk_idx) ;
}
}
//ask for a new block
if(!p)
{
LLMemoryBlock* blk = addBlock(blk_idx) ;
if(blk)
{
p = blk->allocate() ;
if(blk->isFull())
{
//removeFromFreelist
popAvailBlockList(blk_idx) ;
}
}
}
//ask for space from higher level blocks
if(!p)
{
for(S32 i = blk_idx + 1 ; i < mBlockLevels; i++)
{
if(mAvailBlockList[i])
{
LLMemoryBlock* blk = mAvailBlockList[i] ;
p = blk->allocate() ;
if(blk->isFull())
{
//removeFromFreelist
popAvailBlockList(i) ;
}
break ;
}
}
}
return p ;
}
void LLPrivateMemoryPool::LLMemoryChunk::free(void* addr)
{
LLMemoryBlock* blk = (LLMemoryBlock*)(mMetaBuffer + (((char*)addr - mDataBuffer) / mMinBlockSize) * sizeof(LLMemoryBlock)) ;
blk = blk->mSelf ;
bool was_full = blk->isFull() ;
blk->free(addr) ;
if(blk->empty())
{
removeBlock(blk) ;
}
else if(was_full)
{
addToAvailBlockList(blk) ;
}
}
LLPrivateMemoryPool::LLMemoryBlock* LLPrivateMemoryPool::LLMemoryChunk::addBlock(U32 blk_idx)
{
U32 slot_size = mMinSlotSize * (blk_idx + 1) ;
U32 preferred_block_size = llmax(mMinBlockSize, slot_size * 32) ;
preferred_block_size = llmin(preferred_block_size, mMaxBlockSize) ;
U32 idx = preferred_block_size / mMinBlockSize ;
preferred_block_size = idx * mMinBlockSize ; //round to integer times of mMinBlockSize.
LLMemoryBlock* blk = NULL ;
if(mFreeSpaceList[idx])//if there is free slot for blk_idx
{
blk = createNewBlock(&mFreeSpaceList[idx], preferred_block_size, slot_size, blk_idx) ;
}
else if(mFreeSpaceList[mPartitionLevels - 1]) //search free pool
{
blk = createNewBlock(&mFreeSpaceList[mPartitionLevels - 1], preferred_block_size, slot_size, blk_idx) ;
}
else //search for other non-preferred but enough space slot.
{
for(U32 i = idx - 1 ; i >= 0 ; i--) //search the small slots first
{
if(mFreeSpaceList[i])
{
//create a NEW BLOCK THERE.
if(mFreeSpaceList[i]->getBufferSize() >= slot_size) //at least there is space for one slot.
{
blk = createNewBlock(&mFreeSpaceList[i], preferred_block_size, slot_size, blk_idx) ;
}
break ;
}
}
if(!blk)
{
for(U16 i = idx + 1 ; i < mPartitionLevels - 1; i++) //search the large slots
{
if(mFreeSpaceList[i])
{
//create a NEW BLOCK THERE.
blk = createNewBlock(&mFreeSpaceList[i], preferred_block_size, slot_size, blk_idx) ;
break ;
}
}
}
}
return blk ;
}
LLPrivateMemoryPool::LLMemoryBlock* LLPrivateMemoryPool::LLMemoryChunk::createNewBlock(LLMemoryBlock** cur_idxp, U32 buffer_size, U32 slot_size, U32 blk_idx)
{
LLMemoryBlock* blk = *cur_idxp ;
buffer_size = llmin(buffer_size, blk->getBufferSize()) ;
U32 new_free_blk_size = blk->getBufferSize() - buffer_size ;
if(new_free_blk_size < mMinBlockSize) //can not partition the memory into size smaller than mMinBlockSize
{
buffer_size += new_free_blk_size ;
new_free_blk_size = 0 ;
}
blk->init(blk->getBuffer(), buffer_size, slot_size) ;
if(new_free_blk_size > 0) //cur_idx still has free space
{
LLMemoryBlock* next_blk = blk + (buffer_size / mMinBlockSize) ;
next_blk->setBuffer(blk->getBuffer() + buffer_size, new_free_blk_size) ;
if(new_free_blk_size > mMaxBlockSize) //stays in the free pool
{
next_blk->mPrev = NULL ;
next_blk->mNext = blk->mNext ;
if(next_blk->mNext)
{
next_blk->mNext->mPrev = next_blk ;
}
*cur_idxp = next_blk ;
}
else
{
*cur_idxp = blk->mNext ; //move to the next slot
(*cur_idxp)->mPrev = NULL ;
addToFreeSpace(next_blk) ;
}
}
else //move to the next block
{
*cur_idxp = blk->mNext ;
(*cur_idxp)->mPrev = NULL ;
}
//insert to the available block list...
blk->mNext = NULL ;
blk->mPrev = NULL ;
blk->mSelf = blk ;
mAvailBlockList[blk_idx] = blk ;
//mark the address map
U32 end = (buffer_size / mMinBlockSize) ;
for(U32 i = 1 ; i < end ; i++)
{
(blk + i)->mSelf = blk ;
}
return blk ;
}
void LLPrivateMemoryPool::LLMemoryChunk::removeBlock(LLMemoryBlock* blk)
{
//remove from the available block list
if(blk->mPrev)
{
blk->mPrev->mNext = blk->mNext ;
}
if(blk->mNext)
{
blk->mNext->mPrev = blk->mPrev ;
}
//mark it free
blk->setBuffer(blk->getBuffer(), blk->getBufferSize()) ;
//merge blk with neighbors if possible
if(blk->getBuffer() > mDataBuffer) //has the left neighbor
{
if((blk - 1)->mSelf->isFree())
{
removeFromFreeSpace((blk - 1)->mSelf);
(blk - 1)->mSelf->setBuffer((blk-1)->mSelf->getBuffer(), (blk-1)->mSelf->getBufferSize() + blk->getBufferSize()) ;
blk = (blk - 1)->mSelf ;
}
}
if(blk->getBuffer() + blk->getBufferSize() < mBuffer + mBufferSize) //has the right neighbor
{
U32 d = blk->getBufferSize() / mMinBlockSize ;
if((blk + d)->isFree())
{
removeFromFreeSpace(blk + d) ;
blk->setBuffer(blk->getBuffer(), blk->getBufferSize() + (blk + d)->getBufferSize()) ;
}
}
addToFreeSpace(blk) ;
return ;
}
//the top block in the list is full, pop it out of the list
void LLPrivateMemoryPool::LLMemoryChunk::popAvailBlockList(U32 blk_idx)
{
if(mAvailBlockList[blk_idx])
{
LLMemoryBlock* next = mAvailBlockList[blk_idx]->mNext ;
next->mPrev = NULL ;
mAvailBlockList[blk_idx]->mNext = NULL ;
mAvailBlockList[blk_idx] = next ;
}
}
void LLPrivateMemoryPool::LLMemoryChunk::addToFreeSpace(LLMemoryBlock* blk)
{
U16 free_idx = blk->getBufferSize() / mMinBlockSize ;
(blk + free_idx)->mSelf = blk ; //mark the end pointing back to the head.
free_idx = llmin(free_idx, (U16)(mPartitionLevels - 1)) ;
blk->mNext = mFreeSpaceList[free_idx] ;
if(mFreeSpaceList[free_idx])
{
mFreeSpaceList[free_idx]->mPrev = blk ;
}
mFreeSpaceList[free_idx] = blk ;
blk->mPrev = NULL ;
blk->mSelf = blk ;
return ;
}
void LLPrivateMemoryPool::LLMemoryChunk::removeFromFreeSpace(LLMemoryBlock* blk)
{
U16 free_idx = blk->getBufferSize() / mMinBlockSize ;
free_idx = llmin(free_idx, (U16)(mPartitionLevels - 1)) ;
if(mFreeSpaceList[free_idx] == blk)
{
mFreeSpaceList[free_idx] = blk->mNext ;
}
if(blk->mPrev)
{
blk->mPrev->mNext = blk->mNext ;
}
if(blk->mNext)
{
blk->mNext->mPrev = blk->mPrev ;
}
return ;
}
void LLPrivateMemoryPool::LLMemoryChunk::addToAvailBlockList(LLMemoryBlock* blk)
{
U32 blk_idx = blk->getSlotSize() / mMinSlotSize ;
blk->mNext = mAvailBlockList[blk_idx] ;
if(blk->mNext)
{
blk->mNext->mPrev = blk ;
}
blk->mPrev = NULL ;
return ;
}
//-------------------------------------------------------------------
//class LLPrivateMemoryPool
//--------------------------------------------------------------------
LLPrivateMemoryPool::LLPrivateMemoryPool(U32 max_size, bool threaded) :
mMutexp(NULL),
mMaxPoolSize(max_size),
mReservedPoolSize(0)
{
if(threaded)
{
mMutexp = new LLMutex(NULL) ;
}
for(S32 i = 0 ; i < SUPER_ALLOCATION ; i++)
{
mChunkList[i] = NULL ;
}
mChunkVectorCapacity = 128 ;
mChunks.resize(mChunkVectorCapacity) ; //at most 128 chunks
mNumOfChunks = 0 ;
}
LLPrivateMemoryPool::~LLPrivateMemoryPool()
{
destroyPool();
delete mMutexp ;
}
char* LLPrivateMemoryPool::allocate(U32 size)
{
const static U32 MAX_BLOCK_SIZE = 4 * 1024 * 1024 ; //4MB
//if the asked size larger than MAX_BLOCK_SIZE, fetch from heap directly, the pool does not manage it
if(size >= MAX_BLOCK_SIZE)
{
return new char[size] ;
}
char* p = NULL ;
//find the appropriate chunk
S32 chunk_idx = getChunkIndex(size) ;
lock() ;
LLMemoryChunk* chunk = mChunkList[chunk_idx];
while(chunk)
{
if(p = chunk->allocate(size))
{
break ;
}
chunk = chunk->mNext ;
}
//fetch new memory chunk
if(!p)
{
chunk = addChunk(chunk_idx) ;
p = chunk->allocate(size) ;
}
unlock() ;
return p ;
}
void LLPrivateMemoryPool::free(void* addr)
{
lock() ;
LLMemoryChunk* chunk = mChunks[findChunk((char*)addr)] ;
if(!chunk)
{
delete[] (char*)addr ; //release from heap
}
else
{
chunk->free(addr) ;
if(chunk->empty())
{
removeChunk(chunk) ;
}
}
unlock() ;
}
void LLPrivateMemoryPool::dump()
{
}
void LLPrivateMemoryPool::lock()
{
if(mMutexp)
{
mMutexp->lock() ;
}
}
void LLPrivateMemoryPool::unlock()
{
if(mMutexp)
{
mMutexp->unlock() ;
}
}
S32 LLPrivateMemoryPool::getChunkIndex(U32 size)
{
if(size < 2048)
{
return 0 ;
}
else if(size < (512 << 10))
{
return 1 ;
}
else
{
return 2 ;
}
}
//destroy the entire pool
void LLPrivateMemoryPool::destroyPool()
{
for(U16 i = 0 ; i < mNumOfChunks ; i++)
{
delete[] mChunks[i]->getBuffer() ;
}
mNumOfChunks = 0 ;
for(S32 i = 0 ; i < SUPER_ALLOCATION ; i++)
{
mChunkList[i] = NULL ;
}
}
LLPrivateMemoryPool::LLMemoryChunk* LLPrivateMemoryPool::addChunk(S32 chunk_index)
{
static const U32 MIN_BLOCK_SIZES[SUPER_ALLOCATION] = {2 << 10, 32 << 10, 64 << 10} ;
static const U32 MAX_BLOCK_SIZES[SUPER_ALLOCATION] = {64 << 10, 1 << 20, 4 << 20} ;
static const U32 MIN_SLOT_SIZES[SUPER_ALLOCATION] = {8, 2 << 10, 512 << 10};
static const U32 MAX_SLOT_SIZES[SUPER_ALLOCATION] = {(2 << 10) - 8, (512 - 2) << 10, 4 << 20};
U32 preferred_size ;
U32 overhead ;
if(chunk_index < LARGE_ALLOCATION)
{
preferred_size = (4 << 20) ; //4MB
overhead = LLMemoryChunk::getMaxOverhead(preferred_size, MIN_BLOCK_SIZES[chunk_index]) ;
}
else
{
preferred_size = (16 << 20) ; //16MB
overhead = LLMemoryChunk::getMaxOverhead(preferred_size, MIN_BLOCK_SIZES[chunk_index]) ;
}
char* buffer = new(std::nothrow) char[preferred_size + overhead] ;
if(!buffer)
{
return NULL ;
}
LLMemoryChunk* chunk = new (buffer) LLMemoryChunk() ;
chunk->init(buffer, preferred_size + overhead, MIN_SLOT_SIZES[chunk_index],
MAX_SLOT_SIZES[chunk_index], MIN_BLOCK_SIZES[chunk_index], MAX_BLOCK_SIZES[chunk_index]) ;
//add to the head of the linked list
chunk->mNext = mChunkList[chunk_index] ;
if(mChunkList[chunk_index])
{
mChunkList[chunk_index]->mPrev = chunk ;
}
chunk->mPrev = NULL ;
mChunkList[chunk_index] = chunk ;
//insert into the array
llassert_always(mNumOfChunks + 1 < mChunkVectorCapacity) ;
if(!mNumOfChunks)
{
mChunks[0] = chunk ;
}
else
{
U16 k ;
if(mChunks[0]->getBuffer() > chunk->getBuffer())
{
k = 0 ;
}
else
{
k = findChunk(chunk->getBuffer()) + 1 ;
}
for(U16 i = mNumOfChunks ; i > k ; i++)
{
mChunks[i] = mChunks[i-1] ;
}
mChunks[k] = chunk ;
}
mNumOfChunks++;
return chunk ;
}
void LLPrivateMemoryPool::removeChunk(LLMemoryChunk* chunk)
{
//remove from the linked list
if(chunk->mPrev)
{
chunk->mPrev->mNext = chunk->mNext ;
}
if(chunk->mNext)
{
chunk->mNext->mPrev = chunk->mPrev ;
}
//remove from the array
U16 k = findChunk(chunk->getBuffer()) ;
mNumOfChunks--;
for(U16 i = k ; i < mNumOfChunks ; i++)
{
mChunks[i] = mChunks[i+1] ;
}
//release memory
delete[] chunk->getBuffer() ;
}
U16 LLPrivateMemoryPool::findChunk(const char* addr)
{
llassert_always(mNumOfChunks > 0) ;
U16 s = 0, e = mNumOfChunks;
U16 k = (s + e) / 2 ;
while(s < e)
{
if(mChunks[k]->mKey > (U32)addr)
{
e = k ;
}
else if(k < mNumOfChunks - 1 && mChunks[k+1]->mKey < (U32)addr)
{
s = k ;
}
else
{
break ;
}
k = (s + e) / 2 ;
}
return k ;
}
//--------------------------------------------------------------------
//class LLPrivateMemoryPoolTester
LLPrivateMemoryPoolTester* LLPrivateMemoryPoolTester::sInstance = NULL ;
LLPrivateMemoryPool* LLPrivateMemoryPoolTester::sPool = NULL ;
LLPrivateMemoryPoolTester::LLPrivateMemoryPoolTester()
{
}
LLPrivateMemoryPoolTester::~LLPrivateMemoryPoolTester()
{
}
//static
LLPrivateMemoryPoolTester* LLPrivateMemoryPoolTester::getInstance()
{
if(!sInstance)
{
sInstance = new LLPrivateMemoryPoolTester() ;
}
return sInstance ;
}
//static
void LLPrivateMemoryPoolTester::destroy()
{
if(sInstance)
{
delete sInstance ;
sInstance = NULL ;
}
if(sPool)
{
delete sPool ;
sPool = NULL ;
}
}
void LLPrivateMemoryPoolTester::run()
{
const U32 max_pool_size = 16 << 20 ;
const bool threaded = false ;
if(!sPool)
{
sPool = new LLPrivateMemoryPool(max_pool_size, threaded) ;
}
//run the test
correctnessTest() ;
reliabilityTest() ;
performanceTest() ;
fragmentationtest() ;
}
void LLPrivateMemoryPoolTester::correctnessTest()
{
//try many different sized allocation, fill the memory fully to see if allocation is right.
}
void LLPrivateMemoryPoolTester::reliabilityTest()
void LLPrivateMemoryPoolTester::performanceTest()
void LLPrivateMemoryPoolTester::fragmentationtest()
void* LLPrivateMemoryPoolTester::operator new(size_t size)
{
return (void*)sPool->allocate(size) ;
}
void LLPrivateMemoryPoolTester::operator delete(void* addr)
{
sPool->free(addr) ;
}
//--------------------------------------------------------------------